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Abstract: Twenty-four Merino lambs were allocated to three dietary treatment groups to determine
the effects of a dietary starch and protein binding agent and heat stress on methane (CH4) emissions
and rumen parameters. The diets were a wheat-based diet (WD), a 2% Bioprotect™ (Bioprotect™,
RealisticAgri, Rutland, UK) treated wheat-based diet (BD), and a maize-based diet (MD) for 3 periods
of 1-week duration. During Period 1 (P1) the lambs were maintained under thermoneutral conditions
and at a 1.7 × Maintenance (M) level. During P2 and P3, the lambs were maintained under cyclic
heat stress conditions and fed at 1.7 × M and 2.0 × M, respectively. Total CH4 production was
lower for the BD diet than the WD diet, which in turn was lower than the MD diet (p < 0.001). Total
CH4 production was lower during P2 than P1 with P3 intermediate (p = 0.04). Rumen total volatile
fatty acid (TVFA) concentrations were higher for the WD diet than the MD diet with the BD diet
intermediate (p = 0.01). Rumen TVFA concentrations were lower during heat stress than under
thermoneutral conditions (p < 0.001). Whole tract starch digestibility was higher for the BD and WD
diets than the MD diet (p < 0.001). In conclusion, feeding Merino lambs the BD diet reduces CH4

emissions without reducing starch digestibility.

Keywords: temperature; greenhouse gas; feed additives; sheep; wheat; maize

1. Introduction

The link between climate change and sheep production is very complex and multidi-
rectional, such that climatic stressors such as heat stress compromise animal production
and animals emit greenhouse gases (GHGs) that contribute to global warming [1].

Heat stress can impair the nutritional status of ruminants by affecting the digestion
and rumen fermentation characteristics [2,3]. There are conflicting results from studies
investigating the effect of heat stress on digestion, with some studies finding an increase
in dry matter (DM) [4], organic matter (OM) and starch, neutral detergent fibre (NDF) [5],
and acid detergent fibre (ADF) digestibility [6] during heat stress, whereas others reported
the opposite [7–9]. This increase in digestibility can result from a decrease in feed intake
and an increase in the rate of passage of digesta [10,11]. While the lower digestibility is
better explained by the variations in the rumen microbial diversity and motility [7,12],
heat stress is also reported to play prominent effects on the rumen fermentation profile,
as reflected by differences in the concentrations of individual and total volatile fatty acid
(TVFA) profiles [13,14].

Ruminants’ contribution to global warming is one of the most contentious topics of
the 21st century and the emissions are mainly in the form of enteric methane (CH4) [15].
The CH4 alone accounts for 47% of the livestock sector’s total GHG emissions and 17.3%
of global GHG emissions [16,17]. Therefore, for countries to meet their Paris Agreement
obligations they must reduce their CH4 emissions since CH4 is the major contributor to
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ground-level ozone and global warming [18]. Several broad strategies are available to
reduce enteric CH4 emissions including feed additives and managemental approaches.
However, the most common and most promising is the use of feed additives.

It is possible to reduce the effect of heat stress on the digestive and rumen functions
and reduce enteric CH4 by increasing the proportion of concentrate in the animals’ diet and
supplementing it with rumen bypass feeds [19,20]. Therefore, it is important to evaluate
commercially available rumen starch and protein bypass agents for achieving heat stress
amelioration and CH4 mitigation. We, therefore, selected a commercial starch binding agent,
Bioprotect (Bioprotect™, RealisticAgri, Rutland, UK) to promote post-ruminal digestion of
starch and protein components in animal diets [21]. Previous in vitro and in vivo studies
have demonstrated the positive effects of Bioprotect on heat stress amelioration and rumen
degradation of grains [22–24].

The hypotheses to be tested were that heat stress may impact rumen fermentation
and CH4 production and that modifying the site of digestion of wheat through rumen
protection may reduce CH4 emissions. Therefore, the objectives of this study were to
determine the impact of heat stress, level of feed intake during heat stress, and rumen
starch fermentation on rumen volatile fatty acid (VFA) concentrations, CH4 emissions, and
whole tract digestibility.

2. Materials and Methods

The experiment was conducted at the Animal facility of Dookie Campus, The Univer-
sity of Melbourne. All the experimental procedures involving animal handling and usage
were approved by the animal ethics committee of the Faculty of Veterinary and Animal Sci-
ences, The University of Melbourne (Ethics ID: 1914950.1). A total of 24 1-year-old Merino
lambs with an average body weight of 42.6 ± 3.6 kg were randomly allocated into 3 dietary
treatment groups: wheat-based diet (WD), Bioprotect-based diet (BD), and maize-based
diet (MD). The WD diet was composed of 50% cracked wheat grain, 25% lucerne, and 25%
oaten chaff. The BD diet consisted of 50% cracked wheat grain sprayed with 2% Bioprotect,
25% Lucerne, and 25% oaten chaff. The MD diet constituted 50% cracked maize grain
and 25% Lucerne and oaten chaff. The lambs were fed twice at 09:00 a.m. and 01:00 p.m.
daily; the chemical composition and ingredients of the diets are listed in Table 1. The
feed analysis was performed according to the Australian Fodder Industry Association Ltd.
method with the help of DPI Laboratory services, NSW, Australia. All the animals were
subjected to three consecutive weeks of variable environmental and feeding conditions.
After acclimation, the lambs were maintained under thermoneutral (18–21 ◦C and 40–50%
relative humidity; RH) conditions and fed at 1.7 × maintenance feeding requirements (M)
for 1 week (P1). During the second week, the animals were shifted to a cyclic heat stress
environment (28–40 ◦C and 30–50% RH) and fed at 1.7 × M (P2); the room temperature
was maintained at 38–40 ◦C between 09:00 a.m. and 05:00 p.m. and at 28 ◦C overnight.
During the third week, the lambs were fed at 2.0 × M and exposed to heat stress (P3).
The temperature humidity index (THI) was calculated for each period, and the THI data
can be found in a study by Prathap et al. [22]. Prior to the experiment, the animals were
acclimatized for 1 week in group pens, followed by 15 days of feed and individual pen
acclimatization and then metabolic cage adaptation for a further 3 days before commencing
P1. For the 3 d prior to P1 and for the duration of P1, P2, and P3, the lambs were housed in
individual metabolic cages in environmentally controlled rooms. Water was provided ad
libitum in individual buckets attached to the metabolic cages. The maintenance feeding
level was calculated using the reference [25].
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Table 1. Chemical composition of the experimental diets.

WD BD MD

Diet Composition, %
Cracked wheat 50 0 0

Cracked wheat with 2% BP 0 50 0
Cracked maize 0 0 50
Lucerne chaff 25 25 25
Oaten chaff 25 25 25

Chemical Composition of the Diet
Dry matter, % 89.0 89.0 88.2

Organic matter, % 95.0 95.0 95.5
Crude protein, % 14.7 14.1 13.1

Neutral detergent fibre, % 29 30 28.5
Acid detergent fibre, % 16.3 16.3 16.3

Metabolisable energy, MJ/kg DM 11.5 11.6 11.7
Total starch, % 38.0 39.5 40.5

WD—wheat diet, BD—Bioprotect diet, MD—maize diet.

2.1. Methane Estimation, Rumen Fluid and Faeces Collection Digestibility, and Volatile Fatty
Acid Determination

Enteric CH4 was measured using an indirect calorimetry facemask system (S128
NDIR Methane Analyzer, Qubit Systems Inc, Kingston, ON, Canada). To calibrate the gas
analysers prior to CH4 measurements, 2 reference gases, 0 ppm CH4 and 5000 ppm CH4
were used (BOC Gas & Gear, Victoria, Australia). Before the commencement of the study,
the sheep were gradually trained to wear a facemask over a period of 15 days by gradually
increasing the time from 1 min to 20 min, which allowed the quantitative collection of
exhaled gases [26]. Padding was added to the face mask so it would fit comfortably on the
animal’s muzzle and face. Gas collection and CH4 measurement were conducted on day 7
of each period 2 h after morning and afternoon feeding continuously for 20 min. Then, the
daily CH4 emission was calculated according to the method reported by Oss et al. [27].

Rumen fluid was collected on the final day of each period at 4 h after the morning
feeding using a handheld stomach pump as described by Pragna et al. [13]. An initial
100 mL of rumen fluid was discarded to avoid possible saliva contamination and the
subsequent 20 mL of the rumen fluid was strained using a muslin cloth. The pH of the
strained rumen fluid was determined using a hand-held pH meter (Hanna Instruments,
Australia). For the volatile fatty acid (VFA) analysis, 1 mL of strained rumen fluid was
mixed with 4 mL of 25% metaphosphoric acid and the proteins were allowed to precipitate
at room temperature for 30 min. After centrifugation at 4752 g for 20 min, the supernatant
was stored at −20 ◦C for later analysis. The short chain VFA concentrations were measured
using gas chromatography (7890B Agilent, Santa Clara, CA, USA) with 4-methyl-valeric
acid as an internal standard.

The faecal samples were collected on days 4, 5, and 6 of each period before morning
feeding at 08:30 a.m. Faecal pH was determined by homogeneously mixing 50 g of faeces
sample with 50 mL of distilled water. An immediate pH measurement was performed using
a portable pH meter (Hanna Instruments, Australia). Then, 300 g of the pooled faecal sam-
ples were stored at −20 ◦C for further analyses. Faeces samples were initially dried at 60 ◦C
for 48 h to determine DM [4]. Later, laboratory DM was estimated by keeping powdered
faecal samples at 105 ◦C for 3 h according to AFIA [28] protocol. The total tract apparent
DM and OM digestibility were determined using the acid insoluble ash [29] technique
developed by Van Keulen and Young [30] with slight modifications [31,32]. The NDF [5]
and ADF were determined according to the method described by ANKOM technology
using an ANKOM2000 Fiber Analyzer (ANKOM Technology, New York, NY, USA).
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2.2. Statistical Analyses

The data collected from the live animal experiment were analysed using the re-
stricted maximum likelihood analysis (REML) procedure in Genstat 16th edition (Version
16.1.0.10916, VSN International Ltd, Hemel Hempstead, UK). Diet and period were con-
sidered as fixed model effects whereas animal number and replication were included as
random models. A p-value of ≤0.05 was considered significant, and a p-value between 0.05
and 0.1 was considered a trend.

3. Results

Enteric CH4 production was lower for the BD diet than the WD diet, which in turn
was lower than the MD diet (25.0 g/day, 19.3 g/day, and 32.4 g/day for WD, BD, and MD,
p < 0.001) (Table 2). Methane production was lower during P2 than P1 with P3 intermediate
(28.5 g/day, 23.0 g/day, and 25.2 g/day for P1, P2, and P3, p = 0.04). When expressed
relative to dry matter intake (DMI) CH4 production was lower for the BD diet than the
WD diet, which in turn was lower than the MD diet (21.3 g/kg, 16.3 g/kg, and 26.0 g/kg
DMI for WD, BD, and MD, p < 0.001). On this basis, CH4 production was less during heat
stress than under thermoneutral conditions, regardless of DMI (24.1 g/kg, 20.2 g/kg, and
19.3 g/kg DMI for P1, P2, and P3, p = 0.01). Qualitatively similar findings occurred if CH4
production was expressed on a metabolic body weight basis.

Table 2. Effects of different experimental periods and diets on the methane variables 1.

Parameters
WD BD MD

SED
p-Values

P1 P2 P3 P1 P2 P3 P1 P2 P3 Diet Period Diet × Period

Total methane production (CH4, g/day) 27.8 23.0 24.2 20.6 18.1 19.0 37.1 27.9 32.2 3.66 <0.001 0.04 0.77
Methane yield (CH4, g/kg of DMI) 23.9 20.6 19.2 17.6 16.4 14.8 30.7 23.5 24 3.10 <0.001 0.01 0.73

Emission intensity (CH4, g/kg of /BW) 0.67 0.54 0.57 0.49 0.43 0.44 0.87 0.64 0.73 0.09 <0.001 0.02 0.76
1 P1—Thermoneutral conditions (18–21 ◦C and 40–50% RH) and lambs fed 1.7 × M for 1 week; P2—heat
stress conditions (28–40 ◦C and 30–50% RH) and lambs fed at 1.7 × M for 1 week; P3—heat stress conditions
(28–40 ◦C and 30–50% RH) and lambs fed at 2.0 × M for 1 week. CH4—methane; DMI—dry matter intake;
BW—body weight.

As anticipated, there was no effect of diet on DMI (1.19 kg, 1.19 kg, and 1.26 kg
DMI/day for WD, BD, and MD, p = 0.29) (Table 3). However, there were differences in
DMI between periods such that DMI decreased when heat stress conditions were initially
applied (P2) and then increased during P3 when the allocated feed offered was increased
from 1.7 to 2.0 × M (1.19 kg, 1.14 kg, and 1.32 kg DMI/day for P1, P2, and P3, p < 0.001).
Qualitatively similar findings occurred when DMI was expressed on a per kg LWT basis.
While there was no effect of either diet or period on rumen fluid pH. There were significant
effects of period and diet on faecal pH. Faecal pH was lower in sheep fed the MD diet than
either of the wheat-based diets (8.05, 8.16, and 7.42 for WD, BD, and MD, p < 0.001) and was
lower in P3 than P1 with P2 intermediate (8.05, 7.88, and 7.71 for P1, P2, and P3, p = 0.05).
Whole tract DM digestibility was higher for the BD diet than the WD diet, which in turn
was higher than the MD diet (83.0%, 84.2%, and 81.4% for WD, BD, and MD, p < 0.001) and
was higher during P2 than the other periods (82.7%, 83.4%, and 82.6% for P1, P2, and P3,
p < 0.001). However, there was an interaction (p < 0.001) such that the increase in DM
digestibility between P1 and P2 only occurred in those sheep fed the wheat-based diets,
particularly those fed the BD diet (Table 3). Whole tract OM digestibility was higher for the
BD diet than the MD diet with the WD diet intermediate (84.0%, 84.9%, and 82.0% for WD,
BD, and MD, p < 0.001) and tended to be higher during P2 than the other periods (83.3%,
84.1%, and 83.5% for P1, P2, and P3, p = 0.06). However, there was an interaction (p < 0.001)
such that the increase in OM digestibility between P1 and P2 only occurred in those sheep
fed the wheat-based diets, particularly those fed the BD diet (Table 3). Whole tract starch
digestibility was higher for the BD and WD diets than the MD diet (97.1%, 98.0%, and
90.4% for WD, BD, and MD, p < 0.001) and decreased from P1 to P3 (96.9%, 95.3%, and
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93.3% for P1, P2, and P3, p < 0.001). However, there was an interaction (p < 0.001) such
that the decrease in starch digestibility between P1 and P2 and P2 and P3 only occurred in
those sheep fed the MD diet and not in those fed the wheat-based diets (Table 3). There was
no effect of diet on NDF digestibility while NDF digestibility tended to be lower for the
WD diet than the other diets, while period had an influence on NDF digestibility (70.2%,
72.2%, and 72.1% for P1, P2, and P3, p = 0.06). Whole-tract ADF digestibility was greater
for the MD diet than the wheat-based diets (70.1%, 70.5%, and 73.7% for WD, BD, and MD,
p = 0.01) and was higher during heat stress than under thermoneutral conditions (69.8%,
72.2%, and 72.3% for P1, P2, and P3, p = 0.01).

Table 3. Effects of different experimental periods and diet on the DMI, pH, and digestibility
variables 1.

Parameters
WD BD MD

SED
p-Values

P1 P2 P3 P1 P2 P3 P1 P2 P3 Diet Period Diet × Period

DMI, kg/day 1.17 1.12 1.29 1.17 1.11 1.30 1.22 1.19 1.37 0.05 0.29 <0.001 0.84
DMI, g/kg/day 27.7 26.4 30.6 27.5 25.9 30.7 28.4 27.6 31.6 0.94 0.36 <0.001 0.89
Rumen fluid pH 6.60 6.73 6.60 6.59 6.58 6.73 6.68 6.84 6.73 0.17 0.61 0.58 0.72

Faecal pH 8.20 8.03 7.93 8.22 8.11 8.14 7.72 7.49 7.05 0.23 <0.001 0.05 0.51
DM digestibility, % 82.8 83.4 82.8 83.3 84.6 84.8 82.1 82.1 80.1 0.58 <0.001 <0.001 <0.001
OM digestibility, % 83.3 84.3 84.4 83.9 85.1 85.5 82.8 82.7 80.5 0.70 <0.001 0.06 <0.001

Starch digestibility, % 97.2 96.7 97.3 98.7 97.9 97.3 94.8 91.3 85.2 1.60 <0.001 <0.001 <0.001
NDF digestibility, % 68.5 71.4 72.0 69.3 73.0 73.0 72.8 72.2 71.4 1.62 0.38 0.06 0.13
ADF digestibility, % 68.1 70.7 71.6 67.6 72.1 71.6 73.6 73.8 73.6 1.71 0.01 0.01 0.28

1 P1—Thermoneutral conditions (18–21 ◦C and 40–50% RH) and lambs fed 1.7 × M for 1 week; P2—heat stress
conditions (28–40 ◦C and 30–50% RH) and lambs fed at 1.7 × M for 1 week; P3—heat stress conditions (28–40 ◦C
and 30–50% RH) and lambs fed at 2.0 × M for 1 week. DMI—dry matter intake; DM—dry matter; OM—organic
matter; NDF—neutral detergent fibre; ADF—acid detergent fibre.

There was no effect of either diet or period on the rumen fluid concentrations of
acetate (Table 4). Rumen propionate concentrations were higher for the WD diet than
the BD diet, which in turn was higher than the MD diet (22.1 mmol/L, 16.3 mmol/L,
and 13.3 mmol/L for WD, BD, and MD, p = 0.002). Rumen propionate concentrations
were lower during heat stress than under thermoneutral conditions (22.2 mmol/L, 14.4
mmol/L, and 15.2 mmol/L for P1, P2, and P3, p < 0.001). There was no effect of diet on the
rumen fluid concentrations of iso-butyrate whereas the concentrations were higher during
heat stress (0.46 mmol/L, 0.64 mmol/L, and 0.75 mmol/L for P1, P2, and P3, p = 0.006).
There was no effect of diet on the rumen fluid concentrations of butyrate whereas the
concentrations tended to decrease during heat stress (13.5 mmol/L, 11.0 mmol/L, and
9.89 mmol/L for P1, P2, and P3, p = 0.06). There was no effect of diet on the rumen fluid
concentrations of iso-valerate whereas the concentrations tended to increase when DMI
was increased (0.36 mmol/L, 0.38 mmol/L, and 0.51 mmol/L for P1, P2, and P3, p = 0.10).
Rumen valerate concentrations were higher for the WD diet than the BD diet, which in
turn was higher than the MD diet (1.22 mmol/L, 0.69 mmol/L, and 0.37 mmol/L for
WD, BD, and MD, p = 0.001). Rumen valerate concentrations were lower during P3 than
P1 with P2 intermediate (0.93 mmol/L, 0.74 mmol/L, and 0.60 mmol/L for P1, P2, and
P3, p = 0.02). Rumen TVFA concentrations were higher for the WD diet than the MD diet
with the BD diet intermediate (44.5 mmol/L, 39.7 mmol/L, and 35.4 mmol/L for WD, BD,
and MD, p = 0.01). Rumen TVFA concentrations were lower during heat stress than under
thermoneutral conditions (48.1 mmol/L, 36.5 mmol/L, and 35.0 mmol/L for P1, P2, and
P3, p < 0.001).
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Table 4. Dietary effect on the rumen volatile fatty acids (VFAs) of Merino lambs subjected to 3
different feeding period levels and environmental conditions 1.

WD BD MD
SED

p-Values
P1 P2 P3 P1 P2 P3 P1 P2 P3 Diet Period Diet × Period

Acetate, mmol/L 11.7 9.20 7.88 9.47 9.98 7.42 10.7 9.03 8.82 1.97 0.79 0.12 0.83
Acetate, % total VFA 20.7 25.8 21.0 21.8 22.6 23.2 24.1 28.5 26.9 4.20 0.18 0.39 0.89
Propionate, mmol/L 29.7 15.6 21.1 20.7 15.6 12.7 16.3 11.9 11.8 3.18 0.002 <0.001 0.12
Propionate, % VFA 51.9 44.1 48.8 46.7 39.5 37.7 38.7 35.8 38.7 5.80 0.057 0.16 0.76

Iso-butyrate, mmol/L 0.40 0.57 0.78 0.39 0.80 0.81 0.60 0.55 0.67 0.14 0.29 0.006 0.21
Iso-butyrate, % VFA 0.72 1.57 1.92 0.96 2.02 2.54 1.61 1.81 2.19 0.34 0.078 <0.001 0.27
Butyrate, mmol/L 13.8 8.65 9.23 12.9 14.0 11.0 13.9 10.2 9.45 2.57 0.29 0.06 0.54
Butyrate, % VFA 23.4 24.0 23.9 27.1 33.3 33.3 33.3 31.9 29.7 4.34 0.017 0.77 0.56

Iso-valerate, mmol/L 0.21 0.35 0.59 0.52 0.45 0.51 0.36 0.33 0.42 0.15 0.57 0.10 0.30
Iso-valerate, % VFA 0.41 0.99 1.95 1.26 1.12 1.64 0.97 1.07 1.37 0.56 0.86 0.028 0.49
Valerate, mmol/L 1.46 1.28 0.92 0.90 0.62 0.54 0.44 0.33 0.35 0.23 0.001 0.02 0.45
Valerate, % VFA 2.54 3.51 2.40 2.22 1.46 1.61 1.15 1.02 1.13 0.53 <0.001 0.54 0.13

Total VFAs, mmol/L 57.4 35.6 40.5 44.6 41.5 32.9 42.3 32.4 31.5 5.02 0.01 <0.001 0.15
1 P1—Thermoneutral conditions (18–21 ◦C and 40–50% RH) and lambs fed 1.7 × M for 1 week; P2—heat stress
conditions (28–40 ◦C and 30–50% RH) and lambs fed at 1.7 × M for 1 week; P3—heat stress conditions (28–40 ◦C
and 30–50% RH) and lambs fed at 2.0 × M for 1 week. TVFAs—total volatile fatty acids.

4. Discussion

The major findings from the present study were that enteric CH4 production by sheep
decreased by substituting wheat for maize in a 50% concentrate diet and that there was an
even greater reduction when the wheat was treated with a starch and protein binding agent
such as Bioprotect. Thus, on a feed intake basis, there were 18% and 37% lower enteric
CH4 production rates in sheep consuming WD and BD compared with MD. Previously,
Moate et al. [33] reported that for dairy cows consuming diets containing 45% grain, there
was a 30% reduction in enteric CH4 production rates in lactating dairy cows when wheat
was substituted for maize. These authors attributed this reduction in CH4 production rates
to differences in starch digestion in the rumen and effects on either average rumen pH
or the amount of time that the pH was below 6.0. Similarly, Moate et al. [34] reported a
43% lower reduction in enteric CH4 production rates in lactating dairy cows when wheat
was substituted for maize. However, in the present study there was no difference in
rumen pH between the diets, albeit this was in a single sample taken 4 h post morning
feeding. Moreover, the further effect of Bioprotect on enteric CH4 production over wheat
could not be explained by more rapid starch fermentation alone as one of the actions of
Bioprotect is to reduce rumen starch fermentation by reversibly binding to hydroxyl groups
of starches [22,23,35]. The rumen TVFA and propionate concentrations were higher for
sheep fed the WD diet than the MD diet with the BD diet being intermediate which supports
the relative differences in in vitro fermentation [36]. While higher starch fermentation and
inhibition of cellulolytic fermentation may explain the reduction in enteric CH4 production
with the WD diet compared with MD, it does not explain the further decrease observed in
sheep feed the BD diet since fermentation of BD is intermediate.

In addition to binding to starch, Bioprotect is also purported to react with the primary
and secondary amino groups and form stable protein complexes at rumen pH, which
dissociate at the more acidic conditions as they exist in the abomasum and duodenum.
Thus, gas production from protein meals treated with Bioprotect is reduced indicating an
increase in rumen undegradable digestible protein (RUDP) [36]. Therefore, it is possible
that some of the decrease in enteric CH4 emission from sheep consuming the BD diet
may be due to an increase in RUDP. Wheat would have provided 40% of the dietary
protein; therefore, Bioprotect-treated wheat could have been a not inconsequential source
of RUDP in the BD diet. Lamba et al. [37] found that increasing RUDP was associated
with decreased in vitro CH4 production, which supports this concept and was consistent
with their earlier work with conventional and unconventional protein sources [38]. Thus,
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the lower rate of CH4 emission from sheep fed the BD diet may be due to a reduction
in rumen fermentation and digestion of both starch and protein and a shift in their site
of digestion. Shipandeni et al. [23] confirmed this possible shift in digestion by showing
a reduction in in vitro rumen starch degradation of maize and sorghum treated with
Bioprotect. Another possible reason for the decrease in CH4 from the WD and BD-fed
animals could be attributed to the higher propionate concentration in the WD- and BD-fed
animals compared with the MD-fed animals and the decreased concentration of butyrate in
the BD-fed animals than the WD and MD-fed sheep. The increased propionate production
and decreased butyrate production in the rumen of BD-fed sheep could have freely available
hydrogen in the rumen that would otherwise be used by methanogens to reduce CO2 to
produce CH4 [15].

In the current experiment, sheep exhibited higher CH4 production (g/day) and CH4
yield (g/kg of DMI) during P1 compared with P2 and P3. Even though the sheep had
higher rumen propionate concentrations during P1, this increase in propionate did not
translate into reduced CH4 production. Similar to our results, Yadav et al. [39] observed an
increase in the CH4 production in Vrindavani crossbred cattle at 30 ◦C and 35 ◦C of heat
stress exposure. However, they noted an increase in CH4 production at 40 ◦C. In addition,
an experiment conducted on dairy farms in India reported a decrease in CH4 emissions
from cows with an increase in the temperature humidity index [40]. However, the reason
for this decrease in CH4 emissions from the rumen during heat stress is unclear since the
diversity of rumen bacteria was not assessed.

Differences in the DMI between periods are explained by the differences in the feeding
level between the periods and the heat-stress-induced reduction in the feed intake by the
sheep [22]. In general, digestibility variables and rumen fermentation characteristics are
expected to vary substantially with the differences in the diet [41]. Diets with high starch
content are generally associated with acidosis and lower rumen fluid pH in animals [42].
However, sheep in our experiment did not exhibit any changes in their rumen fluid pH
either with diet or period. A positive effect of ration splitting could partially explain this
non-significant effect on rumen fluid pH. Due to the sufficient interval between two feed-
ings, the pH of the sheep’s rumen fluid might have recovered after the feedings, reducing
the impact on rumen microbes [43]. Among the dietary treatment groups, MD-fed sheep
had very low faecal pH with the lowest values recorded during P3 (pH = 7.05), suggesting
that these sheep had an increased amount of starch fermented in their hindgut [42]. Khor-
rami et al. [42] reported a decrease in hindgut fermentation during the daytime and this is
associated with lower faecal pH. The lower pH during the heat stress periods are better
explained by the possible imbalance in the production and use of acid in the rumen [8]. The
decrease in faecal pH and possible low absorption rate of acid at the hindgut may explain
the visual observation of undigested maize grains in our sheep faeces.

Both DM and OM digestibility showed a similar trend for the effect of diet and period.
Lower digestibility values of starch during the periods of heat stress (P2 and P3) observed
in this experiment agree with other studies conducted in ruminants [8,9]. These differences
in the digestibility across the periods could be attributed to a number of factors such as
variations in water intake, rumen motility, and the rumen microbiota [12]. Wheat treated
with Bioprotect significantly improved its digestibility of DM, OM, and starch. Similar
effects of Bioprotect supplementation on total tract digestibility were reported in in vitro ex-
periments [21,44]. The results of this study support the hypothesis that Bioprotect treatment
increases post-ruminal digestion of the grains fed to animals. In addition to our results,
Philippeau et al. [45] observed higher digestion of DM, OM, and starch in steers fed wheat
and wheat-based diets than those fed corn. According to Chandrashekar and Kirleis [46],
starch particles in maize might have maintained constant structural integrity throughout
digestion by remaining tightly embedded in the protein matrix, preventing microbes from
accessing starch. These studies would indicate that the lower digestibility of the maize
diet is linked to the structural integrity and particle size of the maize. Philippeau et al. [45]
opined that the corn might require milling to reduce particle size for better performance.
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Thus, the low starch digestibility of MD explains the low faecal pH and the remnants of
the maize granules in the faeces of sheep. The NDF digestibility was unaffected either by
diet or period. The reason for the decrease in the ADF digestibility in the BD and WD
diets compared with the MD diet is not clear, but it may be related to the differences in the
bacterial communities in the rumen. It should be noted that the NDF and ADF digestibility
were relatively high although Garry et al. [47] found that NDF digestibility was higher
than reported here and higher in sheep than lactating dairy cows, particularly in summer.
Future studies to investigate the effects of WD, BD, and MD on the rumen microbiota of
heat-stressed sheep could lead to a better understanding of the effects of different grains
and treatment of wheat with Bioprotect on digestibility variables over a longer period
of time.

The current study demonstrated a significant shift in the TVFA production of the sheep
in response to the experimental periods and diets. Significantly higher TVFA concentration
in P1 compared with P2 and P3 could be because of the increased water intake [22] and an
associated increase in the rumen turnover rate and dilution of the rumen digesta [48,49].
This high turnover rate can sometimes culminate in the elimination of partially digested
substrate from the rumen by not giving enough time for their fermentation [50]. A dramati-
cally greater increase in TVFA production of WD-fed animals in P2 than in P1 is explained
by the drastic increase in water intake (data published elsewhere; [22]) observed in WD
animals during P2. The higher TVFA production in the WD-fed animals than those of the
BD-fed animals indicate the higher fermentation in the rumen and this supports our hy-
pothesis that Bioprotect-treated wheat can bypass the rumen to promote hindgut digestion.
Regardless of the period and diet, acetate and iso-valerate did not show any significant
variation. Contrary to our results, a difference in the concentrations of acetate and iso-
valerate due to heat stress was observed in goats [13,51] and sheep [52]. Further, propionate
production was lower during P2 and P3 compared with P1, which would have played a
beneficial role in reducing the heat increment [49]. The lower concentration of propionate
in the rumen fluid of sheep fed the MD diet could explain the higher CH4 output from the
MD group because propionate serves as a hydrogen sink [15]. Production of propionate
consumes hydrogen atoms making less hydrogen available for the production of CH4 [53].
The effect of dietary treatment was not significant for the concentration of iso-butyrate and
butyrate. Our findings of decreased butyrate production during P2 and P3 are consistent
with Nonaka et al. [14], who reported a reduction in butyrate production in Holstein heifers
kept at 33 ◦C compared with the heifers at 20 ◦C or 28 ◦C. Higher butyrate production
during P1 might account for the higher production of CH4 during P1 [54]. The increase in
the production of iso-butyrate during P3 might be due to the increased level of feeding and
this indicates the high energy utilization in the rumen [55]. The WD-fed animals had higher
valerate concentrations than their counterparts, and valerate concentrations decreased
linearly across the period with the lowest values recorded in P3. Similar to our findings,
Moate et al. [56] also found increased valerate concentrations in cows that were fed maize
compared with cows fed wheat.

5. Conclusions

In conclusion, heat stress reduced rumen VFA concentrations and enteric CH4 pro-
duction with no decrease in whole tract digestibility except in lambs consuming the MD
diet at high feed intakes. This was particularly for starch digestion. Lambs fed the MD
diet produced more enteric CH4 production than those consuming the WD diet. The
treatment of the WD diet with a starch and protein binding agent further reduced enteric
CH4 production.
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