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Key Points

• Cell of origin is stable
between diagnosis and
relapse.

• A 30-gene panel of
relapse-associated
genes was able to
stratify ABC patient
survival at diagnosis.
Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell

lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have

previously focused on the mutational landscape of relapse but fell short of providing a

consistent relapse-specific genetic signature. In our study, we have focused attention on the

changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse

specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to

relapse in 80% of patients, with only a single patient showing COO switching from activated

B-cell–like (ABC) to germinal center B-cell–like (GCB). Analysis of the transcriptomic changes

that occur following relapse suggest ABC and GCB relapses are mediated via different

mechanisms. We developed a 30-gene discriminator for ABC–DLBCLs derived from relapse-

associated genes that defined clinically distinct high- and low-risk subgroups in ABC–

DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts.

This signature also identified a population of <60-year–old patients with superior PFS and

OS treated with ibrutinib–R-CHOP as part of the PHOENIX trial. Altogether this new

signature adds to the existing toolkit of putative genetic predictors now available in DLBCL

that can be readily assessed as part of prospective clinical trials.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease
encompassing multiple molecular and biological subtypes. Although
potentially curable with immuno-chemotherapy, up to 40% of
patients will experience relapsed or refractory disease.1,2 The cur-
rent standard of care for these lymphomas has not changed in
the past 2 decades, and efforts are turning to identification of sub-
groups of DLBCL that may demonstrate preferential response to
existing or novel therapies.3,4 Early work focused on DLBCL at
diagnosis, using gene expression profiling (GEP) to delineate the
cell-of-origin (COO) classification system (germinal center B-cell–
like [GCB], activated B-cell–like [ABC], and unclassified [UNC])
with ABC tumors being linked to poorer outcome.5 However,
attempts to use molecular analyses to tailor treatment, and specif-
ically to develop alternative rituximab, cyclophosphamide, doxoru-
bicin, vincristine, and prednisolone (R-CHOP) regimens to mitigate
the poorer outcome of patients in the ABC–DLBCL subgroup, have
not, to date, led to significant improvements.6-9

More recently, attempts to refine the taxonomy of DLBCL through
integrative genomic analysis have demonstrated additional het-
erogeneity not captured by the previous COO classification.10-14

This has led to the growing realization that DLBCL encompasses
a number of biological entities with distinct oncogenic mecha-
nisms, requiring a more sophisticated approach to patient man-
agement and trial design. To date, these studies have predominantly
focused on analyzing single tumor biopsies at diagnosis, with our
understanding of the pre-programmed or acquired mechanisms
underpinning relapsed disease hindered by the limited availability of
sequential biopsy samples. The majority of longitudinal studies pub-
lished thus far have focused on genetic changes between the
diagnostic and relapse tumor, providing important confirmation of the
clonal relationship between diagnosis and relapse, and describing
recurrent relapse-associated genetic aberrations, but fell short of
providing a consistent relapse-specific genetic signature15-22

(supplemental Table 1). In this study, we sought to use GEP in
paired diagnostic and relapse tumors to further understand the
mechanisms underpinning treatment failure following immuno-
chemotherapy. Using these data, we demonstrate the stability of
COO at relapse in the majority of cases and identify a novel relapse-
associated gene expression signature that reliably discriminated 2
distinct outcome groups within the ABC type of DLBCL at diagnosis.

Methods

Patient cohort

Ethical approval was obtained from the London Research Ethics
Committee of the East London and the City Health authority (10/
H0704/65 and 06/Q0605/69). Written consent was obtained for
the use of specimens for research purposes and samples from
collaborating centers had local ethical approval. Paired diagnosis/
relapse DLBCL biopsies were collated from 38 patients across 5
centers in the United Kingdom. All patients were treated with
standard first-line rituximab-based immuno-chemotherapy (eg,
R-CHOP) and achieved either a partial or complete remission
(Figure 1A; Table 1). COO was determined using the Lymph2Cx
assay on the NanoString platform23 or the DLBCL Automatic
Classifier24 and all biopsies had ≥19% total B cell content, as
846 BEWICKE-COPLEY et al
estimated by CIBERSORT.25 Thirty-four biopsies were nodal (15
diagnosis, 19 relapse) and 42 extranodal (23 diagnosis and 19
relapse). The site of the biopsy was concordant at diagnosis and
relapse for 20 cases (8 nodal, 12 extranodal).

Gene expression analysis

GEP of formalin-fixed parafin embedded (FFPE) samples was carried
out using the Ion Ampliseq™ Human Gene Expression array, con-
sisting of 20 802 genes. Poorly captured genes (0 reads in ≥ 1/3 of
the cohort) were removed, leaving 15 457 genes. Raw read counts
were normalized to log2 counts per million. Differential expression
between matched relapse and diagnostic samples, and gene set
enrichment analysis (GSEA)26 were subsequently performed. The list
of differentially expressed (DE) genes were selected for the following
gene signature discovery using publicly available datasets.

Derivation of a prognostic gene panel

Relapse-associated genes found within our paired cohort (P < .05)
were used in conjunction with the Prediction Analysis of Microarrays27

(PAM) algorithm to define a survival signature for DLBCL. The
expression of these genes within a cohort of 264 GCB and 249 ABC
diagnostic patients with DLBCL14 (called the “Reddy cohort” here-
after) was used to train the PAM model. For the validation of the
resulting gene signatures, a linear predictor model was constructed
based on the prognostic value of each gene in the training dataset
and the expression value in the validation dataset. This predictor score
was used to stratify patients in 3 independent GEP cohorts: the
Randomised Evaluation of Molecular Guided Therapy for Diffuse
Large B-cell Lymphoma with Bortezomib clinical trial (REMoDL-B),7

the Lymphoma/Leukemia Molecular Profiling Project (LLMPP)
series,28 and the Haematological Malignancy Research Network
(HMRN) population cohort.29 All survival analyses were performed
using the Cox Proportional Hazards Model in R.

See supplemental Methods for a full description of the methods.

Results

COO is stable between diagnosis and relapse

The longitudinal series included 38 paired diagnostic-relapsed
DLBCLs (Figure 1A; Table 1), all treated at diagnosis with
R-CHOP or R-CHOP–like regimens. COO calling was successfully
completed in both biopsies for 35 cases. COO was stable across
28 patients (80%) and corresponded to 17 ABC–ABC and
11 GCB–GCB pairs, with 2 further cases being UNC at both time-
points (Figure 1B). Discordant COO was a feature of just 5 cases
(1 ABC–GCB, 2 ABC–UNC, 1 GCB–UNC, and 1 UNC–ABC) with
a single example of an ABC–GCB transition, suggesting that
changes in DLBCL trajectory at relapse, while reported in the
literature,30 are uncommon. The median time to relapse was
1.7 years, with 22 patients (58%) relapsing within 2 years. In 2 cases
(1 ABC–ABC and 1 GCB–GCB) relapse occurred after more than
10 years (10.1 years and 13.9 years, respectively).

Deregulated gene expression between diagnosis and

relapse

We interrogated whole-transcriptome GEP data from all 76 biopsies
with the aim of identifying changes in gene expression associated
with DLBCL relapse. Principal component analysis (PCA) based on
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Figure 1. Gene expression profiles of paired diagnosis and relapse diffuse large B-cell lymphoma (DLBCL) biopsies. (A) Thirty-eight patients who underwent relapse

were included in the study; the clinical features of these patients are shown. (B) COO remained stable in the majority of cases. Gene expression profiling was carried out using an

Ion AmpliSeq Transcriptome Human Gene Expression Kit. (C) Principal component analysis carried out on these samples suggested poor separation based on timepoint,

with a greater degree of separation observed in the COO. Diagnosis = green; relapse = red; ABC = blue; GCB = orange; UNC = gray; NA = black. (D) Differential
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Figure 1 (continued) gene expression was carried out separately for the ABC and GCB cohorts and GSEA was performed, with the number of genes sets dysregulated (false

discovery rate < = 0.1) at relapse are shown. (E) Heatmaps of normalized enrichment score for examples of the dysregulated gene sets are shown. A 30-gene panel capable of

stratifying ABC–DLBCL patients from a training cohort14 into 2 risk groups with different overall survival was discovered using PAM (F). Red = high risk, blue = low risk;

**p < = 0.01, *p < = 0.05, •p < = 0.1. COO, cell of origin; ABC, activated B-cell–like; UNC, unclassified; GBC, germinal center B-cell–like; NA, not applicable; CR, complete

response; PR, partial response; GSEA, gene set enrichment analysis.

Table 1. Cohort information

Min Max Median

Age at diagnosis (years) 38 89 64

Time to relapse (years) 0.5 13.9 1.7

Sex

Male Female

17 21

Cell of Origin

(Avaliable for 35 cases) Relapse

ABC GCB UNC

Diagnosis ABC 17 1 2

GCB 0 11 1

UNC 1 0 2

Site of Biopsy

Relapse

Nodal Extranodal

Diagnosis Nodal 8 7

Extranodal 11 12

Treatment

Treatment Frequency

R-CHOP 30

R-CHOP + IT MTX 3

R-CHOP + LOCALISED RT 1

R-CHOP X3 + IT MTX AND IFRT 1

R-CHOP X3 + RADIOTHERAPY 1

R-CEOP 1

R-CEOP + RADIOTHERAPY 1

848 BEWICKE-COPLEY et al 14 MARCH 2023 • VOLUME 7, NUMBER 5



the full set of profiled genes (n = 15 457) did not reveal distinct
clustering of the diagnostic or relapse samples (Figure 1C). There
was no consistent pattern observed in the PCA values within the
individual pairs or based on the location of biopsies, nodal/extra-
nodal disease, or time to relapse (supplemental Figure 1A–C). As
expected, GEP profiles of the samples showed association based
on their COO (Figure 1C), where DE analyses of the ABC (n = 17)
and GCB (n = 11) pairs identified unique sets of genes associated
with relapse, based on COO (<4% overlapping DE genes, limma
analysis p < .05; supplemental Figure 1). This was also supported by
GSEA where chromosome maintenance, DNA repair, and rRNA
processing were among the top upregulated pathways (false dis-
covery rate < 0.1) in the ABC–ABC series in comparison with
adaptive immunity, cytokine signaling, and antigen processing and
presentation signatures that were unique to GCB–GCB pairs
(Figure 1D,E; supplemental Tables 2 and 3).

A 30-gene outcome predictor in ABC DLBCL

We postulated that the expression of these relapse-associated genes
might hold some prognostic significance in a diagnostic cohort. To this
end, the PAM algorithm27 was used to interrogate a total of 796 and
387 DE genes (p < .05) from our ABC and GCB diagnostic-relapse
signatures, respectively, in the Reddy series of 264 GCB and
249 ABC diagnostic DLBCLs. This analysis identified a 30-gene
signature that separated ABC patients into 136 low- and 113 high-
risk cases with significantly different overall survival (hazard ratio
[HR] = 1.89, 95% confidence interval [CI] = 1.26–2.83; log-rank p =
.0017; Figure 1F). The majority of the genes in this panel have not
previously been implicated in DLBCL pathogenesis, although notable
exceptions included MYC and TNFRSF9, with MYC one of 5 genes
demonstrating significant single-gene clinical association, inversely
correlated with overall survival (p< .05; Figure 1F). STRING analysis of
these 30 genes identified 7 highly interconnected clusters, with MYC
at the center of this protein interaction network (supplementary
Figure 2; supplemental Table 4). In contrast to ABC patients, there
was no equivalent predictor detected using PAM in the corresponding
set of GCB cases. Attempts to define a response signature using the
Reddy cohortwithout the prior enrichment of relapse-associatedgenes
were unsuccessful.

Validation of the 30-gene ABC predictor in 3

independent DLBCL series

The reproducibility of this 30-gene outcome predictor was evalu-
ated in 3 separate DLBCL cohorts (REMoDL-B and HMRN,
both with RNA profiling achieved using the cDNA-mediated
annealing, selection, extension, and ligation assay; and LLMPP–
RNA profiling from an Affymetrix microarray chip7,28,29), all
treated with R-CHOP (R-CHOP + bortezomib in 126 patients from
the REMoDL-B cohort) at diagnosis and comprising 504 ABC
cases in total. We evaluated each series separately. Within each
cohort, a linear predictor score was calculated for each patient,
based on the summation of the expression of 29 or 30 genes (as
not all genes were represented on each platform), weighted by
their β-coefficients from the training dataset (supplemental
Table 5). These linear predictors were standardized using a
Z-transformation and each cohort was subdivided into high
(standardized linear predictor > 0) and low (standardized linear
predictor < 0) scoring risk groups (see supplemental Methods).
Analysis of the cause of deaths in the HMRN cohort shows that
14 MARCH 2023 • VOLUME 7, NUMBER 5
patients with lymphoma-associated deaths had a significantly
shorter follow-up time than patients who died of other causes
(Wilcoxon rank sum p < 0.001; supplemental Figure 3D). More-
over, it was notable that non-lymphoma–related deaths increased
significantly from 3 years in this series and so we restricted our
analysis of overall survival accordingly.

The algorithm stratified the 255 ABC REMoDL-B cases, into 108
low- and 147 high-risk cases (3-year overall survival [OS]; HR = 2.04,
95% CI = 1.073–3.875; p = .026; Figure 2A); the LLMPP series
of 93 ABC cases into 44 low- and 49 high-risk cases (3-year OS;
HR = 2.3, 95% CI = 1.154–4.565; p = .015; Figure 2B); and a UK
population-based cohort (HMRN) of 156 ABC cases, into
72 low- and 84 high-risk cases (3-year OS; HR = 1.93, 95%
CI = 1.06–3.522; p=.029; Figure 2C). Across all 3 cohorts,
patients with high linear predictor scores (high-risk) showed signifi-
cant reduction in survival at 3 years. When later events were included,
both the REMoDL-B and LLMPP data showed similar results (OS
HR = 2.11, 95% CI = 1.115–3.993; p = .019 and HR = 2.17, 95%
CI = 1.109–4.242; p = .02; supplemental Figure 3A,B, respectively),
while the HMRN cohort showed a trend for reduced survival in
the high-risk group, (HR = 1.39, 95% CI = 0.917–2.106; p = .12;
supplemental Figure 3C); and we have reasoned that the perfor-
mance of the discriminator may reflect the number of non-lymphoma–
related deaths in this population-based cohort.

We restricted our multivariate analysis to the REMoDL-B and
LLMPP series, accounting for patient age, gender, International
Prognostic Index (IPI), and stage (where available), and the high-
scoring group remained associated with poorer OS (HR = 1.95,
Wald test p = .042 for REMoDL-B; HR = 2.19, p = .023 for
LLMPP; supplemental Table 6), suggesting that our linear score
offers an additional independent predictor. While there was an
over-representation of low IPI (0–2) cases observed in the low-risk
group of the REMoDL-B cohort, this was not significant (Fisher’s
exact test p = .08; Figure 2D) and, while case numbers are few,
neither did we observe a significant enrichment in the 6 existing
genetic subgroups defined by Lacy et al13 in the HMRN cohort
(Lacy subtype available for 63% of samples, Fisher’s exact test p =
.422; Figure 2E).

Previous studies have identified a large number of verifiable random
gene signatures, associated with outcome in other cancer
types,31,32 so for completeness, we next compared the prognostic
ability of our signature against 300 000 random 30-gene panels in
the REMoDL-B and LLMPP datasets, where it outperformed 95.5%
of random signatures in the REMoDL-B data, 98.32% in the LLMPP
dataset, and 99.92% in both datasets concurrently (supplemental
Figure 4).

Signature predicts superior response to ibrutinib in

younger DLBCL patients

We were also intent on testing whether our discriminator could
identify populations of ABC patients most likely to respond to COO
specific therapies. Wilson et al have recently reported superior
outcomes of patients in specific subtypes of DLBCL.33 We
reasoned that our signature may hold relevance for agents postu-
lated to specifically target ABC-subtype DLBCL. The phase-III
PHOENIX study examined the addition of ibrutinib to R-CHOP in
non-GCB DLBCL. Although ibrutinib addition failed to show
LONGITUDINAL EXPRESSION PROFILING OF rrDLBCL 849
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Figure 2. Validation of 30-gene risk model for ABC–DLBCL (activated B-cell–like diffuse large B-cell lymphoma) in population and clinical trial cohorts. The risk

model was tested with survival restricted to 3 years. (A) The 30-gene signature distinguished high- and low-risk groups in the REMoDL-B clinical trial,7 (B) the R-CHOP arm

of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) 2008 cohort,28 and (C) the Haematological Malignancy Research Network (HMRN) population study:29

red = high risk, blue = low risk. (D) Comparison of International Prognostic Index (IPI) scores and the risk groups defined using the linear predictor in the REMoDL-B cohort.

(E) Comparison of genetic subcategories described by Lacy et al13 with risk groups defined using the linear predictor in the HMRN cohort. Of the 156 ABC cases in the HMRN

data, the genomic subgroups were available for 98 cases.
benefit across the whole intention-to-treat cohort, in younger
patients (<60 years), outcomes were indeed superior in the ibru-
tinib–R-CHOP (I-R-CHOP) arm, with results for older (>60 years)
patients seemingly confounded by increased toxicity of the drug.
In view of the efficacy in this discrete group of patients, we
assessed whether our linear predictor was able to discriminate
patients in the PHOENIX cohort with a variable response to ibru-
tinib, focusing our attention on cases younger than 60 years that
were confirmed as ABC subtype using the HTG EdgeSeq COO
Assay (n = 133).

Altogether, patients with high linear predictor scores demonstrated
poorer PFS compared with patients classified as low risk in all
patients < 60 years of age irrespective of treatment (Figure 3A; low
risk = 57, high risk = 76, HR = 2.52, 95% CI = 1.23–5.16, log-rank
p = .009), although OS was only marginally different (supplemental
Figure 5A; HR = 1.46, 95% CI = 0.54–3.95, p = .452). We next
considered whether the linear predictor behaved differently in
I-R-CHOP and R-CHOP treated patients. For ibrutinib-treated
patients (n = 55), both PFS and OS were lower in the high- versus
low-risk group (Figure 3B; supplemental Figure 5B; low risk = 26,
high risk = 29, HR = 11.6, 95% CI = 1.48–90.9; p = .003 and
p = .076, respectively). Indeed, the low-risk group (47%) had strikingly
850 BEWICKE-COPLEY et al
favorable outcomes, with no deaths reported in these 26 patients and
only one patient experiencing progression. It is important to note that
the control, R-CHOP arm, demonstrated only a trend to inferior out-
comes in the high-risk group in PFS, compared with the significant
survival differences observed in the LLMPP, REMoDL-B, and HMRN
datasets (Figure 3C; supplemental Figure 5C; low risk = 32, high
risk = 46; PFS: HR = 1.6, 95% CI = 0.727–3.52, p = .239 and OS:
HR = 1.28, 95% CI = 0.429–3.82, p = .656, respectively).

Finally, we assessed the effect of ibrutinib addition in high- and low-
risk linear predictor groups separately. Low-risk patients treated
with I-R-CHOP had superior PFS and OS than those treated with
R-CHOP only (Figure 3D; ibrutinib = 24, Placebo = 33, p = .007
for PFS; supplemental Figure 5D, p = .028 for OS); while in
contrast, the high-risk group showed no difference between
the treatment arms for either PFS (Figure 3E; ibrutinib = 31,
Placebo = 45, HR = 0.927, 95% CI = 0.44–1.95, P = .841) or OS
(supplemental Figure 5E; HR = 0.589, 95% CI = 0.156–2.22,
p = .428). Similar results were shown when examining the non-
GCB group of patients. Together, these retrospective data sug-
gest that our gene signature may identify a group of DLBCL
patients < 60 years who derive benefit from ibrutinib in combination
with R-CHOP therapy.
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Figure 3. Prognostic ability of the linear predictor in the PHOENIX trial cohort. The gene expression profiling (GEP) data from the activated B-cell–like (ABC)

patients < 60 years old in the PHOENIX trial were used to generate linear scores for each patient. These scores were then used to stratify the patients into high- and low-risk

cohorts. Kaplan–Meier plots of the progression free survival (PFS) rate of these patient subgroups is shown. (A) Both treatment arms combined; only patients designated as ABC

by GEP. The PFS rate of these subgroups was also examined in each arm separately: (B) ibrutinib and (C) placebo. Red = high risk, blue = low risk. Finally, the effect of the drugs

on PFS within the subgroups was assessed: (D) low risk and (E) high risk. Green = R-CHOP + placebo; purple = R-CHOP + ibrutinib.
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Discussion

DLBCL comprises a molecularly heterogeneous group of lym-
phomas with different outcomes, linked to a variety of features
including COO,5 occurrence of specific translocations34 and, more
recently, a combination of gene mutation and copy number aberra-
tions.10-13,35 There are several recently reported discriminators that
rely primarily on gene expression, with an emphasis either toward the
tumor B cell,3,36,37 or its immune microenvironment.38-41 However,
despite an increased understanding of the biology of these
aggressive lymphomas, improvements to the existing standard of
care have proven problematic. Altogether, there has been a reliance
on the study of the diagnostic biopsy samples, with longitudinal
studies typically hindered by the limited availability of sequential
biopsy material. Studies comparing mutation status at diagnosis and
relapse in paired biopsies, or interrogating independent series of
pre-treatment and relapse cases15-22 (supplemental Table 1), have
identified recurrent relapse-associated genes including TP53 and
MYC although alone they lack specificity to predict relapse. In this
study, we focused attention on the changes in gene expression
profile that accompany DLBCL relapse, to consider whether this
approach might offer a novel perspective on the biology of disease
resistance. Our new data demonstrate that COO is largely stable
between time points, suggest a distinctive pattern of relapse in ABC
and GCB lymphomas based on differential gene expression, and
resolve a 30-gene discriminator in ABC-DLBCL that defined clini-
cally distinct low- and high-risk subgroups at diagnosis, which was
informative both in an independent series of R-CHOP-treated
patients and young patients treated with ibrutinib + R-CHOP in the
PHOENIX trial.6

The accrual of paired material of suitable quality for analysis was
challenging. From a large initial series of FFPE paired biopsies
obtained from multiple UK institutions, suitably paired data were
retrieved from 38 de novo DLBCL patients, constituting one of the
largest published cohorts of paired diagnosis-relapse samples to date.
Regardless, it is important to acknowledge the heterogeneity of the
cohort; site of the biopsy differs between the diagnosis and relapse in
18 of the 38 pairs; the time to relapse varied across the series and
samples demonstrated variable tumor content. Irrespective of these
potential confounding effects, we have been able tomake some robust
observations shedding new light onto the evolution of DLBCL.We had
initially sought to recover both DNA and RNA from these specimens to
facilitate a parallel analysis of mutation and gene expression, but this
proved technically unfeasible in the majority of cases, highlighting the
challenges in collating paired material of sufficient quantity and quality
for multi-omic analyses. Our subsequent studies focused exclusively
on generating gene expression data, through global GEP and a COO
analysis. Comparison of paired biopsies confirmed what has long
been assumed, but not formally shown—that COO is stable in most
paired diagnostic/relapse cases, ruling out a simple switch in COO as
the dominant mechanism underlying disease relapse and R-CHOP
failure. Indeed, while changes in COO accompanying DLBCL relapse
were observed in 5 cases, this included just a single example of
ABC–GCB switching, where biopsies were excised from different
locations 1.5 years apart (Table 1).While this example is reminiscent of
a recent study demonstrating spatial and temporal heterogeneity in a
case of DLBCL manifesting as site-discordant COO and response to
immuno-chemotherapy,42 these data confirm that such discordant
cases represent the exception rather than the rule.
852 BEWICKE-COPLEY et al
We noted minimal overlap in DE genes between COO groups, with
GSEA suggesting that relapse is likely mediated by different
mechanisms depending on the tumor’s COO. Tumor growth and
proliferation signatures were enriched in ABC relapses, while
adaptive immunity-related signatures were a feature of GCB-type
lymphomas. Consequently, we considered ABC (n = 17) and
GCB (n = 11) lymphomas separately for subsequent analysis. We
next tested whether these relapse-associated genes held prog-
nostic significance in a diagnostic cohort. Using the PAM algo-
rithm, we resolved a 30-gene signature that divided ABC cases
into low- and high-risk groups. Critically, this expression signature
was validated using a linear score in 3 independent GEP datasets
derived using different platforms and comprising both population-
based and clinical trial cohorts.

Going forward, it will be important to prospectively validate indi-
vidual signatures, as well as benchmark them against each other, to
determine their relative merits and application in real-world patients.
While it is reassuring to note in 3 recent mutation-focused
studies10,12,13,35 the significant overlap and consensus across
classifications based on gene mutation, it remains to be seen
whether the various emerging gene-expression–based signatures
similarly resolve identical groups of DLBCLs, or rather each identify
distinct high-risk groups. Moreover, combined mutation and gene
expression data from the HMRN dataset demonstrated that high-
and low-risk patients from our ABC discriminator arose indepen-
dently of the groups reported by Lacy et al.13 In contrast, too
few patients in the PHOENIX trial were classified using both
the LymphGen algorithm and the 30 gene signature to allow
for a direct comparison. This data suggests that GEP imparts
important information independent of mutation and CNA-based
classifications.

There is a recognition that genetic signatures, rather than informing
clinical decisions based on outcome prediction, may offer instead a
tool to identify discrete populations of patients who may benefit
from specific precision-based approaches to treatment. It was of
interest in our study that our ABC-discriminator resolved patients
with particularly favorable outcome following ibrutinib + R-CHOP in
the PHOENIX study within ABC-subtype patients diagnosed at <
60 years, albeit in a small retrospective cohort. Importantly, how-
ever, in this cohort the discriminator was unable to identify groups
with different outcomes in the R-CHOP arm. Ideally, this observa-
tion will undergo prospective validation in patients on the upcoming
combination study of the BTK inhibitor acalabrutinib with R-CHOP
for untreated DLBCL (REMoDL-A: clinicaltrials.gov/ct2/show/
NCT04546620) as part of the UK PMAL program.

There are certain limitations in our study. Overall, the cohort sizes
are small, particularly in the example of GCB-GCB relapse pairs,
which may explain the inability to generate a prognostic discrimi-
nator for this group of patients. Furthermore, while we employed a
biologically agnostic approach to our discriminator discovery, so as
not to overlook the impact of unappreciated gene interactions or
biology, the resulting discriminator by its nature lacks an immedi-
ately apparent biological rationale. However, an interaction network
revealed 7 biologically distinct clusters of protein interactions
containing several enriched pathways with potential relevance to
disease progression, including RNA transport, protein processing,
and immune pathways. The notable presence of MYC at the center
of the interaction network highlights the role of MYC in disease
14 MARCH 2023 • VOLUME 7, NUMBER 5



aggressiveness and reinforces the need to develop MYC-directed
therapies.

The future utility of the many emerging genetic discriminators
requires independent validation as part of prospective clinical trials
and highlights the need for comprehensive and multi-omic profiling
of these cohorts. There are currently limitations in performing direct
comparisons between existing GEP studies, eg, the use of different
discovery platforms, and it is possible that fluctuations in the pro-
portion of specific subgroups observed may reflect the unpredict-
able nature of real-world studies (HMRN) compared with clinical
trials (REMoDL-B). Indeed, the inclusion of patients for analysis in
many biological studies are typically dependent on a confirmed
lymphoma diagnosis, their treatment, and having sufficient residual
material for molecular analysis. In addition, while various candidates
are being investigated to augment the efficacy of R-CHOP, the
performance of the proposed predictive signatures will require
re-appraisal in the context of any new standard of care.

In summary, we have leveraged one of the largest cohorts of paired
diagnosis-relapse series in DLBCL demonstrating the stability of
COO and derived a 30-gene signature that robustly distinguished
low- and high-risk subgroups of ABC patients. This signature also
identifies patients who derive benefit from BTK inhibition in com-
bination with R-CHOP, adding to the existing toolkit of putative
genetic predictors now available in DLBCL that can be readily
assessed as part of prospective clinical trials.
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