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ABSTRACT
The emerging fields of citizen science and gamification reformulate scientific problems as games or puzzles to be solved. Through engaging
the wider non-scientific community, significant breakthroughs may be made by analyzing citizen-gathered data. In parallel, recent advances
in virtual reality (VR) technology are increasingly being used within a scientific context and the burgeoning field of interactive molecular
dynamics in VR (iMD-VR) allows users to interact with dynamical chemistry simulations in real time. Here, we demonstrate the utility
of iMD-VR as a medium for gamification of chemistry research tasks. An iMD-VR “game” was designed to encourage users to explore
the reactivity of a particular chemical system, and a cohort of 18 participants was recruited to playtest this game as part of a user study.
The reaction game encouraged users to experiment with making chemical reactions between a propyne molecule and an OH radical, and
“molecular snapshots” from each game session were then compiled and used to map out reaction pathways. The reaction network generated
by users was compared to existing literature networks demonstrating that users in VR capture almost all the important reaction pathways.
Further comparisons between humans and an algorithmic method for guiding molecular dynamics show that through using citizen science
to explore these kinds of chemical problems, new approaches and strategies start to emerge.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0062517

I. INTRODUCTION

In recent years, the closely related concepts of “gamification”1–3

of scientific problems and utilizing “citizen scientists”4 to gather
data have become increasingly used as research tools in the molec-
ular science literature. Significant work in this regard came from
Cooper et al. with the Foldit program5,6 in which the protein fold-
ing problem was recast as a computer game with tutorials, scoring
system, and other game-like attributes. Chiefly, Foldit was designed
to create an enjoyable experience for the public and thus drive user
engagement. An early paper by Cooper et al.6 demonstrated that
the users of the game, the “citizen scientists,” were able to spot
and create favorable folding conformations, often more efficiently

than computer-based algorithms designed to complete the same
task. Subsequently, this framework has been extended and data
from the users have been directly used to accomplish research tasks
involving protein/enzyme design7 and crystal structure identifica-
tion.8 Another promising strand to this type of citizen science study
involves formalizing the strategies used by human users for algo-
rithm development.9 Detailed studies in this regard have shown that
citizen scientists can explore different areas of the solution surface
for a given scientific problem and can potentially find minima in
solution space, which are different to those found by existing algo-
rithms.8,9 The growing body of work in this field clearly demon-
strates that if scientific problems are formulated in the right way and
the game is engineered to engage a lay audience with these questions,
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then utilizing data from the public can be highly effective.
Another emerging tool in the molecular sciences is the use of

virtual reality (VR) technologies,10–21 and the manner in which VR
can aid the teaching/learning of computational chemistry tasks has
been well documented.22,23 Recent developments in such technolo-
gies have been leveraged in the Narupa software.24–27 In Narupa,
“players” use a VR headset to enter a real-time molecular dyna-
mics simulation. Within VR, they are able to reach out with hand-
held controllers and “pull” atoms in order to perturb or direct the
dynamics of the molecular system around them. This “interactive”
molecular dynamics approach25,28–30 extended to virtual reality
(iMD-VR) has been described in several recent papers.27,31 It has
been shown that a VR environment offers an intuitive way for non-
experts to understand and manipulate molecular motion, and it was
demonstrated that users in a 3D VR environment were significantly
more efficient at performing complex computational chemistry tasks
when compared to a 2D mouse-based or touchscreen interface.27

The utility of this iMD-VR framework has been demonstrated in
other applications: It has been shown to be effective at sampling drug
binding poses32 and has recently been utilized for a study on SARS-
CoV-2 docking,33 it has been used to aid the sampling of molecular
geometries for fitting to a neural network,34,35 and the enhanced
perception of users in iMD-VR toward subtle dynamical changes
in molecular simulations is an area of ongoing research.36,37 Other
work has explored the addition of sonic elements to add another per-
ceptive layer to users’ experience in VR.38 These successes coupled
with the user interface (UI) elements and the immersive experience
afforded by VR and potential sonification make iMD-VR an ideal
basis for a gamification interface.

When looking at a problem to gamify, one area attracting sub-
stantial research interest is the automatic generation of chemical
reaction networks.39–48 There are a wide range of fields in which one
wishes to model the chemical evolution of a system of competing
reactions and transformations. These range from gas phase model-
ing of the chemistry in the Earth’s atmosphere49 or in a combus-
tion engine45,47 to the modeling of organometallic complexes44 or
homogeneous catalysis.50 Given the ubiquity of this type of problem,
there have been several recent software packages designed to auto-
matically map the network of chemical reactions within a chemical
system.42,43,46 This leaves the two open questions: Whether “citizen
scientists” could efficiently explore chemical networks and what dif-
ferences in strategy might emerge between human- and computer-
guided mechanism generation. The reaction network initiated by the
OH + propyne reaction is a key step in the combustion of natural
gas, and the network of possible reactions has been extensively char-
acterized by both automated methods51 and by manual transition
state searching.52 This system presents itself as an ideal candidate
for proof-of-concept studies for a reaction finding “game.” Of the
two comprehensive literature mechanisms, the automated (Kinbot)
study by Zador51 made efforts to prune the mechanism down to
those reactions that are relevant under combustion conditions and
lower temperature conditions and for this reason used as the pri-
mary benchmark of “known important reactions” in the rest of this
paper.

In this paper, we detail the design and implementation of an
iMD-VR game where the aim is to find reactions between two
molecules. We evaluated this iMD-VR game with a prospective user
study where non-experts were tasked with playtesting the game.

Each player was given the C3H5O atomic system starting with the
OH and propyne moieties for the reasons given above. This paper
aims to explore whether this iMD-VR based game is an effective
tool for mechanism generation, and we will be using two met-
rics to assess this: Do the users discover the known reactions for a
well-studied system and do the users find novel reaction pathways.
The secondary aim of this paper is to begin to compare molecular
trajectories guided by humans and those guided by some algorith-
mic acceleration method with the aim of highlighting strategic dif-
ferences. This paper is organized as follows: Secs. II and III detail
the methods with Sec. II detailing new elements in this work that
create a game-like iMD-VR environment, and Sec. III detailing the
design and evolution of the user test experience. The results from
these user tests are presented in Sec. IV, where we analyze the reac-
tion game data in the context of three separate questions: Does
the user-generated reaction network capture the important process
that has been identified in the literature, does the user-generated
network find anything new, and can we identify any difference in
strategy between human-guided molecular dynamics and molecular
dynamics biased through some algorithmic method.

II. REACTION GAME INFRASTRUCTURE
The reaction game used for the user tests in the current work

is based on the Narupa iMD-VR framework and in particular makes
use of the efficient interface between Narupa and the Scine Spar-
row electronic structure package,53 allowing for real-time quantum
evaluation of the forces of the system. This is essential for explor-
ing reactive changes (bond breakage and formation) of a system in
Narupa.52

An interactive Narupa iMD simulation is run through two
applications, a Python backend dynamics engine and the frontend
Narupa iMD program. The “backend” runs the molecular dynamics
while also acting as a server, sending simulation data to the Narupa
iMD application on-the-fly. The communication between these two
applications allows users to cohabit the “VR space” where the MD
data are visualized in full 3D and in real time. Within this environ-
ment, users can reach out with the hand-held VR controllers and
interact with the atoms around them; when grabbing an atom in this
way, the user is applying an external force into the system; hence,
the atoms will react to this input. These additional forces are relayed
back to the Python backend that incorporates them into the MD cal-
culations. Through this feedback look, a fully immersive and inter-
active simulation in VR is realized. (https://vimeo.com/312963823)

To facilitate a “game-like” experience and to incentivize the dis-
covery of chemical reactions, a number of additions were made to
the core Narupa framework. These additions can be loosely grouped
into three different categories: additional infrastructure to allow
automated identification, bookmarking, and scoring of chemical
reactions, the addition of audio elements to the game to engage
another layer of the user’s perception and to impart more, real-
time, information to the users such as the energy of the system, and
added user interface (UI) elements to aid users in navigating the
network of reactions they had discovered. This section details the
elements that were used for the final set of user participation tests.
The “reaction game” was refined over three separate sets of user tests,
and this design process and the evolutions of the user test process are
described in Sec. III.
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A. Reaction finding and bookmarking
To function as a mechanism generation tool, it was neces-

sary to have an automated way of identifying when a reaction
had occurred. This is a problem encountered in other (automated)
mechanism generation approaches based on molecular dynamics,
and for this work, we implemented a version of the TSSCDS algo-
rithm of Martínez-Núñez,40 for tracking when a reaction may have
occurred. For the starting OH + propyne Cartesian coordinates, we
created a connectivity matrix (C) describing the bonding structure
of the system. This was an N by N matrix where N is the number of
atoms in the system (9 in the current case), and each matrix element
signified whether atoms ij were bonded (1) or nonbonded (0) based
on whether the current interatomic distance was less than some ideal
bond distance for that atom pair (Table S1 of the supplementary
material).

At each subsequent time step, the current interatomic dis-
tances dij of the system were then compared with the reactant bond-
ing structure (given by C) to monitor the reaction. Specifically, a
reaction was then considered to occur if for an atom i,

max(δin) > min(δik); δij =
dij

dREF
ij

. (1)

Here, index n runs over atoms bonded to i (Cij matrix elements equal
to one) and index k runs over atoms that do not have a bond to i
(Cij matrix elements equal to zero). Once a reaction occurred and
the product was identified, the connectivity matrix C was updated to
describe the new bonding structure of the system.

Upon reaction, the product geometry was determined by prop-
agating the system for a further 80 MD steps to give the system a
chance to fully enter the “product” region of configurational space.
A steepest descent minimization was then performed for 50 itera-
tions. For each reactive event, the potential energies of the system at
the reactant structure, transition point, and product structure were
stored, and a SMILES string was associated with the reactant and
product geometries using a newly implemented canonical SMILES
algorithm.54 The SMILES served a dual purpose: They allowed the
system to identify whether a user had repeated a reaction sequence
that they had already performed, and they served a convenient label
for initial bookkeeping such that users could get some idea of the
structures they had formed in real time. For all the post analysis
performed in this paper, independent minimization and SMILES
generation routines were used to refine the raw data as described
in Sec. IV.

Given the combinatorially large number of possible chemical
reactions, we introduced a scoring mechanism to give users feed-
back on the relative kinetic importance of the different channels
they found and to incentivize finding reactions with lower barriers.
The SMILES codes were used to ensure that a user did not get any
score for repeating a reaction that they had already performed. How
important a given reaction is to the overall mechanism is determined
by the free energy barrier for that reaction relative to other possible
reactions from the same reactant structure. While it was not practical
to determine the free energy for the reactions in real time, the poten-
tial energy of the transition point relative to the reactant was used as
an indicator of the reaction favorability. The scores were calculated
according to the following equation:

Score = 2.5 × (400 − Ea), (2)

where Ea is the transition point potential energy relative to reactants
in kJ mol−1. It was decided that a barrier of over 400 kJ mol−1 rep-
resented a reaction that was unlikely to be kinetically important and
thus returned a score of zero. A factor of 2.5 was used to place the
scores on a scale from 0 to 1000 to make the range more end-user
intuitive. This scoring mechanism was viewed very much as a first
iteration and is likely to be subject to improvement in future studies.

B. Sonification
Much of the game related elements we added to Narupa were

designed to encourage “players” to react to the simulation and to
preferentially explore lower energy conformation space available to
the system. The potential energy of the system was not a quantity
that was easily amenable to visualization, and instead, an auditory
representation of the potential energy of the system was used. Given
the amount of visual stimulus the “players” were already subjected
to, it was hoped that this information might be better portrayed
to the “players” through sonification. The sonification was created
using the Wwise game audio engine.

The potential energy was sonified using a one-to-many map-
ping strategy, and the single value of the potential energy was
mapped to multiple audio parameters with the aim of creating a
sense of tension and urgency as the energy increased. A looping
drone sound and a rhythmic pulse sound were triggered upon the
energy exceeding a certain threshold. The source audio for the drone
has a fairly static frequency content. This was then modulated with
effects to reflect changes in the potential energy. The sound was
passed through a parametric equalizer (EQ) with a high gain and
narrow bandwidth (producing a sharp spike around its center fre-
quency). The potential energy was set to modulate the center fre-
quency of the spike between 100 Hz and 3 kHz. This was then passed
to a delay unit, whereby the amount of feedback (the proportion
of the output signal fed back to the input) increased proportionally
with the potential energy. Finally, the audio signal was increasingly
distorted with increases in potential energy. The combination of an
EQ spike and a delay with a feedback loop meant that the longer the
“players” stayed in a high energy state, the louder and more distorted
the sound would become.

In addition to the sonification of the potential energy, “earcons”
(short musical passages whose features are designed to represent
some data feature) were added in order to categorize the types of
reaction a “player” had performed. We grouped reactions into three
types: association where the number of molecular fragments in the
systems was reduced upon reaction, dissociation where the number
of molecular fragments in the system increased upon reaction, and
isomerization where the number of molecular fragments remained
constant upon reaction. These three reaction types will be discussed
more in Sec. III, but it was noticed in early tests that “players” had
a preference for performing some reaction types over others. The
earcons were designed to serve two purposes: to emphasize a reac-
tion event and provide a sense of achievement and to encourage
users to explore the different types of earcons by performing the
different classes of reactions.

The sounds for all three reaction types were created using the
same synthesis method to provoke a sense that they all pertain to the
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FIG. 1. Left panel: User in VR using the controllers to apply force to two separate atoms. Interacting atoms are designated by white circles surrounding them. Right panel:
UI elements showing the current score and a popup menu with a history of previously discovered species.

same category of event. The association earcon consists of a three-
note chord that sustains for four bars, after which, a further two,
higher notes are added in order to connote the idea of two things
joining. The disassociation earcon consists of a five-note chord,
which sustains for two bars, at which point three of the notes stop,
leaving only two notes to sustain for the final two bars to connote
the idea of something thinning out or splitting.

In order for the isomerization earcon to be linked to the others
and yet stand out as a special case, it uses the same note classes but
is different in its form. It consists of a fast arpeggio rising over four
octaves using shorter, more percussive notes. The intention here is
that this earcon stands out as a special case and would therefore
encourage players to explore more of this type of reaction in order
to trigger the more unusual/interesting sound event.

Examples of the sonification elements can be found in the
tutorial video of the supplementary material.

C. UI additions
A number of visual UI elements were added to the VR front end

of Narupa to create the game-like experience we desired. A dialogue
box was used to indicate when a reaction had been detected. This
box displayed a “Minimizing” message while the simulation briefly
paused to determine the reaction score and to minimize the product
geometry. This dialogue box was briefly replaced by one displaying
the reaction score once the analysis was complete, before this dia-
logue box also disappeared allowing the users to continue exploring
the reactivity of the system. The total cumulative score was contin-
ually displayed on the outside of the simulation box. In addition to
these game related notifications, we also introduced a new menu for
users in the game, displaying screenshots of the different product
species they had discovered so far and allowing users to select one
of these screenshots to reset the simulation geometry to that of the
chosen product. This allowed users to rewind if they found that they
had followed a sequence of reactions into an unreactive “cul-de sac”
state. The screenshots of the player view from the reaction game are
shown in Fig. 1.

III. USER TEST DESIGN
Prior to the final set of user tests described here, the test

design evolved over several phases of tests. The use of iMD-VR as
a platform for a reaction finding game was particularly motivated

by the dynamic nature of the simulations. Visualizing such simula-
tions offers far more information than a static representation of the
chemistry: As the dynamic simulation is fully responsive to input,
we surmise that iMD-VR can give real-time insights into systems
being studied. For example, a favorable reaction will seem to “snap”
into place, whereas trying to pull a molecule into an unfavorable
conformation will be met with resistance. A strong user interface is
key to making this principle obvious to the end-user. Thus, the test-
ing experience was designed to maximize the perceptual feedback
received from the simulation to help participants intuit favorable
reactions.

The first round of user tests consisted of 30 undergraduate
chemists given 5 min in a reactive OH + propyne simulation. It was
apparent in these initial tests that users were highly adept at guid-
ing multiple molecular fragments together to form a larger species
(adduct). However, players were less successful when it came to pro-
moting complex unimolecular or rearrangement reactions of the
adduct atoms. From the literature benchmark for this system, it
is known that the lowest energy and thus most kinetically impor-
tant reactions in the OH + propyne system involve unimolecular
rearrangement, such as hydrogen atom transfer from one atom to
another. In the first tests, users demonstrated a propensity toward
fragmenting the molecular adduct into smaller and smaller frag-
ments, often imparting very large amounts of force into the system to
achieve this. This is understandable from an entopic perspective: To
perform a hydrogen transfer, at least three atoms need to be confined
to be in a relatively small volume of configuration space, enabling
the existing bond to break while simultaneously forming a new one.
Conversely, a dissociation reaction simply required two atoms to be
“pulled” apart with relatively few constraints on the configuration
of the atoms. Even if a reaction scored zero due to the high energies
involved, the user was then left with a system of molecular fragments
that would rapidly associate together with little or no energy bar-
rier. Future iterations aimed at reducing the bias toward entropically
favorable reactions and encouraging users to consider the energetics
of their interactions.

The second iteration of user tests was modified to encourage
users to be more aware of the potential energy in the system. Primar-
ily, the amount of force users could impart from their VR controllers
was reduced providing a greater sense of “exertion” when users tried
to break stable chemical bonds. This was emphasized by a reduc-
tion in the MD time step from 1 to 0.5 fs, which visually slowed
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the simulation: A user should be free to break a stable bond with-
out forming a new one, but it should take considerably more time
and effort than doing so through a more stable transfer reaction.
At this point, sonification elements were introduced to provide the
users with additional sensory feedback about the energetic state of
the system. This set of user tests consisted of 21 participants. The
results from this second set of user tests showed a marked improve-
ment over the first in terms of the extent to which users were able to
reproduce the benchmark literature reaction network (see Fig. S1 of
the supplementary material).

In this work, we focus on the results from the final iteration
of user tests. These tests followed a similar format to the previous
iteration with two exceptions: Users were guided through a more
extensive tutorial and users were given 15 rather than 5 min to
explore the reactivity of the OH + propyne system. These changes
reflected our perception of there being a significant “learning curve”
for users in the first two tests with regard to unfamiliarity with both
the VR hardware and also the specific molecular simulation environ-
ment. The full tutorial video shown to each participant is given in the
supplementary material, and this was followed by asking the users to
accomplish a number of tasks for a separate isobutyl radical + O2
simulation, which are as follows:

● “3 min to make as many different fragment combinations as
you can, there must be no more than 3 H’s unattached to a
C at any one time.”

● “3 min to carry out as many migrations either H or C as you
can.”

● “3 min to create as many cyclic products as you can.”

Once these tasks were complete, users in VR were then given a
full 15 min to sample different reactions in the OH + propyne sys-
tem. 18 participants took part in this refined user test experience.
The remainder of this paper will focus on the data gathered from
this final set of user tests.

IV. RESULTS
A. User tests vs literature benchmark

The first metric that we use to assess the success of our crowd
sourcing method for generating reaction is the extent to which the
network generated by the final user tests reproduces the known net-
work. As noted in the Introduction, the C3H5O (OH + propyne/OH
+ allene) system is unusually well characterized by the automated
Kinbot study, and we take the resulting network from this study as
representing a highly accurate description of the important chem-
istry. This Kinbot study involved some pruning of the full network
such that only the reactions with low energetic barriers were con-
sidered, and Fig. 1 of the Kinbot study47 further delineates the par-
ticularly important reactions by marking them as bold. Figure 2
shows the full network of nodes and edges discovered in the Kinbot
study, and this network is colored according to whether the same
reactions (edges) were found from analyzing the user test results.
From Fig. 2, it can be seen that the “players” in VR discover all
but four of the reactions from the benchmark and only miss one of
the bold reactions. Furthermore, it is noted that the missing bold
reaction was discovered in the second iteration of user tests (see
Sec. S2 of the supplementary material). Given the limited scope of
these tests, it is highly encouraging that a small cohort of users, each

FIG. 2. Proportion of the benchmark Kinbot network captured by the final user
tests. Orange signifies a species (node) or reaction (edge) present in the bench-
mark but not found in the user study. The bold lines are those reactions identified
as particularly important by Kinbot.

given 5 min with the system, can collectively cover the reaction net-
work. With higher recruitment of participants, who would ideally
have more than 5–15 min to explore a system, we anticipate that far
reaching areas of a chemical landscape can be explored.

Having demonstrated that the user test results provide good
coverage of the important parts of the network, we turn to looking
at an extended reaction network from the user test data with a view
to analyzing the parts of the network discovered here, which are new
or novel. In order to conduct this comparison fairly, it is necessary
to recognize that all reaction chains in the literature mechanisms we
compare to, terminate once a dissociation or fragmentation reaction
takes place. For this reason, we have removed all bimolecular reac-
tions from the user test data apart from those starting with the OH
+ propyne fragments. Figure 3 shows the resulting network covered
by participants in the final user tests and indicates which nodes and
edges were also found in the literature. Clearly, the space explored
in the user tests is larger than that explored in the literature, and
there are a range of new nodes discovered in the user test network,
which do not appear in the literature. Many of these new nodes are
“dead ends” with only one connecting edge and these typically rep-
resent fragmented products. There are other nodes found only in
the user test, which are unimolecular and connected to a literature
node by an isomerization process. Interestingly, there are also new
edges (marked in cyan) showing new connections between existing
literature nodes.

The second metric we wish to consider when assessing the suc-
cess of the VR based crowd sourcing approach is whether the users
identify any missing or novel reactions. Clearly, from Fig. 4, the
user test data include many reactions that were not identified in the
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FIG. 3. Network unimolecular reactions covered by user test 3. Orange denotes
node or edge found in the Kinbot mechanism, and gray denotes a node or edge
found in the Fitzpatrick mechanism, but not in Kinbot. Gold, purple, and cyan edges
all signify reactions that are not found in the literature and denote whether zero,
one, or both, respectively, of the connected nodes are found by either Kinbot or
Fitzpatrick.

literature. To analyze whether any of these reactions might compete
with the know reactions in the literature, we took the reactions or
edges marked in gold, purple, or cyan in Fig. 3 and attempted to
locate a true transition state for the reaction by performing a sad-
dle point optimization on the maximum of the spline path using the
PM6 method in Scine Sparrow.53 Then, we attempted to refine these
PM6 saddle points with geometry optimizations at the M062x/6-
311++G(d,p) method in Gaussian.55 These calculations were done
in an automated pipeline, but for two particular classes of reactions,
the PM6 saddle point did not optimize to a corresponding saddle
point at the M062x level of theory.

One class of reaction for which this behavior was observed was
that of hydroxyl radical migration from one carbon to another. A
PM6 saddle point for this type of reaction is shown in the left panel
of Fig. 4. These hydroxyl migration reactions are not observed in
either of the literature and typically provide a shortcut between two
known nodes for which a connecting edge has not previously been
identified. Another class of reaction that was observed frequently
in the user tests but for which saddle points cannot be found at
higher levels of theory is that of molecular hydrogen dissociation,
where one hydrogen atom dissociates and takes another with it. A
PM6 saddle point for this type of reaction is shown in the right
panel of Fig. 4. Manual attempts to find the majority of these saddle
points have also been unsuccessful at the M062x and B3LYP levels of

theory with varying basis sets indicating that if such saddle points
exist, they exhibit very different structures to the PM6 transition
state structures. Interestingly, observations of the users performing
some of these reactions showed instances of roaming type behav-
ior56–58 (although non-dissociative in the case of the OH migrations)
as seen in videos of the supplementary material, and this raises the
question of whether some of these reactions actually exhibit dynam-
ical bottlenecks rather than the traditional transition state in the
statistical sense.

The remaining reactions for which an M062x saddle
point could not be found involved potentially barrierless dissoci-
ations or cases where a user had performed two reactions rapidly
in a pseudo-concerted manner and the saddle point optimization
returned the saddle point for one of the two sequential reactions,
which was already found in the literature. In the latter case, it
was sometimes observed that the energy redistribution following
the initial reaction directly precipitates the second reaction, and
this again raises the question of whether some of the dynamical
behavior observed might be applicable to the high temperatures of a
combustion engine.59

The new saddle points that were found were further
refined by coupled-cluster singles doubles and perturbative triples
[CCSD(T)]/cc-pVTZ single point calculations in Gaussian.60 Saddle
points with zero-point corrected energies less than 50 kcal mol−1

above OH and propyne are listed in Table I. These reactions are
too high in energy to be presented in the Kinbot study, and given
the relatively small system size and the unusually comprehensive
nature of the Kinbot search, it is possible that all the important low
energy pathways have already been discovered. However, users have
found reactions that were not found in the Fitzpatrick study, demon-
strating that our crowd sourced reaction finding approach is quite
capable of finding reactions that may have been missed by previous
“by-hand” transition state searches (Table I).

B. User test 3 vs ChemDyME
The ChemDyME61 code has previously been used to automati-

cally map the OH + propyne reaction network, and like the user tests
presented here, it has been shown to capture the known channels
well. For the current work, our main interest in using ChemDyME
is that it utilizes molecular dynamics to identify chemical reac-
tions (coupled with the TSCDS algorithm used here). We can also
run ChemDyME using the same PM6 level of theory from Scine
Sparrow.53 The main difference then between the user generated
iMD-VR results in the current work and those from ChemDyME

FIG. 4. Two example saddle points only
found with the PM6 level of theory. They
correspond to the OH transfer from one
carbon to another (left) and H2 loss
(right).
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TABLE I. New saddle points discovered from the analysis of the user test results.

Reactant Product CCSD(T)/cc-pVTZ energy relative to OH + propyne (kcal mol−1)

20.52

31.05

35.29

36.19

37.27

42.06

42.08

46.36

is that in the current case, the molecular dynamics trajectories are
biased by humans, whereas in the ChemDyME case, an approach
called “Boxed Molecular Dynamics in Energy” (BXDE)62 is used.
Since it has already been demonstrated independently that both
methods capture the important chemistry, here, we instead wish to
focus on the differing dynamical behavior between algorithmically
biased MD and human biased MD. The input for the ChemDyME
simulations is given in Sec. S4 of the supplementary material.

One way to visualize the space covered by an MD trajectory
is through using dimensionality reduction techniques to extract the
salient features that change over the course of the trajectory. Recent
work by Hare et al.63 presented the PathReducer code for exactly this
type of analysis.

Briefly, PathReducer generates a set of new principal coor-
dinates, each comprising a linear combination of interatomic dis-
tances within the system, in a manner designed to capture the max-
imum amount of structural variance with the fewest coordinates.

The general form of these new principal coordinates, is shown in
the following equation:

PC =∑N
i,j,i≠jCijdij, (3)

where N is the number of atoms in the system, Cij are the scalar
coefficients, dij is the interatomic distance between the atoms I and
j, and indices I and j run over the atoms of the system. To visual-
ize the space covered by both the user studies and the ChemDyME
run, we combined the trajectory frames from each and used the
PathReducer code to capture as much of the variance in the chemical
structure as possible using three degrees of freedom. This approach
maps the Cartesian coordinates of each frame in the trajectory onto
the three principal coordinates, allowing visualization of what would
otherwise be a high dimensional dataset.

Figure 5 shows the points from both the user test trajecto-
ries and the ChemDyME trajectories mapped onto this PC space,
and it is immediately apparent that the coverage of the user tests
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FIG. 5. Reduced dimensional space for
trajectory frames from both user study 3
and a ChemDyME run. Cyan represents
the points from ChemDyME, and orange
represents the points from the user test.

in terms of changes in molecular geometry is much larger than in
the ChemDyME case. In the user tests, “players” often discovered
dissociation pathways and there were frequently two or more molec-
ular fragments in the system at a given time. Conversely, for the
ChemDyME trajectories, once the initial OH + propyne association
has occurred, the chemistry sampled is predominantly unimolec-
ular and any dissociative events are terminated not long after the
bond breaking event occurs. The large space covered by the user test
reflects the large internuclear separations that occur with molecular
fragmentation, and the “tendrils” reaching out into different regions
of PC space correspond to different dissociative chains discovered
by different users.

The amount of chemical space coverage from the user test
studies can be framed as a difference in scope between the user tests
and the literature and ChemDyME studies. Although the Kinbot
and ChemDyME explorations are formally studying the C3H5O
atomic space, in reality, the search is confined to those areas of
space, which are energetically or kinetically viable, starting from
the OH + propyne (and OH + allene in the Kinbot case) moieties.
In this regard, they are comprehensively sampling a valley in the
full C3H5O space bounded by regions of high potential energy. In
the case of the user tests, “players” were able to input sufficient
energy to escape this OH + propyne valley and explore other valleys
corresponding to alternate C3H5O chemistries. Thus, while the
reaction game may miss some of the low energy OH + propyne

FIG. 6. Reduced dimension trajectories for the bimolecular association reaction
P to W11. The reactant and product geometries are shown near their corre-
sponding regions of PC space. Trajectories on the blue/green spectrum are from
ChemDyME, and trajectories on the Red/Orange spectrum are from user test 3.
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reactions, as a tool for exploring wider chemical space, it has many
advantages.

Given the observations in Fig. 5, it is perhaps more informative
to compare ChemDyME and the user tests for specific reactions. We
have chosen two reactions: a bimolecular association (P to W11 in
Kinbot nomenclature) and a unimolecular hydrogen transfer (W11
to W10 in Kinbot nomenclature). For each reaction, corresponding
trajectories were taken from ChemDyME and the user studies and
PathReducer was used to perform a dimensionality reduction. For
the dimensionality reduction, only the heavy atoms and the H of
the OH moiety were considered since the other hydrogens do not
participate in either reaction.

Starting with the bimolecular association, a total of eight tra-
jectories were combined, four from the user tests and four from
ChemDyME, and PathReducer was used to generate two PCs cap-
turing 0.99 of the structural variance of the fully dimensional trajec-
tories. Figure 6 maps the eight different reactive trajectories onto the
PC space. One thing to note in regard to Fig. 6 is the fact that all
ChemDyME trajectories start from the same orientation and inter-
molecular distance of the OH and propyne fragments, while the user
test trajectories exhibit a variety of starting coordinates due to the
random way in which the two fragments are spawned in the user

tests. This accounts for the variation in starting position in the user
test trajectories.

An investigation of the terms of the linear combination of
interatomic distances for PC1 and PC2 (Tables S3 and S4) of the
supplementary material shows that PC1 is dominated by distances
between the O and H atoms of the OH radical and the CH3 group
of the propyne, whereas PC2 has large contributions from inter-
atomic distances between the O and H atoms of the OH and ter-
minal H’s on both ends of the propyne. This means that changes
in PC1 are almost exclusively related to the intermolecular dis-
tance between OH and propyne, whereas PC2 is more sensitive
to the angle of the OH moiety relative to the carbon chain in the
propyne.

Considering Fig. 6, the ChemDyME trajectories show gradual
changes in PC2 across the course of the reaction representative of
a relatively straight association path with little need to reorient the
two moieties. On the other hand, the user test trajectories show a
rapid (smooth lines with little sign of oscillations from molecular
vibrations) reduction in the intermolecular distance between frag-
ments followed by some fine tuning of the approach angle, signified
by the changes in the PC2 coordinate at lower values of PC1. This
observation is supported by observing the length of the user and

FIG. 7. Reduced dimension trajecto-
ries for the hydrogen reaction W11 to
W10. The reactant and product geome-
tries are shown near their correspond-
ing regions of PC space. Trajecto-
ries on the blue/green spectrum are
from ChemDyME, and trajectories on
the red/orange spectrum are from user
test 3.
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ChemDyME bimolecular trajectories. The ChemDyME trajectories
take an average of 2570 ± 300 (at the 2σ level) femtoseconds to react
whereas the user test trajectories take an average of 1340 ± 730 fs,
indicating that users in VR were able to perform the bimolecular
reaction more quickly.

Turning to the isomerization reaction, a total of eight trajecto-
ries were used (four from the user tests and four from ChemDyME).
For ease of visualization, the stable reactant and product geometries
were added to either end of each reaction path such that all trajec-
tories started and ended at the same point. In this case, three PCs
were obtained from pathReducer, which together capture 0.84 of the
total variance of the fully dimensional trajectories. These trajecto-
ries are shown in Fig. 7, and the structure of the saddle point for
this reaction is projected onto PC space (marked by a purple
circle).

The first thing to consider is the red trajectory from the user
tests. In this trajectory, the user almost fully dissociates the hydroxyl
hydrogen before reattaching it to the correct carbon in an almost
“roaming” like manner. This trajectory follows a very different path
to the others, and PC2 primarily differentiates this trajectory from
the others. The other trajectories are more closely clustered around
the saddled point structure marked in purple, although the user test
trajectories stretch further from this structure at lower values of PC1
and PC3. In this case, the reaction time for the user test trajec-
tory is more than three times larger than all the other trajectories
with the user taking 3700 fs to perform the reaction. Discounting
this trajectory, the average reaction time for the user tests and the
ChemDyME trajectories agree well with values of 840 ± 520 and 820
± 90, respectively.

Figures 6 and 7 combined show some interesting differences
between the human-guided behavior and computer biased MD. In
the bimolecular case in particular, the bias in the ChemDyME trajec-
tories is shown to be more “gentle” with oscillatory behavior being
observed along the trajectories as the molecule vibrates naturally on
the way toward reaction. Conversely, in the human biased trajec-
tories, the points at which a force is applied are often very visible
in the reduced dimensional trajectories, signified by a very rapid
change in PC coordinates in a short number of time frames. This
behavior was shown to be particularly efficient at rapidly draw-
ing separate fragments together before fine tuning the association
path. This could motivate the use of mixed time step trajectories for
association reactions where large MD time steps are used at large
internuclear separations and the time step is reduced as the moieties
approach.

V. CONCLUSIONS
In this work, we leverage the interactive molecular dynamics

approach in the Narupa software to design a new crowd sourcing
platform to gather data from players in VR from which we explore
chemical networks. There are two strands to this work. First, we
demonstrate that analyzed data from “players” in VR capture the
important parts of a known benchmark network. Second, we com-
pare the human biased molecular dynamics from these user tests
with algorithmically biased MD and find key distinctions between
the two strategies employed, particularly in the case of bimolecular
reaction.

Considering the first of these strands, after refinement of the
reaction game over three separate sets of user tests, we demonstrate
that the final set of user tests is extremely comprehensive in its sam-
pling of a well-studied combustion system, finding all “apart from
four” of the known reactions. In addition, data from the user tests
reveal many new higher energy pathways, which do not appear in
either of the two benchmark studies we have chosen to compare
against. While these new pathways may have been found and dis-
counted by the automated, Kinbot, study, they are not explored
in the Fitzpatrick study, which includes reactions with barriers in
a similar energy range. It is also worth noting that being based
on molecular dynamics, the user studies are capable of observing
dynamical behavior that approaches based on saddle point searches
might miss. These three findings suggest that the reaction game pre-
sented here is a valuable addition to the array of existing mechanism
generation approaches. Given the small system and the comprehen-
sive nature of the Kinbot study, it is likely that all of the lowest energy
pathways have already been found, precluding the user studies from
finding new reactions in this energy range. However, the data gath-
ered by users demonstrate a particularly extensive exploration of
chemical space, and this coupled with the relative central processing
unit (CPU) efficiency of user biased dynamics (as discussed below)
gives us hope that this approach will scale well to larger and less well
understood systems.

Turning to the second strand, we have compared the raw, user
generated molecular trajectory data with reactive trajectories from
automated calculations in the ChemDyME code. By visualizing the
raw trajectory data in a reduced dimensional space, we observe that
the user tests explore a much larger area of chemical space than
the ChemDyME calculations particularly with respect to molecu-
lar fragmentation. Considering a specific bimolecular reaction from
the C3H5O system, we observe very distinct strategies employed by
the differing algorithmic and human biases to the MD. In the user
case, it is observed that the two molecular fragments were pulled
together rapidly in contrast to the more gentle, oscillatory associa-
tion observed in the algorithmic case. This observation is supported
by the fact that the human biased trajectories reacted significantly
faster than those from ChemDyME.

In summary, this work demonstrates that an iMD-VR based
reaction game is an effective tool for mechanism discovery that
both captures known chemistry and has the capability of discov-
ering novel reactions. We also highlight key strategic differences
between the iMD-VR approach and a popular algorithmically accel-
erated MD approach. It is hoped that more data will allow these
differences to be examined further in the future. One limitation of
this approach is that running these experiments at home requires
(a) a computer that is powerful enough to run molecular dynamics
and VR simultaneously and (b) expertise in setting up and running
molecular dynamics within a Python environment. Understandably,
this could create a barrier to entry for the typical end-user. In the
future, we aim to address this with cloud-hosting of simulations; in
practice, users need to only open the Narupa iMD app and connect
to an IP address, greatly streamlining the process of starting and run-
ning an IMD-VR simulation. The 18 users in the final set of tests only
spent a cumulative 4.5 h in VR, and with the increasing home owner-
ship of VR capable hardware, it is hoped that rolling out this reaction
game framework to the cloud could gather substantially more user
participation.

J. Chem. Phys. 155, 154106 (2021); doi: 10.1063/5.0062517 155, 154106-10

© Author(s) 2021

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0062517/14727751/154106_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Alongside this cloud based roll out, there are many further
refinements to be made to the UI elements to make the game as
engaging as possible. In particular, improvements in the real-time
analysis of reaction pathways would both improve the scoring mech-
anism and allow players to visualize the reaction network that they
have created. With ongoing UI development and the distributed
nature of the Narupa cloud-based infrastructure, we hope in the
future to leverage the large community of citizen scientists in order
to roll out this reaction finding the framework described here as a
more complete reaction finding tool.

SUPPLEMENTARY MATERIAL

See the supplementary material for the tutorial video shown to
all participants of the user tests, two videos showing examples of pos-
sible dynamical behavior in the user test trajectories, xyz files with
all user generated trajectory data, a document with more detailed
information on the initial user test results and the dimensionality
reduction calculations.
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