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Abstract: The rapid growth of the global population and changes in lifestyle have led to a significant
increase in food waste from various industrial, agricultural, and household sources. Nearly one-third
of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains
rich organic matter, which, if not managed properly, can pose a serious threat to the environment and
human health, making the proper disposal of food waste an urgent global issue. However, various
types of food waste, such as waste from fruit, vegetables, grains, and other food production and
processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins,
lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the
discarded parts than in the parts accepted by the market. These bioactive compounds offer the
potential to convert food waste into value-added products, and fields including nutritional foods,
bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food
waste as a novel source. This review reveals the latest insights into the various sources of food waste
and the potential of utilizing bioactive compounds to convert it into value-added products, thus
enhancing people’s confidence in better utilizing and managing food waste.

Keywords: food waste; value-added product; waste to wealth; bioactive compound

1. Introduction

Food is a fundamental component necessary for the survival and sustenance of life.
The continuously growing global population demands more food, while also producing
significant amounts of agricultural and food waste (FW). According to the definition of
the Food and Agriculture Organization of the United Nations (FAO), FW refers to the
reduction in the quantity or quality of food resulting from the decisions and actions of
retailers, food service providers, and consumers. The generation of FW is also associated
with significant losses of other resources, such as water, land, energy, and labor. As reported
by the FAO in 2019 [1], around 14% of the world’s food, worth US$400 billion annually, is
lost after harvest and before reaching stores. Additionally, the Food Waste Index report by
the United Nations Environment Programme shows that an extra 17% of food is wasted at
retail and by consumers, particularly households. It is estimated that roughly one-third
of total food production is generated as FW annually, which could potentially feed 1.26
billion undernourished individuals [2].

Improper handling and disposal of food waste can result in significant environmental
damage. Ineffectual management of FW and food loss is responsible for the discharge
of approximately 3.3 billion tons of carbon dioxide equivalent or 4.4 kilotons of carbon
dioxide equivalent each year, amounting to approximately 8% of the total anthropogenic
greenhouse gas emissions into the environment [3]. The valorization of FW through the
production of value-added products based on its bioactive compounds is a pioneering
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solution for reducing waste and generating new economic possibilities (Figure 1). These
bioactive compounds, such as polyphenols, vitamins, minerals, and prebiotics, bring
numerous health benefits and increase the value of the products [4]. To harness the
potential of FW in extracting these compounds, it is possible to create high-quality and
functional food ingredients, cosmetic products, and dietary supplements. This approach
aims not only to reduce FW but also to create new sources of income and support the
creation of a circular economy. To ensure the environmental and economic sustainability of
future FW valorization, it is essential to consider the availability of this waste over time,
its techno-economic potential, and the environmental assessment of benefits and burdens
based on its life cycle [5]. The aim of this review is to provide a detailed summary of
the common sources of FW and the interesting bioactive substances they contain. The
potential applications and feasible approaches for the conversion of FW into value-added
products are addressed for these mentioned bioactive substances. This review also intends
to stimulate interest in the conversion and recycling of FW and provides directions and
recommendations for future research to improve the management and utilization of FW.
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2. Food Waste Generation Sources
2.1. Cereals and Pulses

Cereals, including rice, sorghum, barley, wheat, millet, corn, and buckwheat, are
essential energy sources in the human diet, comprising a significant proportion of the food
pyramid. According to the online database [6], global cereal production reached 2998.11
million tons in 2020 (Figure 2). In the same year, worldwide production of pulses reached
89.82 million tons [7]. During processing, cereals and pulses yield various by-products such
as germ and bran [8]. The malting process is a biochemical conversion of raw grains, such
as barley, that transforms them into malt suitable for use in the production of beer, whiskey,
and other spirits. This process involves the activation of enzymes that hydrolyze the starch
present in the grain into simple sugars. The remaining cereal residue is typically considered
a byproduct of the process and is commonly discarded as waste [9]. The husks from the
pulses processing can be recycled to produce high-end products. Additionally, stems,
leaves, and husks from crops, such as wheat, maize, rice, and barley, are conventionally
used to produce handicrafts and implements such as baskets, brooms, and hand fans.
Rice husks have multiple uses, including fodder fiber, fertilizer, substrates for composting
techniques, and the production of innovative building materials [10].

The processing by-product of barley contains a significantly higher amount of vitamin
E (2.7 times more) compared to the whole barley grain. Moreover, it is a rich source of
various bioactive compounds, including phytates, phenolics, and insoluble dietary fiber [9].
Hydrolyzing rice bran and rice husk using cellulase also results in the production of phenolic
compounds [11]. The remaining shells after cocoa processing can be used to extract pectin, flat
mushrooms, and livestock feed, thereby providing value-added products [12]. Additionally,
second-generation bioethanol can be derived from coconut husk [13].
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2.2. Fruits and Vegetables

Fruits and vegetables are abundant in essential nutrients and contain high levels of
water, soluble carbohydrates, fiber, minerals, vitamins, polyphenols, and other bioactive
compounds [14]. Despite this, they are often considered waste once they experience
changes in color, undergo biochemical reactions, become infested with microbes, experience
breakage or frostbite, are subjected to heat treatment, or reach levels of ripeness that make
them unacceptable to consumers. This waste can occur at any point in the food supply
chain, from the source to the end of the chain. In 2020, the latest data from the FAO [15]
indicates that the world produced 2015 million tons of fruits and vegetables (Figure 2).
China, as the world’s largest producer of fruits and vegetables, accounting for 38% of
global production, had a yield of 709 million tons in 2020 [6]. However, during the
processes of harvesting, transportation, sales, and processing, nearly 30% of the fruits
and vegetables produced were wasted [16]. These fruit and vegetable wastes are either
composted, landfilled, incinerated, or repurposed as animal feed. Such disposal techniques
have brought about severe environmental problems, including toxic or greenhouse gas
emissions and microbial proliferation, owing to the high moisture and waste leachate
content [17,18].

Reducing the wastage of fruits and vegetables can help alleviate the pressures caused
by growing food consumption and enhance the overall efficiency of the supply chain [19].
Consequently, researchers have intensified their efforts to study FW to identify more ef-
fective ways of utilizing this abundant and sustainable resource. One promising avenue
involves the hydrolysis of cellulose and starch present in fruit and vegetable waste to extract
soluble sugars that can be fermented to produce ethanol and hydrogen [20]. Microbial
processing provides novel treatment directions for discarded fruits and vegetables, includ-
ing single cell proteins (Saccharomyces sp., Candida utilis, Endomycopsis fibuligera, and Pichia
burtonii), single cell oils, fermented beverages (fenny, vinegar), biopigments (carotenoids),
polyphenols, dietary fibers, food additives, enzymes (cellulase, amylase, protease, phytase),
biofuels [14,21–25]. Fruit and vegetable wastes can also be fermented to produce lactic
acid [26] and succinic acid [18].
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2.3. Dairy

Recent research by The Guardian indicates that approximately one-sixth of the total
milk production worldwide is lost or wasted, resulting in a staggering annual wastage of
around 128 million tons of milk [30]. The dairy industry generates waste due to factors
such as processing, microbial spoilage, and inadequate handling [18]. The dairy products’
complex organic composition includes proteins, fats, sugars, and a small quantity of food
additives [31]. Given their rich composition and absorption potential, they are some of the
most susceptible products to perish. Fungal contamination can also contribute to observable
or undetectable defects in dairy products, such as unfavorable flavor and spoilage.

India is the world’s largest milk producer, generating up to three times the amount
of waste for every unit of processed milk, which results in 11.217 million m3 of waste per
year. In cheese production, 9 kg of whey are discarded for every kilogram of cheese pro-
duced [32]. The total nitrogen concentration in milk processing wastewater is approximately
14–830 mg/L [33] and this wastewater contains significant amounts of carbohydrates, lipids,
and proteins. For instance, nucleic acids, urea, proteins, and NO−2, NO−3, NH+4 can be
produced by dissociating milk proteins [33]. One of the causes of methemoglobinemia is
the elevated concentration of NO−3 (>40 mg/L) in groundwater [34].

Due to the substantial quantities of organic matter found in dairy waste, it is possible
to obtain various value-added products through microbial-assisted waste conversion tech-
niques [35]. For example, this dairy waste is a suitable substrate for ethanol production
through enzymatic digestion using brewer’s yeast [32]. Filamentous fungi also produce
several enzymes that can break down complex carbohydrates present in dairy waste into
monosaccharides. This process helps in producing high-quality biomass that is utilized
as animal feed and as single-cell protein, which has Generally Recognized as Safe (GRAS)
status for human consumption [36].

2.4. Edible Oil

The edible oil processing industry generates waste at each step in the refining process,
including degumming, neutralization, bleaching, and deodorization [37]. Oxidative or
hydrolytic rancidity is one of the primary reasons why edible oils deteriorate and become
waste. This rancidity is attributed to the influence of oxygen, water, light, heat, and mi-
croorganisms, gradual hydrolysis or oxidation, neutral grease decomposition into glycerol
and greasy acid, or breaking the unsaturated chain in the fatty acid to form peroxide, and
then decomposing into low-grade fatty acid, aldehydes, ketones, and other substances [38].
It could result in odors and unpleasant smells; some rancidity products also have a car-
cinogenic effect [38]. The formation of polar molecules in waste cooking oil, such as free
short-chain fatty acids, mono- and diglycerides, aldehydes, ketones, polymers, cyclic and
aromatic compounds, makes it unsuitable for human consumption after undergoing mul-
tiple deep-frying processes. Oilseed cake and oilseed meal, by-products of the edible oil
industry, are abundant sources of protein, with an annual production of 350.9 million
tons [39]. These wastes are pre-treated and utilized to produce food, animal feed, and
fertilizer [39].

Historically, the oil processing industry has discharged its effluents into the soil and
groundwater, resulting in the formation of oily films on aquatic surfaces. This has posed
a significant threat to the survival of marine animals and led to blockages of sewage and
drains due to organic matter emulsification, as well as oil methanization, exacerbating the
greenhouse effect [37]. However, innovative techniques now exist which utilize microbial
cells for the biodegradation of organic matter in effluents, resulting in the production of
a range of premium products, such as biobased zwitterionic biosurfactants. For instance,
Pseudomonas aeruginosa has been shown to produce biosurfactants, including rhamnolipid
and sophorolipid, as well as biodiesel generation through lipase and liquid hydrocarbon
biofuels [40,41]. Waste from the edible oil industry, such as tocopherols, sterols, and
squalene, are now extracted and used as raw materials in various industries, including the
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production of single-cell oil/protein for food [42], as well as in medicinal formulations and
cosmetics in the form of soap stalk [43].

2.5. Meat, Poultry, and Eggs

The meat, poultry, and egg processing industries constitute a considerable portion
of the food supply chain. According to recent data from an online database [44] the
worldwide production of meat, including beef, poultry, sheep, and pork, has risen to
345.17 million tons in 2022, compared to almost 330.51 million tons in 2018 (as shown in
Figure 2). Consequently, these industries generate large quantities of animal by-products,
slaughterhouse waste, and wastewater [45], with cattle contributing 49%, sheep and lambs
47%, pigs 44%, and chickens 37% [46].

Feathers, hair, skin, horns, hooves, soft tissue, deboning remnants, and bones are
among the most prevalent industrial waste materials. Additionally, slaughterhouse effluent
comprises blood residue, animal fat (lard and tallow), detergent residues, protein, and a
substantial quantity of organic matter. The rendering industry manufactures meat and
bone meal, hydrolyzed feather meals, blood meals, fish meals, and animal fats (lard and
butter) [47]. An encouraging approach is to utilize slaughterhouse waste is to generate
lactic acid bacteria that can be employed in probiotic products [48]. Slaughterhouse waste
is a fertile source of nutrients that can be utilized to generate various value-added products
such as biogas, blood for food and non-food applications, biomass, and methane. These
products include fish feed [47], fertilizers, binders [49], blood sausages, blood cakes, blood
puddings, blood clots, and a clean energy alternative produced from the anaerobic digestion
of wastewater [45]. Biodiesel has been produced from pork fat waste through fermentation
with Staphylococcus xylosus, chicken manure biochar via pseudo-catalytic transesterification
reactions, and eggshells via homogeneous catalysts for transesterification of triglycerides
with methanol [50]. It has significant potential in the development of pharmaceutical and
cosmetic products.

2.6. Seafoods and Aquatic Life

Marine ecosystems serve a vital role in the global food supply, providing approx-
imately 20% of the world’s food for human consumption, and as a result, are integral
to supporting the needs of the planet’s growing population [31]. Global fish production
reached 174.6 million metric tons in 2020 [51] (Figure 2). In general, 50–70% of raw seafood
is wasted annually [52]. The available quality of marine animals is relatively low, with only
40% of the total mass of protein accessible from crab and only 75% of the fillets from tuna
attainable [31]. Consequently, a large amount of waste is produced, including inedible frac-
tions such as shrimp shells, crab shells, prawn waste, fish scales, and endoskeleton shells of
crustaceans. Globally, about six to eight million tons of crab, shrimp, and lobster shells are
produced, with Southeast Asia accounting for 1.5 million tons. The shells and scales are
rich in valuable chemicals such as proteins, chitin, and calcium carbonate. Dried shrimp
and crab consist of roughly 50% chitin and can be sold for $100 to $120 per ton as animal
feed additives, bait, or fertilizers [53]. Seafood waste contains pathogenic microorganisms,
carcinogens, aflatoxins, and other health risks that may result from the bioaccumulation of
these contaminants [31].

Traditional methods of seafood waste disposal, such as ocean disposal, incineration,
landfills, and discharge of seafood processing industry wastewater, can potentially lead to
eutrophication and oxygen depletion in the receiving waters, thereby causing environmen-
tal harm [53]. Additionally, chitin, which is insoluble in water and inert in most chemicals,
can contribute to biological and environmental pollution. Therefore, proper biological
treatment of this waste is considered a necessary step towards environmental protection
and a sustainable way to generate revenue in the bioeconomy [52,53]. Astaxanthin, a
pigment similar to lutein and known as 3,3′-dihydroxy-carotene-4,4′-dione, is found in
crustacean waste and can be extracted by oxidizing β-carotene or zeaxanthin that the feed
microalgae consumed. This substance is derived from the waste generated by the shrimp
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processing industry [54]. Chitosan, a biopolymer derived from crustacean waste, has been
found to possess important antibacterial properties, as it exhibits activity against several
bacterial strains including Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and
Candida albicans [55]. Glycosaminoglycans extracted from marine animal waste are of better
quality than terrestrial organisms [56]. Furthermore, waste from the seafood processing
industry has the potential to yield functional and bioactive compounds through hydrolysis
mediated by enzymes.

2.7. Agricultural Waste

The laws outlined in the Waste Framework Directive 2008/98/EC define waste as
“any substance or object which the holder discards or intends or is required to discard.” [57].
Agricultural waste encompasses a variety of materials, such as straw, bagasse, molasses,
spent grains, husks (rice, maize, and wheat), shells (walnut, coconut, and groundnut), skins
(banana, avocado), plant debris, and animal and poultry manure [58]. According to a report
by the FAO [59], approximately 250 million tons of inedible plant waste from different crop
processing methods were generated as agricultural waste [60]. In 2013, China, the world’s
largest food producer, produced 1.75 × 109 tons of agricultural waste, which included
9.93 × 108 tons of crop residues, 4.52 × 108 tons of livestock manure, and 3.03 × 108 tons
of forest residues [58]. It is noteworthy that Asia alone generates 4.4 billion tons of solid
waste annually, with India contributing over 350 million tons of agricultural waste from
various sources each year [61].

Conventional methods of disposing of agricultural waste typically involve either
incineration or allowing the waste to decompose in fields, which can result in significant air
pollution and contribute to the contamination of soil, water, and food. Such disposal meth-
ods release harmful gases, such as N2O, SO2, and CH4, as well as smoke and greenhouse
gases. Additionally, they release other harmful chemicals such as dioxins, furans, and
polycyclic aromatic hydrocarbons into the air. Exposure to these hazardous chemicals can
result in severe developmental damage for fetuses, infants, children, and adults alike [62].

Agricultural wastes are biodegradable organic wastes containing various nutrients
such as polysaccharides (starch, cellulose, hemicellulose), proteins, lignin, fiber, minerals,
vitamins, and others [61]. These wastes have a porous and loose structure that contains
carboxyl, hydroxyl, and other reactive groups. As a result, agricultural biomass can serve
as an adsorbent material for wastewater remediation, allowing for ‘waste reduction by
waste’ [58]. Furthermore, agricultural waste could be utilized as a low-cost and natural
alternative to produce a wide range of high-value products. Microorganisms can use
fruit peels, seeds, oilseed cakes, field residues, and bran to generate a variety of high-end
products, such as pigments, phytochemicals, antibiotics, and various enzymes, including
endoglucanase, β-glucosidase, amylase, and glycosylase. [63–65]. Xanthan gum, an extra-
cellular polysaccharide employed as a food additive in the food industry, could also be
produced by Xanthomonas spp. using agricultural waste as a substrate. Mushrooms are
ecological and economic balance crops generated by the mushroom fungi Lentinula edodes
and Pleurotus sp. from lignocellulosic (waste wheat, rice, banana leaves, cotton straw) [66].
It has been found that agricultural wastes are effective carriers for enzyme immobilization
and solid-state fermentation [67]. Additionally, the plentiful chemical composition of agri-
cultural waste allows it to be a versatile candidate with the potential to synthesize a variety
of products, such as bioplastics from plant parts, including leaves, stems, and the outer
cuticle of flowers [60].

3. Bioactive Compounds in Food Waste

Bioactive compounds are powerful substances found in food and other natural sources
that have the potential to positively influence health. FW, for example, may contain
polyphenols, fiber, vitamins, minerals, and other substances that are well-known for their
health-promoting properties [4]. By screening and isolating these bioactive compounds, we
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can create novel functional ingredients and dietary supplements, all while reducing waste
and promoting sustainability. (Figure 3).
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3.1. Polyphenols

Polyphenols are a multifaceted assortment of compounds obtained from plants that
have gained noteworthy consideration for their potential to boost health. These com-
pounds are extensively distributed in the plant kingdom and can be found in various
foods. Consequently, FW encompasses a considerable quantity of these health-promoting
polyphenols [68] (Table 1). The existence of polyphenols in FW provides an exclusive
opportunity to extract valuable, health-enhancing substances from what would otherwise
be rejected material.

The fruit industry generates substantial quantities of fruit waste, with apple pomace
being a significant contributor, amounting to up to 12 million tons worldwide annually [69].
The flavonoid content of apple peel is approximately three to six times higher than that of
the flesh, containing unique flavonoids such as quercetin glycosides which are not found
in apple flesh [70]. Extracts derived from apple peel have significant antioxidant activity.
The principal polyphenols, including phloridzin, chlorogenic acid, and quercetin, have
been identified in apple pomace fractions. These antioxidant activities exhibited values
comparable to ascorbic acid [71]. The utilization of deep eutectic solvents has been shown
to be an effective method for dissolving and desugaring quercetin derivatives from apple
pomace [72]. In addition, pressurized liquid extraction, which involves the use of high pres-
sure and temperature to enhance extraction efficiency, has been successfully combined with
solid phase extraction to concurrently extract and isolate phenolic compounds from apple
pomace [73]. Carrots contain high levels of anthocyanins [74], a type of polyphenol that
gives fruits and vegetables red, blue, and purple pigments. These compounds have strong
antioxidant properties and have been shown to have potential health benefits, including
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reducing the risk of cardiovascular disease and improving gut health [75]. A substantial
commercial plant for carrot processing has the potential to generate as much as 175,000 tons
of carrot waste annually. The unpressed carrot waste was found to contain a total phenolic
content of 57.54 ± 5.14 mg of gallic acid equivalent per 100 g. [76]. Ultrasound-assisted
extraction (UAE) represents a promising method for extracting anthocyanins from carrot
waste due to its ability to break down cell walls and increase pigment solubility. Com-
bining UAE with thermal treatment can lead to a synergistic effect, resulting in improved
polyphenol yields [77]. As a by-product of pomelo consumption, pomelo peel is abundant
in various nutrients and functional compounds. Pomelo peel is rich in polyphenols, mainly
including flavonoids and phenolic acids, with contents ranging from 1799.04 mg/100 g to
5364.00 mg/100 g [78].

Grape skins and seeds contain high levels of resveratrol, a type of polyphenol that
is well known for its antioxidant properties and potential health benefits. Although it is
found in more than 70 plants, grapes are still the primary dietary source of resveratrol [79].
The trans-resveratrol content ranged from 1.11 to 12.3 mg/100 g dry weight in grape skins,
8.64 ± 4.5 mg/100 g dry weight in white grape skins, and 1.42 ± 0.18 mg/100 g dry
weight in white grape seeds [80]. Although a certain level of resveratrol in the grapes
was transferred to the wine during the maceration process, a significant amount remained
in the grape marc. Cranberry pomace, a by-product of cranberry processing, consists of
the seeds, skins, and stems of the fruit. Despite containing beneficial polyphenols such
as proanthocyanidins and anthocyanins, it is typically discarded due to their unpalata-
bility. Co-drying cranberry pomace extract with a protein-rich food matrix, such as soy
protein isolate (SPI), has been shown to enhance the stability of polyphenols during the
extraction process [81]. The interaction between polyphenols and proteins is thought to be
responsible for this increased stability. In fact, cranberry pomace-SPI powder was found to
contain up to 10% total polyphenols and was highly stable at 37 ◦C, as evidenced by the
retention of proanthocyanidins, anthocyanins, and total polyphenols [81]. These findings
suggest that co-drying cranberry pomace extract with a protein-rich food matrix could
be a promising approach for the utilization of cranberry pomace and the production of
value-added products. The handling and processing of fresh blueberries result in the
production of considerable quantities of inferior or second-rate fresh blueberries, as well as
by-products that are discarded [82]. These by-products, consisting of peels, pulp remnants,
seeds, and stems, account for 15–55% of the original mass of the entire berry and exhibit
elevated levels of inherent anthocyanins and other phenolic compounds when compared
to the pulp [83]. The utilization of pulsed electric field technology has been employed
to enhance the efficiency of polyphenol extraction from blueberry pomace, owing to its
ability to disrupt the cell membrane and thus promote the diffusion of intracellular com-
pounds. The most optimal yield of anthocyanins (1757.32 µg/g of dry weight) and flavanols
(297.86 µg/g of dry weight) was achieved using a methanol-based solvent [84].

Coffee waste generated from the production of soluble coffee contains around 6% and 4% of
total polyphenols and tannins, respectively [85]. The total phenolic content of
17.75 mg gallic acid equivalent/g was extracted from waste coffee grounds and 21.56 mg gallic
acid equivalent/g from coffee capsules discharged from automatic espresso machines [86].
Discarded tea leaves are a valuable source of polyphenols, particularly catechins, and
theaflavins. Catechins are present in high concentrations in green tea leaves, whereas black
tea leaves contain high levels of theaflavins [87]. In fact, the antioxidant activity of tea
leaves and black spent tea leaves was almost identical, with % DPPH activity reduction of
57.83–59.27% [88].
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Table 1. Important polyphenols isolated from common fruit and vegetable waste.

Compound Name Classification Structure Molecular Formula Source Extraction Method References
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Table 1. Cont.

Compound Name Classification Structure Molecular Formula Source Extraction Method References

Proanthocyanidin Proanthocyanidin

Processes 2023, 11, 840 10 of 30 
 

 

Proanthocyanidin Proanthocyanidin 

 

C30H26O12 Cranberry pomace, grape seed 
Chemical extraction, 

SPI co-drying, UAE 

Roopchand, Krueger, 

Moskal, Fridlender, Lila 

and Raskin [81], Unusan 

[94] 

Ferulic acid Catechin 

 

C10H10O4 Citrus peel, beetroot waste Chemical extraction 
Ozturk, et al. [95], Aarabi, 

et al. [96] 

C30H26O12
Cranberry pomace, grape

seed
Chemical extraction, SPI

co-drying, UAE

Roopchand, Krueger, Moskal,
Fridlender, Lila and Raskin [81],

Unusan [94]

Ferulic acid Catechin

Processes 2023, 11, 840 10 of 30 
 

 

Proanthocyanidin Proanthocyanidin 

 

C30H26O12 Cranberry pomace, grape seed 
Chemical extraction, 

SPI co-drying, UAE 

Roopchand, Krueger, 

Moskal, Fridlender, Lila 

and Raskin [81], Unusan 

[94] 

Ferulic acid Catechin 

 

C10H10O4 Citrus peel, beetroot waste Chemical extraction 
Ozturk, et al. [95], Aarabi, 

et al. [96] 
C10H10O4 Citrus peel, beetroot waste Chemical extraction Ozturk, et al. [95], Aarabi, et al. [96]



Processes 2023, 11, 840 11 of 29

3.2. Proteins

Proteins are vital macromolecules that play critical roles in various biological pro-
cesses such as tissue growth and repair, metabolic regulation, and maintenance. These
indispensable compounds are abundant in food and constitute a significant component
of many FW products. In fact, FW can be a rich source of protein, containing high-quality
proteins akin to those present in foods such as meat, dairy, and eggs [97]. For instance,
substantial amounts of muscle tissue, a rich protein source, can be found in poultry and
meat processing waste. Similarly, whey, a prime source of high-quality protein, could be
present in dairy processing waste.

The protein sources in FW can be categorized into animal and plant-based sources,
depending on the availability of crude protein and nutritional value. Several plant-derived
by-products are deemed essential protein sources, owing to their significant nutritional
value. Wheat bran, which contains 13% to 18% protein, can be considered a viable source
for protein extraction, given its high lysine and arginine content [98]. Bran also contains
significant levels of tryptophan, tyrosine, and cysteine [99]. Moreover, due to its remarkable
protein content of up to 50%, oilseed meal, primarily derived from seeds and other oilseed
plants after pressing, is also regarded as a valuable source of extracted protein [100].

Similarly, tofu residue containing 27% active protein has been identified as a high-
quality protein source [101]. Among the major plant-based FW protein sources, mushroom
and beet flake proteins contain 40% of essential amino acids and are considered viable
feed ingredients [102]. Spent tea leaves are also a good source of protein (18–35% of crude
protein) and contain many amino acids, but the potential use of waste tea proteins in human
food supplements remains untapped [103]. A potential technique for extracting protein
from waste tea involves using a semi-permeable membrane with a relative molecular
mass of 1,000,000 Da to separate the soluble and insoluble components of the waste tea.
Following an alkali extraction membrane filtration, the protein content can increase by
about 7% [104].

Waste from food preparation or processing, including meat, fish, and dairy, has
notable quantities of protein. For example, dairy waste can contain whey protein, which
is a high-quality, complete protein used frequently in food and dietary supplements [33].
Fish waste biomass constitutes a plentiful reservoir of valuable biomolecules, such as
enzymes, functional proteins, bioactive peptides, and oils that are abundant in omega-3
fatty acids [105]. The crude protein content of fishmeal extracted from fish waste amounts
to 58% [106]. To extract the proteins, alkaline enzymes were used at a specific concentration
through enzymatic digestion. Subsequently, the fish protein hydrolysate was dried using
a spray dryer to acquire protein powder, which yielded the maximum amount of whole
fish protein. Using whole fish waste (all parts collectively) during fish processing to extract
protein eliminates the need to separate the waste [107]. Poultry by-products are derived
from the remains of slaughtered poultry, typically consisting of clean meat, skins, heads,
and feet, but not feathers and intestines. This residual material provides a sustainable
source of animal protein, containing substantial amounts of protein, essential amino acids,
and minerals, notably lysine, methionine, and phosphorus [108]. Similarly, this type of
waste can be hydrolyzed with immobilized alkaline enzymes to produce a high-protein
hydrolysate [109].

It is imperative to underscore that the extraction and utilization of protein from FW
must be carried out safely, with no risk to human health. This may necessitate the devel-
opment of novel processing technologies and the implementation of good manufacturing
practices to ensure the safety and quality of the extracted protein.

3.3. Dietary Fiber

Dietary fiber refers to the indigestible portion of plant material that includes cellulose,
noncellulosic polysaccharides such as hemicellulose, pectic substances, gums, mucilages,
and the non-carbohydrate component lignin [110]. It is a crucial component of many foods
and is vital for preserving human health. In FW, fiber can be discovered in discarded fruits,
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vegetables, and grains as well as the by-products of food processing, such as peels, skins,
and stems. There are two primary types of fiber: soluble and insoluble [110]. Soluble fiber
dissolves in water, forming a gel-like substance that slows down digestion and helps to
regulate blood sugar levels. Insoluble fiber does not dissolve in water and promotes regular
bowel movements by adding bulk to the stool. Both fiber types are critical for maintaining
digestive health and preventing chronic illnesses [111].

FW can contain a considerable amount of fiber, which varies depending on the type of
food and the discarded portion. Banana peel, for instance, contains high levels of insoluble
dietary fiber that exhibit desirable properties, including water-holding, oil-holding, and
glucose adsorption abilities [112]. It is noteworthy that banana peels are also an excellent
source of xyloolygosaccharides, and hydrogen peroxide-dissolved residues from banana
peels can yield up to 54% xyloolygosaccharides after enzymatic digestion. Additionally,
guava pomegranate pomace and orange pomace can also serve as sources for extracting
xyloolygosaccharides [113]. Jerusalem Artichoke residues are typically discarded as waste,
resulting in environmental pollution and resource waste. However, these residues hold
potential for the extraction of high-purity, high-performance soluble dietary fiber with
promising applications in the food packaging industry [114]. On the other hand, despite
its high dietary fiber content of approximately 70%, garlic peel is often disposed of as
industrial waste. Unfortunately, the soluble dietary fiber content of garlic peel is only
5.3%, which is below the required minimum of 10% to qualify as a high-quality dietary
fiber. A balanced modification of the composition of garlic peel-derived dietary fiber may
have the potential to enhance its solubility and make it a better source of soluble dietary
fiber [115]. Fructooligosaccharides, naturally occurring oligosaccharides found in plants
such as the above-discussed banana peel, Jerusalem artichokes, garlic, and cassava waste,
rice bran, apple pomace, beet peel, among others, are excellent sources of this soluble
dietary fiber [116]. While pure enzymatic treatment of banana peels produces low yields of
fructooligosaccharides, the combination of alkaline and enzymatic methods can improve
both yield and purity [117].

Pearlings derived from the pearling process of barley are a plentiful source of insoluble
dietary fiber. Barley middlings, which result from milling barley to produce flour, have an
elevated fiber content, specifically a high concentration of β-glucan. The oat bran fraction
is another copious source of β-glucan and dietary fiber, containing no less than 5.5% dry
weight β-glucan and 16.0% dry weight dietary fiber, at least a third of which is soluble [9].

Pectins are polysaccharides that are commonly found in plants [118]. They are present
in the cell walls located in the thin middle layer as well as in primary and secondary cell
walls. Different sources, locations in the plant, and extraction methods result in a hetero-
geneous chemical structure of pectins. Due to their rheological properties and non-toxic
nature, pectins were wide applications in the food industry as a stabilizer, texturizer, thick-
ener, and emulsifier. In addition, pectin can also be utilized in pharmaceutical applications
as a drug carrier and has been demonstrated to reduce blood cholesterol under various
experimental conditions and influencing factors [118]. FW has been a source of interest
for pectin, and different types of FW are rich in pectin [119]. Judith et al. found that the
pectin yield of orange peel was extremely high, reaching 247 mg/g dry weight, making
it an ideal source of dietary fiber. The study also indicated that by-products of the apple
processing industry are the second largest source of pectin after citrus fruits. A certain
amount of pectin could be extracted from whole apples discarded from fresh consumption,
apple cakes from the fruit processing industry, and apple pomace [119].

3.4. Vitamins and Minerals

Vitamins are essential micronutrients required in small amounts for normal growth
and development. Several types of vitamins include fat-soluble vitamins (A, D, E, and K)
and water-soluble vitamins (B-complex vitamins and vitamin C). Fruits and vegetables
discarded due to overproduction or cosmetic defects are still rich in vitamins, particularly
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vitamins C and B-complex [120]. Carrot and pumpkin processing produces bark and peel
as by-products containing carotenoids, precursors of vitamin A [121].

Carotenoids are a group of pigments that are widely distributed in the plant kingdom.
They have important health benefits and are also used commercially in various industries.
Carotenoids can be found in various FW sources, such as vegetables and fruits that were
directly discarded. Common carotenoids in FW include β-carotene, lycopene, lutein, and
zeaxanthin [122]. In tomato peel by-products, the lycopene content is equivalent to 90%
of the total carotenoids; β-carotene is the main carotenoid in the seeds [123]. Most of
the published data support the fact that tomato waste has the highest carotenoid content.
Tomato skins usually contain the highest lycopene content on a dry weight basis (about
377 µg/g) [123]. Shrimp, which is the most important crustacean commodity traded
internationally, generates a significant amount of solid waste during processing, accounting
for 50–60% of total waste, including heads, tails, and crusts. These byproducts, along
with those from other crustaceans, are similar to tomato pomace in that they contain
high levels of astaxanthin, a commercially important carotenoid [124]. The extraction
of astaxanthin from shrimp waste using ethanol at high temperature and pressure is an
efficient and environmentally sustainable method, achieving yields of about 24 mg/kg of
shrimp waste [125]. Astaxanthin offers various health benefits, such as potent antioxidant
and anti-inflammatory properties, and supports heart health, brain function, and skin
health. Besides its nutritional benefits, astaxanthin has significant economic value due to
its increasing use as an ingredient in various products, including dietary supplements,
functional foods and beverages, cosmetics, and animal feed [126].

Recovering vitamins from FW could have significant benefits in reducing waste and
utilizing these nutrients in other applications, such as fortifying foods or producing dietary
supplements. Nonetheless, additional research is required to fully grasp the possible
nutritional benefits of vitamins in FW and devise effective extraction and application
techniques. However, further research is needed to comprehensively understand the
potential nutritional value of vitamins in FW and to develop efficient methods for their
extraction and utilization.

Minerals are essential nutrients that play a vital role in maintaining human health.
They are involved in many physiological processes, such as regulating fluid balance,
metabolism, muscle function, and bone health. Different minerals can be found in FW,
including calcium, sodium, iron, magnesium, potassium, and zinc. These minerals can
be found in various FW streams, such as fruits and vegetables, grains, dairy, and meat
products. For instance, in the fruit and vegetable waste stream, minerals such as calcium
and potassium can be found in high amounts in the skins and peels [127,128]. Meanwhile,
magnesium and zinc can be found in the seeds and cores of these plants [129,130]. In the
dairy waste stream, minerals such as calcium and phosphorus are present in high amounts
in cheese and yogurt [131,132]. Meat waste is also a valuable source of minerals, with
phosphorus, potassium, and calcium being among the most abundant [133].

4. Value-Added Products Obtained by Converting Bioactive Compounds in Food Waste

The potential for conversion of FW into value-added products using an appropriate
approach is extremely promising. This review summarizes the common sources of FW and
the relatively mature conversion methods available so far (shown in Table 2), providing
confidence and direction for better management and utilization of FW in the future.
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Table 2. Value-added products and bioactive compounds from different food waste sources.

Food Waste Category Main Source Processing Method Value-Added Products and Bioactive Compounds References

Barley by-product Cereal and pulses industry Chemical extraction Vitamin E, phytates, insoluble dietary fiber, and
phenolic compounds Papageorgiou and Skendi [9]

Rice bran and husk Cereal and pulses industry Enzymolysis Phenolic compounds, γ-Oryzanol, and tocopherols Wanyo, Meeso and Siriamornpun [11]

Wheat Cereal and pulses industry Chemical extraction, fermentation
Carbohydrates, lipid soluble vitamins, folic acid,

phytosterols, amino acids, oligosaccharides, phenolic
compounds, and peptides

Balandrán-Quintana, et al. [134]

Legumes Cereal and pulses industry Chemical extraction, fermentation Activated carbon, proteins, lipids, fatty acids, vitamins,
minerals, and phenolic compounds Kiran, et al. [135], Ben-Othman, et al. [136]

Grape by-products Fruits processing industry
Chemical extraction, fermentation,

anaerobic digestion, gasification, pyrolysis
distillation, producing single cell protein

Ethanol, flavanols, anthocyanins, procyanidins, tartaric
acid, dietary fibre, grape seed oil, pomace oil, oleanolic

acid, malates, citric acid, single cell protein.
Muhlack, et al. [137], Schieber [14]

Apple juice by-product Fruits processing industry Enzymolysis, chemical extraction Pectin, lactic acid, citric acid, aroma compounds,
butanol, fructooligosaccharides, and pectinases

Schieber [14], Kiran, Trzcinski, Ng and Liu
[135]

Citrus processing industry Fruits processing industry Chemical extraction, distillation Phenolics, pectin, essential oil (limonene), antioxidants,
ethanol, and organic acids,

Matharu, de Melo, and Houghton [19],
Schieber [14]

Avocado by-products Fruits processing industry Chemical extraction, homogenized,
grinding

Phenolic compounds, acetogenins, phytosterols,
carotenoids, alkaloids, starch, edible protein, and

animal feed
Salazar-López, et al. [138]

Tomato waste Vegetable processing industry Supercritical fluid extraction using CO2,
chemical extraction Trans-lycopene, lycopene, and pectin Nobre, et al. [139]

Potato and sweet potato Vegetable processing industry Hydrolysis, chemical extraction, pulsed
electric fields, fermentation

Lysine, protein, adsorption dyes, starch, steroidal
alkaloids, β-carotene, α-tocopherol cellulolytic

enzymes, and biopolymer films

Lappalainen, et al. [140], OKUNO, et al. [141],
Matharu, de Melo and Houghton [19]

Onions Vegetable processing industry Chemical extraction, macroporous resin
adsorption Dietary fiber, fructans, phenolic compounds Kühn, et al. [142], Kiassos, et al. [143], Benítez,

et al. [144]

Milk Dairy industry Transglycosidation, enzymolysis,
fermentation, fractionation

Prebiotics, biodiesel, ethanol, whey protein, lactose,
galactooligosaccharides, baker’s yeast, and minerals Hua, et al. [145], Lappa, et al. [146]

Cheese, casein, yogurt Dairy industry Fractionation, producing single cell protein,
fermentation, enzymolysis

Ethanol, single cell protein, animal feed, whey protein,
lactose

Hua, Yang, Zhang, Fei, Jin and Jiang [145],
Lappa, Papadaki, Kachrimanidou, Terpou,

Koulougliotis, Eriotou and Kopsahelis [146]

Waste cooking oil Family kitchen or commercial kitchen Hydrolysis, esterification, producing single
cell protein, fermentation

Biosurfactants and glycolipids, biodiesel, sterols,
squalene, tocopherols and single cell protein Henkel, et al. [147], Vescovi, et al. [148]

Olives Edible oil industry Combustion, chemical extraction Phenolic compounds, carotenoids, squalene, dietary
fiber and phytosterols Pattara, et al. [149], Rodríguez, et al. [150]

Meat and poultry Meat processing industry Fermentation, anaerobic digestion,
transesterification

Fertilizer, feather meal, lactic acid, animal feed, blood
meal, meat and bone meal and probiotics

Yaakob, Mohamed, Al-Gheethi, Tiey and
Kassim [47], Marques, Paz, Duval, Corrêa and
Corrêa [50], Ashayerizadeh, Dastar, Samadi,

Khomeiri, Yamchi and Zerehdaran [48]

Crabs, lobster and shrimps Seafood processing industry Grinding, destructive, fermentation Chitin, calcium carbonate, protein, astaxanthin, and
chitinase

Yan and Chen [53], Kumar, Kumar, George,
Sharma and Gupta [52], Prameela, Venkatesh,
Immandi, Kasturi, Krishna and Mohan [54]
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4.1. Nutraceuticals

Nutraceuticals are a group of bioactive compounds derived from food that have
pharmaceutical-like properties and are intended to improve health, prevent chronic dis-
eases, extend life expectancy, or support bodily function and structure [151]. These com-
pounds provide additional nutritional and health benefits beyond the basic nutritional
value of food, and are known for their antioxidant, cardio-protective, anti-cancer, anti-
inflammatory, immunomodulatory, and antimicrobial properties. Therefore, they are an
excellent source for the production of nutraceuticals. Bioactive compounds have been
shown to be effective in reducing the risk of chronic diseases, such as diabetes, cancer,
cataracts, Alzheimer’s disease, Parkinson’s disease, hypercholesterolemia, hypolipidemia,
and cardiovascular disease. Plants are considered a valuable source of bioactive compounds,
which are composed of chemically balanced formulations and efficient and minimally harm-
ful compounds compared to synthetic drugs [31,152]. Plant-derived FW offers excellent
opportunities for the food industry to synthesize alternatives to synthetic chemicals using
natural resources.

Wineries produce large quantities of grape skins rich in resveratrol (3,5,4′

-trihydrostilbene) [153]. This antioxidant has multiple effects; it enhances the anti-inflammatory
reaction of NF-κβ cells, thereby reducing the inflammatory response, scavenging free
radicals, enhancing cytochrome P-450 enzyme activity, and helping to detoxify the liver.
Resveratrol also further reduces genomic mutations, cell damage, and cartilage dysfunc-
tion [153,154]. Mango skin contains phenolic compounds, carotenoids, vitamin C, and di-
etary fiber. These compounds contribute to a reduced risk of cancer, cataracts, Alzheimer’s
disease, and Parkinson’s disease [155]. Caffeine was extracted from waste tea leaves of
black, white, green, and dark black tea using dichloromethane as the solvent, and the
highest caffeine content was found in green tea (60 mg/100 g) and the lowest in black tea
(3 mg/100 g) [156].

Fucose, galactose, rhamnose, and arabinose were found in FW [157]. These types of
monosaccharides have anti-clotting, anti-HIV, and antioxidant effects. Green, red, and
brown algae contain sulfate-polysaccharides. Fucoidan and alginate from brown algae
suppress IL-4, IL-5, and IL-13, creating an anti-allergic response in airway hypersensitiv-
ity reactions and reducing eosinophil numbers in bronchoalveolar lavage and serum IgE
production [158]. Xyloolygosaccharides are oligosaccharides that consist of xylose units,
derived from guava pomegranate pomace, banana peels, and orange pomace [113]. These
saccharides can serve as prebiotics, selectively promoting the growth of advantageous
bacteria, such as bifidobacteria and lactobacilli, in the digestive tract [159]. Galactooligosac-
charides are oligosaccharides comprised of galactose units, synthesized via lactose hy-
drolysis or transfer reactions. Currently, research is increasingly being conducted on
utilizing dairy by-products, such as whey and whey permeate, as potential sources of these
oligosaccharides, and even on the direct isolation of galactooligosaccharides from milk
itself [160]. These prebiotics can enhance the number and activity of favorable bacteria,
including bifidobacteria and lactobacilli, in the intestinal tract [161]. Fructooligosaccharides
are oligosaccharides composed of fructose units, which could be extracted from sugar
cane bagasse, cassava waste, rice straw, apple pomace, and banana peels among many
others. These dietary fibers can also function as prebiotics, facilitating the proliferation and
metabolism of beneficial bacteria, such as Bifidobacterium and Lactobacillus, in the intestinal
tract [116]. The consumption of these dietary fibers can lead to positive health outcomes,
such as better blood sugar control [162], improved immune function, antioxidative effects,
prevention of constipation, and inhibition of carcinogens [116].

Potato peel, a by-product of potato processing, contains a plethora of bioactive sub-
stances, chiefly including chlorogenic, cryptochlorogenic, neochlorogenic, caffeic, ferulic,
gallic, and p-coumaric acids, flavonoids such as flavonols, flavanols, and anthocyanins, and
minor quantities of syringic, vanillic, sinapic, and salicylic acids. Among these, caffeic acid,
chlorogenic acids, and quercetin exhibit mild inhibitory effects against parasites [163,164].
The bioactive compounds present in bananas have shown potential in treating Leishmania-
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sis, another protozoan-associated disease. Banana alcohol extracts possess anti-leishmanial
properties [152].

4.2. Food Additives

Food additives refer to substances added to food to improve its flavor, appearance, or
other organoleptic qualities. Various by-products, such as overripe berries, unacceptable
fruits, discarded peels, pomace, and seeds, can be valuable resources for novel antioxidant
food additives. Recent studies have highlighted the potential of polyphenol-rich waste
olive oil extract as a natural antioxidant in lamb patties, which can delay lipid and protein
oxidation, preserve an admirable color, and extend the product’s shelf life up to three
days [165]. Additionally, apple peel extract has been found to inhibit protein and lipid
oxidation in minced rainbow trout during refrigeration (4 ◦C), leading to a reduction
in peroxides and thiobarbituric acid-reactive substances [166]. Enzymatic browning is a
common issue that affects the quality and shelf life of fresh produce, leading to negative
impacts on taste, flavor, color, and nutritional value. In this regard, strawberry tree extracts
(leaves and twigs) and apple by-products have been shown to inhibit polyphenol oxidase
and peroxidase, thereby preventing browning and increasing consumer acceptance of these
products.

Various bioactive compounds found in food waste have been identified as potential
natural antimicrobial agents for food preservation. These compounds mainly include
terpenoids, peptides, polysaccharides, and phenolic compounds. Olive leaf extract, for
example, has been demonstrated to reduce bacterial contamination in organic leafy greens
and shrimps [167,168]. Moreover, adding bioactive compounds to meat products has
been shown to improve their quality and extend their shelf life [169]. Studies have also
demonstrated the ability of natural compounds to retard microbial spoilage of fish, in-
cluding E. coli, L. monocytogenes, and S. aureus, leading to an extended shelf life under
retail conditions [170]. Pomegranate peel extract has been reported to exhibit antibacterial
activity against S. aureus and B. cereus, showing promising antibacterial effects in chicken
products [171,172].

Many of the colorants used commercially are synthetic, although there are already
some natural sources of colorants such as carotenoids and anthocyanins [173]. Incorpo-
rating FW as a new source of colorants could offer a way for the food industry to adopt
more natural additives while remaining cost-effective. There are various sources of antho-
cyanins, including distillery by-products, red kale, black carrots, purple sweet potatoes,
and berries [174]. Blackberry residues are a significant natural source of colorants and
nutraceuticals, with 4.31 mg cyanidin-3-O-glucoside equivalent/g [175]. Citrus peel and
pomace are also considered to be valuable sources of carotenoids [176,177]. These com-
pounds could function as natural colorants in products and help to extend the shelf life of
foods and beverages by preventing pathogens, contaminants, or unpleasant flavors.

Water-insoluble fibers, such as pectin, are classified as functional foods and are be-
lieved to be beneficial to intestinal microbiota health [176,178]. Citrus peels are an abundant
source of pectin, making them an excellent choice for extracting pectin to be used as a
gelling agent in bakery, confectionery, and meat products. Avocado production generates
approximately 30% of waste products, including seeds, peels, and defatted pulp. The edi-
ble protein found in avocado by-products exhibits better water absorption, oil absorption,
and free radical scavenging capacity than sorghum protein, though it has lower in vitro
digestibility. Additionally, the protein from avocado by-products demonstrated superior
emulsion stability (oil in water) compared to soy protein, offering potential applications in
functional food [179]. Avocado seeds contain 15–16% straight-chain amylose with a gelation
range of 56–74 ◦C, a water absorption of 22–24 g water/g starch, the solubility of 19–20%,
swelling power of 28–30 g water/g starch, and a maximum viscosity of 380–390 BU, making
them an ideal source of starch [180]. As such, they hold potential for use as a thickening
and gelling agent, a carrier for pharmaceuticals, or a component of biodegradable food
packaging materials [138].
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4.3. Biosurfactants

Biosurfactants are surface-active compounds derived from microorganisms, including
bacteria, fungi, and yeast [181,182]. The biosurfactant market was estimated to be worth
over US$18 billion globally in 2016, with a current market value of US$30.64 billion [183].
Due to higher production costs, biosurfactants are generally more expensive than synthetic
surfactants. However, utilizing FW as a substrate for the production of biosurfactants
can be a sustainable and cost-effective way to reduce production costs and pollution.
FW is abundant, inexpensive, and contains rich nutritional substances that can support
microbial growth and biosynthesis. It has been shown that FW performs well in the
production of rhamnolipid and sophorolipid biosurfactants (over 100 g/L) because of
their easy degradation and high nutrient content [41]. Kopsahelis et al. carried out a life
cycle assessment to examine the production of glycolipid biosurfactants using waste oil,
with a comparison of the yields of rhamnolipids and sophorolipids. The study found
that rhamnolipids had a 22.7% lower environmental impact than sophorolipids due to the
former’s lower energy requirements. Further analysis of the fermentation process that has
the most significant environmental impact may be utilized to diminish its environmental
impact by reducing energy consumption and other requirements during the fermentation
process [184].

FW from livestock and various food industries can serve as a valuable substrate for
biosurfactant production. Waste whey from the dairy industry is typically discharged into
the environment without pretreatment, resulting in soil and water pollution. However,
repurposing waste whey as a substrate for biosurfactant production can not only reduce
waste but also increase productivity. For example, Pseudomonas aeruginosa SR17, an isolate
from hydrocarbon-contaminated soil, produced 2.7 g/L of biosurfactant using waste whey
as a substrate. By adding mineral salts and glucose, the yield was further increased to
4.8 g/L [185]. Used kitchen oil is another prominent source of FW. It is rich in protein and
water, making it an excellent substrate for microbial growth, and a potential fermentation
substrate for biosurfactant production by Pseudomonas aeruginos [40]. Soybean molasses is
a byproduct generated during soybean processing. It lacks commercial value, although
it is rich in protein, carbohydrates, and lipids [186]. Nonetheless, Pseudomonas aeruginosa
ATCC 10145 strain was able to produce biosurfactants using soy molasses as the sole carbon
source [187], with a yield of 11.7 g/L of glycolipid biosurfactant, utilizing 120 g of soy
molasses as the fermentation substrate [188].

Olasanmi and Thring conducted a comprehensive review of the impact of biosurfac-
tants on environmental sustainability. They identified the potential of using renewable
by-products or waste, which would otherwise require further management, as a way to
reduce costs and waste [189]. In the future, there is a need for a deeper understanding
of FW composition and the complementary requirements of producers. Applicable FW
pre-treatment and biosurfactant purification strategies must be developed, and the entire
life cycle of biosurfactant production must be optimized. With the reduction of costs,
the application of biosurfactants will be strengthened, which is crucial for environmental
applications [41].

4.4. Single-Cell Protein

Single-cell protein (SCP) is a term used to describe the crude, refined, or edible protein
derived from pure microbial cultures, as well as from dead or dried cell biomass. This
protein source can serve as an ingredient or a substitute for protein-rich foods and is suitable
for human consumption or animal feed. Utilizing SCP as a means of converting organic
resources is a promising approach due to its numerous advantages over other protein
sources. One key advantage is SCP’s abundance of amino acids, with many essential amino
acids surpassing those found in soybeans [190]. Additionally, microorganisms grow at an
incredibly rapid rate and can accumulate large amounts of SCP in a short amount of time.
Furthermore, microorganisms are not susceptible to environmental influences [191].
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FW is a favorable fermentation substrate for SCP production. It is reported that a
protein content of 38.8 ± 0.2% w/w biomass dry weight was achieved by Yarrowia lipolytica
for FW utilization in the two-stage fermentation, which indicated FW could be efficiently
converted to SCP [192]. The production of SCP by photosynthetic bacteria depends on the
bioavailability of the carbon source, while plenty of volatile fatty acids in FW fermenta-
tion broth could be a potential alternative. It was shown that by regulating the level of
carbon source, the production of SCP could be effectively increased (2088.4 mg/L) with a
high carbon source conversion capacity (0.99 mg-biomass/mg-chemical oxygen demand).
Photosynthetic bacteria preferred to utilize the volatile fatty acids in the FW fermentation
broth [193].

Coffee processing generates a significant amount of wastewater that can be utilized as
a substrate for bioconversion, yielding nutrient-rich extracts with abundant sugars, proteins,
and salts [194]. Yeast has been found to efficiently assimilate glucose, mannose, and fructose
from this substrate, resulting in SCP yields of up to 37.4% to 39%, which can serve as a
cost-effective source of alternative protein for animal feed supplements [194]. Moreover,
SCP obtained from fermented vegetable residues was incorporated into wheat flour bread
without any adverse effects on the bread’s organoleptic properties. This outcome highlights
the possibility of using these by-products to generate SCP, which could be utilized to
supplement other edible products [195].

4.5. Organic Fertilizers

Organic fertilizers have been considered an effective alternative to chemical fertilizers
for increasing crop yields and reducing methane emissions for a long time. FW is utilized
as a source of animal nutrition as well as an organic fertilizer that is manufactured through
the processes of composting and vermicomposting [195]. When used as a substrate for
mushroom cultivation [66], agricultural waste reduces the environmental burden while
increasing crop productivity and changing the soil bacterial community. The biogas residue
from FW could be used as an organic fertilizer or soil conditioner because it is rich in plant-
growth-promoting nutrients (N, K, P, Ca, Mg) and trace minerals (Fe, Cu, Zn, Al) [196].

The process of anaerobic digestion involves mixing FW and organic matter under
anoxic conditions in an anaerobic digester. Microorganisms then decompose the organic
matter and convert it into biogas. Once the biogas has been produced and captured, the
nutrient-rich residue left behind is called anaerobic digestate. This digestate can be used
as a soil fertilizer and has been shown to increase ryegrass yield by 5–30% compared
to mineral fertilizers [197]. However, it is important to note that FW digestate can be
phytotoxic until it matures, which may reduce nutrient availability and germination [197].
Despite this, the digestate can still be used as a soil amendment, which can increase the
dissolved organic matter in the soil, leading to the slow and fast release of nutrients while
also improving the soil’s water-holding capacity [198]. Additionally, kitchen waste can
produce volatile fatty acids through anaerobic fermentation that can be used as soil cleaners
for soils contaminated with vanadium and chromium [199]. Finally, compost made from
FW could be effective in chelator-enhanced phytoremediation of toxic metal-contaminated
soils, making it an effective soil remediation technique according to some studies. [200].

Organic fertilizers are prepared mainly by anaerobic digestion, aerobic composting
by microorganisms, chemical hydrolysis (alkaline or acidic hydrolysis at 600–1000 ◦C), or
in-situ degradation of natural organic matter. Different forms of fertilizers are produced,
such as soil conditioners, composts, soluble bio-waste composts, degraded crops, and min-
eral and liquid organic fertilizers [201]. Liquid organic fertilizers are more advantageous to
plant growth than other fertilizers since they are administered directly to the single root
zone in the irrigation system. Besides that, they are quickly absorbed by plants and require
less per plot, and the degradation process is relatively straightforward [202]. The efficacy
of organic fertilizers could be further enhanced by incorporating methane-oxidizing bac-
teria [64]. Additionally, organic fertilizers promote the growth of microalgae. It could be
used as a substitute nutritional media to cultivate Chlorella for biodiesel production [203].
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4.6. Bioplastics

Bioplastics or biobased plastics, made from renewable resources such as starch, veg-
etable oils, and microorganisms, are promising alternatives to synthetic plastics due to
their reduced environmental impact. In 2019, biobased plastics accounted for only 1% of
total plastic production, with a global production of 3.8 million tons [157]. Substituting
synthetic plastics with bioplastics could also mitigate global warming concerns, as the
production of oil-based synthetic plastics requires more energy (77 MJ/kg) than bioplastics
(57 MJ/kg) [204].

Bioconversion of FW to bioplastics is an effective waste treatment strategy. To produce
bioplastics from FW, pretreatment is necessary to improve its biological and physicochem-
ical properties. Physical hydrolysis, chemical hydrolysis, bio-hydrolysis, and enzymatic
hydrolysis are common pretreatment strategies. Physical treatment processes such as
heating, grinding, ultrasound, and microwaves are used to convert FW into fermentable
organic compounds [205]. Biological treatments involve utilizing food waste as a fermen-
tation substrate for microorganisms. The primary biodegradable polymers with signifi-
cant market potential include polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB),
polybutylene succinate (PBS), starch blends, polyvinyl alcohol (PVA), and polylactic acid
(PLA) [100,205–207].

Alcaligenes sp. NCIM 5085 was reported to obtain 70.89% high molecular weight
PHB with a productivity of 0.312 g/L/h by optimizing the fermentation process using
sugarcane molasses [207]. Another strain, Halomonas campaniensis strain LS21, grown in
FW, which is rich in cellulose, starch, fatty acids, and proteins, produced 70% PHB at
37 ◦C [205,208]. Lignocellulosic FW was converted into hemicellulose, cellulose, and lignin
by enzymatic or chemical hydrolysis and it was further used to synthesize biopolymers.
A range of biocomposites have been developed and are commercially available, such as
(1) calcium acetate for the production of wound dressings and toothbrushes; (2) PLA
for the manufacture of bone splints, surgical sutures; (3) PHB for the manufacture of
compost bags, consumer bags, containers; and (4) polycaprolactone for the production
of medical implants [209]. Despite the non-toxicity and biocompatibility advantages of
biocomposites, they face challenges in the commercial field due to their high processing
costs, lack of suitable raw materials, and inferior price competitiveness. Addressing these
drawbacks is crucial for the future of FW research and the development of more competitive
biocomposites [210].

4.7. Animal Feed

FW, as a viable raw material for animal feed formulations, presents an interesting
alternative. Plant waste has a high-water content (usually more than 80%), requiring an ad-
ditional drying process. The composition of this waste may change significantly throughout
the year [211], requiring animal feed manufacturers to adapt their feed formulations regu-
larly based on the changing composition. On average dried FW contains 65% carbohydrate,
13% crude fiber, 12% crude protein, 8% ash, and 2% ether extract [212]. Carbohydrates are
the primary source of energy in pig metabolism, but a high concentration of fiber could
diminish the digestibility and availability of energy in pig diets [212]. Consequently, diets
containing vegetable waste may be utilized, but additional ingredients, including Cenchrus
ciliaris hay [213], mineral mixture, and common salt [214], must be supplemented.

Currently, available processing technologies allow the conversion of FW into safe
animal feed products with added value and high-quality nutrients [215]. FW processing
includes cooking, dehydration, ensiling [216], extrusion, pelletizing, and probiotic treat-
ment [217]. Among the above treatments, extrusion, pelletizing, and dehydration result in
value-added FW products with a longer shelf life than cooking and ensiling [216]. Further-
more, the dehydration process could promote incorporating the generated FW products
into existing swine feeding programmes [218].

Animal feed derived from fermented, heat-treated, and coupled hydrothermally
treated FW has an adequate and balanced nutritional value. However, some unwanted
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substances, such as those originating from cattle and sheep, may remain in the feed
products derived from raw FW and are difficult to eliminate through the feed conversion
process. Nonetheless, these deficiencies can be mitigated or eliminated by limiting the
application of the feed. For instance, feeding ruminants with feed made from FW should
be prohibited [219].

Protein-rich FW has the potential to serve as a valuable raw material for the production
of fish feed pellets, thereby reducing the amount of waste that is typically disposed of in
landfills. In fact, FW derived from plant materials such as grains, fruits, and vegetables,
when supplemented with yeast and a mixture of bromelain and papain, has been shown to
enhance the growth performance of grass carp, with a relative weight gain of up to 63.6%
and improved immunity [220].

5. Conclusions and Future Perspectives

Numerous bioactive compounds are derived from FW. Thus, the conversion of FW
into other value-added products has been studied to reduce the burden of waste manage-
ment, decrease resource and energy consumption, and safeguard the environment. The
growing recognition of the importance of sustainable practices and the need to decrease FW
have motivated the development of novel and innovative technologies to extract bioactive
compounds from FW. The use of cutting-edge technologies provides various advantages,
including reducing waste, creating new economic prospects, promoting a circular economy,
and developing functional food ingredients, cosmetics, and dietary supplements. This
review provides a comprehensive overview of the various sources of FW, highlights the
bioactive compounds that have captured the attention of researchers, and presents extrac-
tion techniques for these substances. Furthermore, this review summarizes the current state
of value-added product transformation and development based on the aforementioned
bioactive compounds.

Despite the establishment of various conversion technologies for FW at the laboratory
scale, the sustainable implementation of these technologies at the commercial level presents
challenges and limitations, which require researchers to address these issues in future
research. Most of the technologies discussed above are in the developmental stage, with
excessive extraction costs due to expensive equipment, solvents, and energy being a
significant obstacle. In addition, undesirable extraction rates, lower stability of natural
active compounds than synthetic compounds, and difficulties in managing residues that
may pose environmental or health risks if not properly disposed of or utilized, are some
of the other issues that need to be addressed to ensure sustainable FW conversion at the
commercial level. Hence, it is not yet possible to conclude that the utilization of these
technologies alone will effectively resolve FW-related issues. One of the primary challenges
for the future will be to improve the efficiency of the extraction processes and develop
new methods that are more environmentally friendly. Additionally, more research will be
required to determine the bioavailability and safety of the extracted compounds and to
identify new applications for these products. Ultimately, the goal is to recycle and breathe
new life into waste, with the background of the urgent problem of global FW production as
a driving force. Balancing the costs of large-scale FW conversion with the benefits of the
additional products obtained is also one of the factors that the researcher must consider
and pursue.

In the coming years, it will be crucial to develop specific extraction methods for
different FW sources or bioactive compounds of interest. To minimize environmental and
human health impacts, it is important to use green solvents as much as possible. Given
the lack of a uniform standard for FW sources, setting specific standards for value-added
products resulting from FW conversion may prove difficult but worthwhile. Moreover,
efforts should be made to bridge the gap between the quality of value-added products
derived from FW and that of the original product. Exploring the possibility of substituting
existing products with value-added products derived from FW is a promising avenue for
research. Conduct more life cycle assessment studies of FW-derived products. Moving
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forward, studies on FW should not be limited to waste utilization and value discovery
but should also aim to leverage FW as a cost-effective source of high-quality value-added
products.
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