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A new automated analysis procedure designed to

overcome limitations of the traditional thrust line

analysis method for masonry gravity structures

is presented. The procedure, termed thrust layout

optimization (TLO), is capable of automatically

identifying admissible thrust lines in masonry gravity

structures comprising general arrangements of

masonry blocks. The procedure employs a modified

truss layout optimization with transmissible loads

formulation, which means that an initial thrust line

layout does not need to be specified in advance.

Highly visual output is generated, allowing areas

where tensile strength has been implicitly assumed

to be clearly identified, which is beyond the scope of

traditional thrust line analysis. Also, sliding failures

can be modelled without difficulty. Finally, examples

are used to demonstrate the efficacy of the TLO

procedure; these show that thrust line bifurcations

can be automatically identified in problems involving

openings, and that there is no need to estimate the

ineffective area in buttress wall problems, both issues

for the traditional thrust line analysis method.

1. Introduction
Traditional load-bearing masonry structures have been

used for millennia in construction, ranging in scale

from individual dwelling houses to viaducts and

cathedrals. Many of these structures have considerable

historic value, and, to ensure they remain safe and

2023 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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fit for purpose, effective assessment methods are required [1,2]. The current climate emergency

is also leading to renewed interest in stone masonry as a low embodied carbon means of

construction [3,4] and this also makes it important that these structures are not needlessly

demolished and replaced, at considerable cost to the environment.

To confirm the stability of masonry gravity structures, thrust line methods have been used

since at least the time of Poleni [5]. As first pointed out by Hooke [6], ‘as hangs the flexible line,

so but inverted will stand the rigid arch’. This suggests that if a line of thrust can be found that

lies entirely within the thickness of a masonry arch then the structure will be stable (neglecting

the possibility for sliding failure or material crushing). This observation led to the development

of the thrust line method, which has also been widely used in design, perhaps most famously by

Gaudi when designing the Colònia Güell church near Barcelona [5]. In this case, a geometrically

complex physical cable-net model was constructed to ensure the network of supports, ribs and

vaults forming the building were appropriately proportioned to ensure stability.

More recently, computer-based methods have been used to assess the stability of masonry

constructions. Although finite-element analysis methods have proved popular in a wide range

of engineering disciplines, traditional linear elastic finite-element analysis is of limited use in the

case of traditional masonry gravity structures, principally due to the typically minimal tensile

stresses that can safely be sustained by masonry materials. Conversely, nonlinear finite-element

methods, although powerful, are generally too computationally expensive and demanding of

operator expertise for routine use. Similarly, although discrete element [7] and non-smooth

contact dynamics (NSCD) methods [8] can be applied to masonry problems, the iterative

solution procedure and requirement for the use of small timesteps makes them comparatively

computationally expensive when a static analysis is involved.

Thus limit analysis approaches have proved popular, principally due to their ability to rapidly

and directly analyse the collapse limit state. Building on the work of Kooharian [9] and Heyman

[10], Livesley [11] proposed a rigid block limit analysis method, later extended by workers such

as Ferris & Tin-Loi [12], Orduna & Lourenco [13], Gilbert et al. [14] and Nodargi et al. [15] to

treat problems involving non-associative sliding friction between blocks. Although usually used

to identify instantaneous collapse mechanisms, rigid block analysis problems involving gross

displacements can also be handled (e.g. [16,17]).

However, rigid block methods require a masonry construction to be split either into constituent

units, of which there are usually many, or into macro-blocks (e.g. [18]) to approximately

represent these. In the latter case, since failure planes must coincide with the interfaces between

blocks, there is a danger of overestimating the stability of a given masonry construction

when a number of physical units are represented by a single macro block. Also, particularly

when treating complex geometries, it is not straightforward to infer a continuous line of

thrust from the output—e.g. in the recent contribution by Iannuzzo et al. [17] the lines are

discontinuous.

As an alternative to explicitly discretizing a masonry structure into constituent blocks, in recent

years there has been a resurgence in interest in thrust line methods, now taking advantage of

various computer-based implementations. Notably, building on work by O’Dwyer [19], Block &

Ochsendorf [20] developed the thrust network analysis (TNA) procedure to provide a rapid

means of analysing and designing three-dimensional vaulted masonry structures. Using TNA,

the geometry of a predefined network of thrust lines is adjusted until a stable solution is found, in

which the thrust lines lie entirely within the masonry. TNA can be used to evaluate the safety of

masonry structures by computing a geometric safety factor, or, by considering limiting horizontal

thrusts at the supports, a ‘stability domain’ that describes admissible stress states [21]. However,

the dependence of the results obtained on the topology of the initially defined thrust network

remains an issue.

However, the thrust line method, whether undertaken by hand or via computer, has a number

of inherent limitations. For example, to enable the self-weight of masonry lying below a thrust-line

to be mobilized (i.e. be effectively ‘lifted up’), it is implicitly assumed that the masonry possesses

a degree of tensile resistance, but this is not necessarily transparent to the user. Consequently, to
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avoid non-conservative outcomes, an inclined crack may need to be introduced when modelling

masonry buttresses [22–24], and results are also sensitive to the way in which the masonry is

discretized into blocks [25], something that is not always obvious to users. Furthermore, the usual

assumption that the masonry possesses unlimited friction capacity can lead to non-conservative

predictions of stability; e.g. even though a line of thrust can be identified that fits entirely

within the masonry, sliding failure at the head of a flying buttress may lead to premature failure

[26,27]. Premature, friction-induced, failure may also arise in multi-ring arches [28]. Finally, when

complex geometries are involved (e.g. consider a gothic cathedral), it is often necessary to analyse

parts of the structure separately and to then combine these to check overall stability, a somewhat

cumbersome process [22].

In this paper, a new computational means of identifying admissible thrust lines in masonry

gravity structures is proposed to overcome the aforementioned issues. The proposed procedure

takes advantage of powerful layout (or ‘topology’) optimization techniques that have already

been successfully used to automate the so-called ‘strut and tie’ method of design for reinforced

concrete structures, where the goal is to identify tensile and compressive force paths in deep

beams and other elements, enabling efficient layouts of tensile reinforcement to be identified

[29]. In a traditional unreinforced masonry structure the goal is somewhat different, with the

priority being to identify compressive force paths, with self-weight effects handled appropriately.

Topology optimization has been little used previously in the field of masonry structures, with

a rare example being usage in [30] to identify regions of compression for use in subsequent

nonlinear finite-element pushover analyses of masonry walls. In the present contribution, it will

be shown that a formulation employing truss layout optimization [31,32], used in tandem with

transmissible loads [33,34], can be built on to directly identify compressive force paths and to

establish margins of safety. It will be shown that this requires the introduction of interfaces to

represent weak masonry joints, thereby allowing both tensile and sliding failures to be modelled,

as well as changes to the optimization objective function.

The present paper is organized as follows. In §2, the development of the thrust layout

optimization (TLO) formulation is outlined, with this then applied to a wide range of example

problems in §3; in §4, conclusions are drawn.

2. Thrust layout optimization method

(a) Standard ground structure layout optimization procedure

The standard ‘ground structure’ layout optimization method was originally developed to identify

optimal (minimum volume) truss structures [31,32,35–37]. The process involves the steps of:

(i) specifying a design domain and boundary conditions—i.e. loading and support conditions

(figure 1a), (ii) positioning nodes across the design domain, then interlinking these with potential

members to form a ‘ground structure’ (figure 1b), and (iii) using linear programming (LP) to find

the optimal structure to carry the applied loads (figure 1c). (Note that the basic LO formulation

may result in structures that are in unstable equilibrium with the applied loads, e.g. see the

structure shown in figure 1c.)

In terms of mathematics, for a problem involving a ground structure comprising n nodes and

m potential members, the associated underlying LP problem formulation that involves finding

the minimum volume truss structure (or ‘truss-like’ flow of forces) can be written as follows:

min
a,q

V = lTa, (2.1a)

s.t. Bq = f, (2.1b)

− σca ≤ q ≤ σta (2.1c)

and a ≥ 0, (2.1d)
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nodes

links

(b) 

P

W

b/2

(a) 

h

b/2

Plow

(c)

Phigh

(d)

Figure 1. Standard ‘ground structure’ truss layout optimization (LO) procedure: (a) specified design domain, loading and

support conditions; (b) nodes linked by potential members, creating a ‘ground structure’; (c) optimal (minimum volume)

layout identified by solving the underlying layout optimization problem; (d) optimal solution when a higher horizontal load

is applied, involving the need for a support reaction that would be inadmissible if tension could not be transmitted to the

support. Optimized truss layouts shown for values of Plow, Phigh,W, h, b,σt andσc of 1, 2, 4, 2, 1, 1 and 100, respectively. Tension

and compression forces shown in red and blue, respectively, with line thickness proportional to force magnitude.

where V is the volume of the truss structure; l = [l1, l2, . . . , lm]T is a vector of ground

structure member lengths and a = [a1, a2, . . . , am]T is a vector of member cross-sectional areas.

Force equilibrium is imposed at nodes by equation (2.1b), where B is a 2n × m matrix

containing direction cosines, q = [q1, q2, . . . , qm]T is a vector of internal member forces and f =

[f1x, f1y, f2x, f2y, . . . , fnx, fny]T is a vector of external applied loads. Yield constraints are enforced for

each member by equation (2.1c), where σt and σc are limiting tensile and compressive stresses,

respectively. Truss members are constrained to have zero or positive cross-sectional area in

equation (2.1d). Since the objective function equation (2.1a) and all constraints are linear with

respect to the optimization variables—member areas a and internal forces q—this is therefore a

LP problem that can be solved efficiently using modern LP solvers.

However, the problem set-up shown in figure 1 can alternatively be interpreted as a means of

determining an admissible flow of forces in a loaded masonry gravity structure, here comprising

a single stone block of height h, breadth b and weight W, resting on a rough horizontal base. In this

case, the design domain in figure 1a now represents the extent of the block, with the self-weight

of the block applied as a downward load W at its centre of mass. A horizontal external load P is

applied at the top left corner. The generated minimum volume truss structure shown in figure 1c

now corresponds to an admissible pattern of internal forces, where in this case the horizontal

load Plow is (just) capable of overturning the block. Application of a larger horizontal load, Phigh,

corresponds to a solution involving support reactions that cannot be sustained by the masonry,

assuming that the interface at the base of the block possesses zero tensile strength (figure 1d). This

basic conceptual model will be developed further in subsequent sections of the present paper.

(b) Interface nodes representing weak masonry bonds

In the standard ground structure layout optimization solution shown in figure 1d, the node at

the bottom left of the domain is supported and so can sustain an upward force; similarly the

node at the bottom right of the domain can sustain a downward force. However, if the desire is

to represent the stability of a stone block, as considered at the end of the previous section, the

upward (tensile) force present at the left support cannot be sustained, assuming that the interface

between the base of this block and the support cannot resist tension. To appropriately represent

the required behaviour at block-to-block and block-to-support interfaces, interface nodes can now

be introduced.
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Interface nodes share the same physical location at a weak interface, but with each being

associated with one of the adjacent blocks. This gives rise to node pairs that are each connected

via a normal force qn and a shear force qs, respectively, aligned perpendicular and parallel to

the interface. The weak interface is enforced by constraining the normal force to always be

compressive, equation (2.2b), and the shear force to be limited by the normal force and friction

coefficient between blocks at the interface, equation (2.2c).

To incorporate interfaces, equation (2.1) of the mathematical formulation is modified by

replacing equation (2.1b) with the following equilibrium and yield constraints

Bq + Bnqn + Bsqs = f, (2.2a)

qn ≤ 0 (2.2b)

and µqn ≤ qs ≤ −µqn, (2.2c)

where in equation (2.2a) interface equilibrium matrices Bn and Bs are introduced, containing

direction cosines on the basis of notional zero-length members oriented, respectively,

perpendicular and parallel to the corresponding interface. Both matrices are of size 2n × p, where

p is the number of interface node pairs. Also qn = [qn,1, qn,2, . . . , qn,p]T is the interface normal force

vector and qs = [qs,1, qs,2, . . . , qs,p]T is the interface shear force vector. Finally, µ is the static friction

coefficient for block-to-block and block-to-support interfaces.

(c) Transmissible self-weight loads

Returning to the example shown in figure 1, when this was interpreted as a single block gravity

structure analysis problem, the self-weight of the block was assumed to be applied at the centre

of mass, leading to somewhat convoluted patterns of internal forces being identified. However,

when constructing a funicular polygon using the traditional thrust line method, self-weight loads

are allowed to move along their lines of action, permitting identification of simpler, compression-

only, patterns of internal forces. This is something that can be reproduced in layout optimization

by the use of ‘transmissible’ loads [33,34,38]. These are loads that are shared across multiple nodes

lying along a given vertical line of action when self-weight loads are involved.

To illustrate the concept, in figure 2a, the self-weight in the single stone block example is now

modelled using two vertical strips of material. The self-weight of each strip can be considered as

a transmissible load, with this shared between nodes lying along its line of action (figure 2a,b),

as opposed to being fixed at its centre of mass (as in figure 1). As the number of strips (or

transmissible load lines) is increased, it is evident that the solution will tend towards a traditional

thrust line solution—see figure 2c, where here 25 transmissible load lines have been employed,

with σt and σc set, respectively, to 1 and 100 to identify a thrust layout where compressive forces

are dominant.

In comparison to constraint equation (2.1b), which was used when generating figure 1,

introduction of transmissible self-weight loads w requires these to be separated from externally

applied loads f in the equilibrium equation—see equation (2.3a) below. Also, the self-weight

loading applied to a given node (denoted w) now needs to be represented by an optimization

variable, with the total self-weight load associated with each transmissible load group (w̄) fixed

for a given discretization by constraint equation (2.3b). Finally, constraint equation (2.3c) is also

needed in order to avoid spurious solutions from being identified (see [34] for an explanation of

why this is necessary):

Bq − w = f, (2.3a)

H w = w̄ (2.3b)

and w ≥ 0, (2.3c)

where w = [0, w1, 0, w2, . . . , 0, wn]T is the nodal self-weight load vector. Note that as self-weight

loads are applied in the vertical direction, only vertical equilibrium constraints are affected. Also,
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P

(a)

W

2
W

2

(b) (c)

Figure 2. Including self-weight via transmissible loads: (a) discretization of the self-weight of a notional masonry block via

two vertical strips; (b) positions of nodes along transmissible load lines and the resulting optimal force flow; (c) optimal force

flow obtained using a finer resolution—with block self-weight now discretized via 25 transmissible load lines and using a

post-processing geometry optimization rationalization step to improve clarity (after [39]).

w̄ = [w̄1, w̄2, . . . , w̄g]T is the load group vector, where g is the number of transmissible self-weight

load groups in the problem and w̄i is the total load applied in transmissible load group i. Binary

matrix H specifies which nodal load components in w belong to which load group in w̄, where H

is of size g × 2n and is given by

Hij =

{

1 if load component j exists in load group i

0 otherwise.
. (2.4)

(d) Proposed thrust layout optimization procedure

The developments described in the preceding sections provide the basic foundations for a new

analysis method for masonry gravity structures, henceforth termed thrust layout optimization

(TLO). The method builds on the standard ground structure truss layout optimization method by

(i) introducing interface nodes to represent weak interfaces and (ii) representing self-weight loads

as transmissible loads. However, several further developments are required to realize the TLO

procedure; these include changes to the optimization objective function, and are described in this

section.

As with the standard truss layout optimization procedure, TLO first requires that the extent of

the problem domain and the nature of loading and boundary conditions are prescribed (figure 3a).

However, in this case, the problem domain is bounded by the outline of the masonry gravity

structure, and the presence of weak interfaces between blocks needs to be identified. Nodes are

generated in both the interior and at boundaries of blocks, while interfaces are populated with

interface nodes. Links are created between all nodes in the same block (figure 3b). These links,

representing potential internal force paths, are allowed to take any compression force, but the

maximum tensile force is limited by a value qt
max, to reflect the non-zero, albeit usually relatively

low, tensile strength of masonry blocks. Self-weight loading is applied as transmissible loads,

with the line of action constrained to lie within any given block (figure 3c). This prevents the

self-weight of a given block being ‘lifted up’ across a weak interface.

When assessing the stability of a masonry gravity structure, a common goal is to seek the

magnitude of applied load that can be applied before collapse occurs. To achieve this, rather

than seeking the minimum volume truss associated with equation (2.1), the objective of the

optimization needs to be changed to one of finding the collapse load factor (the multiplier on a

given load required to trigger failure). This can be achieved by maximizing the load factor subject

to equilibrium and yield constraints, using the defined ground structure and set of transmissible
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(g)( f )(e)

(d)

P

(a) (b)

qshear

qnormal 

internal links (q)

(c)

W1

W2

Figure 3. Application of proposed thrust layout optimization (TLO) procedure to a simple two block problem: (a) geometry

of blocks and location of external load P and support; (b) problem discretized via nodes and links; (c) masonry self-weight

represented by transmissible loads W1 and W2; (d) collapse load and thrust layout found by solving the associated layout

optimization problem; (e) thrust layout obtained when using a finer resolution nodal grid (as indicated); (f ) thrust layout

obtained after also performing a post-processing geometry optimization rationalization step, and (g) layout with transmissible

self-weight vectors also plotted—compression and tensile transmissible self-weight vectors are shown in blue and red

respectively, with line thicknesses representing the magnitude of the forces.

self-weight loads created—resulting in the modified formulation given in equation (2.5)

below:

max
q,qn,qs,w,λ

λ, (2.5a)

s.t. Bq + Bnqn + Bsqs − w − λf = 0, (2.5b)

H w = w̄, (2.5c)

q ≤ qt
max1, (2.5d)

qn ≤ 0, (2.5e)

µqn ≤ qs ≤ −µqn, (2.5f )

w ≥ 0 (2.5g)

and λ ≥ 0, (2.5h)

where λ is the load factor on the externally applied loads, and other terms are as defined

previously. Thus the factor on externally applied loads is maximized under the constraints of

(i) static equilibrium at nodes—equations (2.5b) and (2.5c), (ii) a maximum tensile force allowed

within blocks, equation (2.5d), with no tensile forces allowed across weak interfaces, equation

(2.5e), and (iii) interface friction force limited by friction coefficient, equation (2.5f ). The linear

nature of the objective function and constraints means that the problem can be solved using LP.
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Finally, although solving equation (2.5) will determine the collapse load factor, the associated

solution may include spurious self-equilibriating force networks, since these are not explicitly

penalized in equation (2.5). This will in turn lead to thrust layouts that are not visually clear. To

address this, a volume minimization post-processing step can be performed, with the computed

load factor constrained to lie at the value found in the load factor evaluation step. This is carried

out using the basic layout optimization formulation presented in equation (2.1), with interface

nodes, equation (2.2), and transmissible self-weights, equation (2.3), now also included in the

model. Outcomes from the process are shown in (figure 3d,e). A further post-processing geometry

optimization rationalization step (after [39]) can help further improve the visual clarity of the

force flow; see figure 3f. Furthermore, in addition to the thrust lines obtained via the TLO process

(shown in figure 3d,e, f ), the vertical self-weight vectors hidden by the assumed transmissibility

of self-weight loads can also be optionally plotted to provide additional visual information; see

figure 3g. These transmissible self-weight vectors are force vectors indicating the force in the

notional link required to move the self-weight either up or down from its original position to

where it is transmitted to, the former requiring tensile links and the latter compressive links.

(e) Software implementation

To enable two-dimensional mesh geometries created in a CAD environment to be efficiently

converted into an appropriate data structure for use with the developed TLO procedure, a suitable

digital workflow was developed. Thus the software Rhinoceros [40] was used to prepare the

presented examples, with an export process developed to transfer vertex and face data. The TLO

procedure itself was implemented as a computational algorithm using the Python programming

language [41], making use of the numerical package NumPy [42], geometry package Shapely [43]

and LP solver MOSEK [44].

When working with problems involving large numbers of discrete blocks, it is important

to employ a robust and efficient data structure for: (i) tracking connectivity between vertices,

edges, faces and links, (ii) storing information on loads, degrees-of-freedom and internal forces as

properties, (iii) performing efficient algorithmic operations and manipulations on the underlying

geometry, and (iv) saving, loading and editing instances of the data structure through the

optimization pipeline. Thus for data handling, a hybrid data structure was created to facilitate

storing of information and performing operations on geometric data through vertices, edges, faces

and links, where the links are the straight lines connecting vertices. Thus the general purpose

open-source half-edge data structure OpenMesh [45] was used for the management of vertices,

edges and faces, and NetworkX [46] was used for handling link connectivity.

(f) Verification of method

To verify the proposed method, two simple example problems are now considered: (i) a simple

two block problem (figure 4); (ii) a semicircular arch problem (figure 5).

Considering first the two block problem shown in figure 4, this comprises a solid block stacked

on a larger solid block. The stack of blocks is subjected to a horizontal point load at the top left

corner as indicated. Two cases are considered: (i) assuming the interfaces possess infinite friction

capacity (figure 4a,b), and (ii) that the friction coefficient at the interfaces is 0.25 (figure 4c,d). In the

former case the failure load is found to be 18, with the top block overturning (figure 4a,b), while

in the latter case the failure load is found to be 15, with the top block sliding (figure 4c,d).

The correctness of these values can be verified via simple analytical calculations or rigid

block analysis software, confirming the ability of TLO to correctly determine the failure load

for problems with or without frictional failure. Here, the LimitState:GEO software package [47],

which implements the discontinuity layout optimization method [48,49], was used to perform

the rigid block analysis calculations. For the overturning block case, the TLO thrust layout shows

forces passing through the bottom right corner of the top block (figure 4a), coinciding with where

the rigid block model indicates overturning failure of this block occurs (figure 4b). By contrast, in
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5

3

5

5

18 15 18 15 

(a) (b) (c) (d)

Figure 4. Two block problem—influence of friction: (a) TLO solution assuming infinite friction; (b) corresponding rigid block

mechanism; (c) TLO solution assuming coefficient of friction of 0.25; (d) corresponding rigid block mechanism (blocks have

width of 2 units and unit weight of 2 units; thrust layouts obtained using internal and boundary node spacings of 0.2 and 0.1

units, respectively; layouts then rationalized via geometry optimization post-processing step, with transmissible load vectors

also plotted; rigid block solutions obtained independently using LimitState:GEO software [47]).

m
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t R = 10 m
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4

0.3 0.5

Gilbert et al. [14]

thrust layout optimization

0.4 0.6 0.7

Figure 5. Semicircular arch problem: minimum arch thickness required for stability under self-weight for various coefficient of

friction values, showing agreement between TLO results and those of Gilbert et al. [14] (arch contains 27 voussoirs).

the sliding block case (figure 4c), the thrust line bifurcates and spreads over a region at the block

interface.

Considering next a semicircular arch with a centreline radius (R) of 10 m unit width and

unit density. In this case, the minimum arch thickness t required to carry its self-weight can

be determined for any given friction coefficient by trying a range of different arch thicknesses;

results are shown in figure 5. For friction coefficients higher than 0.395, a minimum arch thickness

ratio (t/R) of 10.68 % was obtained. This matches well with the minimum arch thickness ratio of

10.75 % obtained by Ocshendorf [23], assuming a continuum arch (the difference is because a

continuum arch can fail at any radial plane whereas weak planes were here positioned between

the 27 voussoirs assumed to form the arch). At friction coefficients smaller than 0.31, the minimum

thickness required was found to rise rapidly as the arches undergo sliding failure. By contrast, at

friction coefficients greater than 0.395 failure is due to hinging, with a mixed mode of sliding and

hinging failure in the intermediate range. Across the full range of friction coefficients considered,
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the results obtained using TLO were found to coincide perfectly with the numerical results

obtained previously by Gilbert et al. [14].

(g) Commentary

In his seminal work Heyman [6] presented the funicular polygon (i.e. a graphical static

construction of a hanging chain) as a line of thrust that could be used to check the safety of a

masonry gravity structure; this has subsequently been widely adopted by practising engineers.

However, more recently, it has been pointed out that the funicular polygon may not always

represent a valid thrust line [25,50,51]. The issue stems from the fact that the arrangement of

the interfaces, or joints, between blocks (termed the ‘stereotomy’) is not explicitly considered in

the construction of a funicular polygon. Instead, as demonstrated in [25,52,53], a given arch or

other structure is implicitly taken to be made up of a series of vertical strips of material. This is

likely to lead to incorrect predicted collapse loads, as the importance of stereotomy on the latter

has previously been demonstrated [51,54]. Furthermore, this may lead to situations where a self-

weight load is inadvertently assumed to be transferred upwards across a weak interface, leading

to an overestimated predicted load carrying capacity. By contrast, in the TLO procedure weak

interfaces are explicitly considered, preventing this from occurring. Thus a thrust layout obtained

by TLO can be viewed as a corrected thrust line solution, with the corresponding computed

collapse load converging towards the exact limit load as the numerical discretization is refined.

Also, in a TLO solution, the flow of the principal forces remains clearly evident, with, in the

interests of transparency, transmissible self-weight loads also plottable if required.

Note that in the literature various means of constructing a thrust line are described, leading

to differences in the form of the thrust line itself; see [51,55]. Here, a funicular polygon is used

for this purpose (after Heyman [10]). Of the different forms of thrust line, the funicular polygon

compares well with the thrust layouts described herein, with both providing a clear means of

visualizing force-flows.

3. Examples
A selection of illustrative examples and applications are presented in this section to demonstrate

the efficacy of the proposed TLO method. Results are compared with those from traditional thrust

line and rigid block analysis methods. All computations were performed on a PC employing an

Intel(R) Core(TM) i7-8700 processor running at 3.20 GHz under Microsoft Windows 10. A Python

implementation of the TLO method has been made available to accompany the paper, along with

detailed nodal coordinate and connectivity information for all the example problems described

(see Data accessibility statement). The nodal spacings used to generate the thrust layouts

presented were selected primarily to ensure visual clarity, given that the computed TLO collapse

loads can be observed to be comparatively insensitive to the nodal spacing used, providing a

reasonable number of nodes are used—see results from the parametric study conducted in the

case of Example (iii), which involves a flat arch on stone columns. For the volume minimization

post-processing step of the TLO runs a material strength ratio (σt : σc) of 1 : 100 was set to penalize

the presence of tensile forces. For the range of material strength ratios typically observed for

stone masonry, this has been observed to have little effect on the visualization, i.e. the locations of

tension remain unaffected while the extent of the tension in these areas may vary slightly.

In the case of some examples, traditional thrust line solutions are also presented for

comparative purposes. These are funicular polygons drawn at the point of incipient collapse,

identified using custom written code written in MATLAB R2019b, taking advantage of its

optimization toolbox. Rigid block models were also created for some examples; in this case the

analyses were performed using the commercially available LimitState:GEO software package

[47].

In the case of both the traditional thrust line solutions and the TLO solutions, compressive

and tensile forces are plotted respectively using blue and red lines. In the case of the traditional
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(d)
14.4

(b)

14.4

5

5

1

1

(c)

14.4

5

1

(a)

27.6

3

Figure6. Stackedblockswith voids—solutions obtained via: (a) traditional thrust linemethod, assumingmonolithicmasonry;

(b) traditional thrust line method, only considering upper block; (c) TLO, showing a force flow that is confined to areas where

material is present; (d) rigid block analysis method, showing collapse mechanism only (blocks have width of 2 units and a unit

weight of 2 units; thrust lines obtained using 0.2 unit wide vertical strips; thrust layouts obtained using internal and boundary

node spacings of 0.2 units and qtmax = 0.005; thrust layout rationalized via geometry optimization post-processing step; infinite

friction assumed at interfaces between blocks; note that although the thrust lines in (a) and (b) are qualitatively similar, they

are not identical).

thrust line solutions, thrust lines are plotted with uniform thickness while in the case of the TLO

solutions the line thickness is varied to reflect the magnitude of the forces involved, scaled linearly

from 0.05 at qmin to 1.0 at qmax. In the interests of visual clarity, forces q lower than qmin are not

plotted, with qmin set as 0.001 qmax, and forces below 0.05 qmax plotted in a progressively lighter

colour shade. Finally, in the case of some TLO plots, transmissible load vectors are also plotted; in

this case, the associated line thickness is scaled up by a factor of 5 relative to other force vectors to

ensure these are visible. Finally, the post-processing geometry optimization rationalization step

described in [39] is employed to improve visual clarity as required.

(a) Illustrative examples

Capabilities of the proposed TLO method are first explored via three illustrative examples,

consisting of: (i) stacked blocks with voids, (ii) a segmental arch with and without voids, and

(iii) a flat arch on stone columns.

(i) Stacked blocks with voids

This problem consists of two hollow blocks placed on top of each other, subjected to a horizontal

force at the top left corner of the upper block, as shown in figure 6. The predicted collapse load

and visual representation of internal forces obtained using TLO is compared with those obtainable

using the traditional thrust line and rigid block methods.

Firstly, consider the traditional thrust line analysis solutions shown in figure 6a,b. These

show thrust lines that pass through the internal void, with it not being clear whether these are

admissible—given that Heyman’s safe theorem [10] requires thrust lines to ‘lie wholly within the

masonry’. In the first thrust line solution (figure 6a), the stereotomy of blocks is not considered,

leading to an unrealistically high collapse load estimate of 27.6 units. This arises from ‘lifting

up’ of the lower block across the weak interface between blocks. When this weak interface is

explicitly modelled, e.g. by only considering equilibrium of the upper block, the traditional thrust

line method then yields a more realistic collapse load (of 14.4 units, figure 6b). This can be shown
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to be the exact collapse load for this problem, and is also predicted by the TLO and rigid block

methods (figure 6c,d, respectively).

Considering now the TLO solution (figure 6c), this explicitly respects block stereotomy (by

including no-tension interfaces and allowing transmissibility of self-weight only within blocks),

and also successfully identifies a force flow that remains entirely within the material volume,

passing from the externally applied load through to the supports. The TLO solution also correctly

indicates that some intrinsic tensile strength of the masonry block material needs to be mobilized.

In comparison, although the rigid block limit analysis solution shown in figure 6d depicts the

critical collapse mechanism, no information about the internal distribution of forces within the

structure is provided.

(ii) Segmental arch

The next example involves two segmental arches composed of a number of equally sized

voussoirs, one solid and one including three internal holes positioned on the arch centreline; see

figure 7. Both arches are subjected to an offcentre point load, as indicated. To ensure no sliding

failures occur, a friction coefficient of 1 is assumed.

Firstly, the traditional thrust lines shown in figure 7a and b both lie entirely within the masonry,

not passing through the holes in the case of the structure shown in figure 7b. However, these

correspond to very conservative estimates of collapse load (P of 39.8 kN for the solid arch and

27.6 kN for the arch with holes). By recognizing that the blocks do possess some tensile strength,

the traditional no tension condition can instead be enforced only at interfaces between blocks,

resulting in the thrust line solutions shown in figure 7c and d, which correspond to significantly

higher collapse loads (P of 62.4 kN for the solid arch and 57.4 kN for the arch with holes).

However, the thrust lines no longer lie entirely within the masonry, rendering the status of these

solutions potentially unclear.

Considering now the corresponding TLO solutions, shown in figure 7e and f, the predicted

collapse loads (P of 63.1 kN for the solid arch and 58.1 kN for the arch with holes) are similar

to those obtained via thrust line analysis with the no tension condition enforced only at block

interfaces1, though force flows that remain entirely within the material volume are now clearly

identified. Specifically, areas of the blocks where tensile strength is required are now evident (e.g.

where the traditional thrust lines lie outside the thickness of the arch), and the bifurcation of the

thrust line around one of the internal voids (figure 7f ) now effectively verifies the reasonableness

of allowing the traditional thrust line to pass through this (figure 7d). Thus TLO provides a new,

and potentially extremely valuable, perspective on how forces flow in such structures. Finally,

although the collapse loads predicted via rigid block limit analysis are the same as the TLO

method (compare figure 7e, f with figure 7g,h), no information about the internal distribution of

forces within the structure is provided when using this method.

(iii) Flat arch on stone columns

The next example, involving a flat arch supported by two stone columns, demonstrates that the

collapse load predicted using the thrust line method can be significantly in error, even when the

thrust line is constrained to lie within the thickness of the masonry only at interfaces. The structure

is shown in figure 8 and is made up of five equally sized blocks, plus associated springing blocks.

To ensure no sliding failures occur, a friction coefficient of 1 is assumed.

Firstly, a traditional thrust line analysis solution, with the thrust line lying entirely within the

thickness of the masonry, is shown in figure 8a. However, while this solution appears qualitatively

reasonable, it is evident that the associated collapse load is low, at P = 10.1 kN. When the thrust

line is constrained only to lie within the thickness of the masonry at block interfaces, a higher

associated collapse load, of P = 16.2 kN, is obtained, as shown in figure 8c. However, this is still

1The slight difference between the collapse loads predicted via traditional thrust line analysis (figure 7c,d) and TLO
(figure 7e, f ) is due to the thrust line analysis not considering block stereotomy, instead assuming the arches to be formed
using notional vertical strips [25]. This issue is further explored in (iii), the flat arch on stone columns example.
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P = 58.1 kN

(h)

(a)

(c) (d)

(b)

P = 27.6 kNP = 39.8 kN

arch with holes

thrust line

thrust line

(contained only

at interfaces) 

P = 57.4 kN 

thrust layout

optimization

P = 62.4 kN

P = 63.1 kN

rigid block

method

(g)

R3.2 m0.8 m
10
�

P = 63.1 kN P = 58.1 kN

(e) ( f )

solid arch

Figure 7. Segmental arch—solutions obtained via: (a,b) traditional thrust line method; (c,d) thrust line method with thrust

constrained at block interfaces only; (e,f ) TLO, showing force flows confined to areas where material is present; (g,h) rigid block

method, showing collapsemechanisms only (arch span: 5.80 m, rise 1.85 m, width 0.1 m, unit weight: 25 kN m−3; circular voids

on arch centreline at locations indicated have diameter of 0.35 m; collapse load P in kN applied 0.72 m from left support; thrust

lines obtained assuming self-weight lumped at block centroids; thrust layouts obtained using internal and boundary node

spacings of 0.05 m and qtmax = 250 N; thrust layout tensile force line thickness scaled by a factor of 2 for emphasis).

significantly lower than the predicted collapse load of P = 45.1 kN obtained when using TLO

(figure 8e), with the correctness of this solution verified using the rigid block method (figure 8f ).

The discrepancy in computed collapse loads is a consequence of the thrust line solutions being

represented by funicular polygons, derived by discretizing the structure using vertical strips of

material [25], with here each strip having a width of 0.05 m. These solutions can be reproduced

using the rigid block method by introducing vertical cracks at locations where the thrust line

touches the edges of the masonry; thus the rigid block solution shown in figure 8b corresponds to

the thrust line solution shown in figure 8a. Similarly, when the keystone crack is omitted, the rigid

block solution shown in figure 8d is obtained, corresponding to the less constrained thrust line

solution shown in figure 8c. (The collapse loads shown in figure 8c,d are not exactly the same—

16.191 kN in (c) and 16.171 kN in (d), with the small difference being due to the two sides of the

keystone block being slightly off-vertical.)
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(a) P = 10.1 kN

(c)

(b)

crack introduced

at keystone 

crack introduced

at springing

(d)

(f) P = 45.1 kN

crack introduced

at springing

P = 10.1 kN

(e) P = 45.1 kN

P = 16.2 kN 
P = 16.2 kN

1
.2

 m
0
.6

 m

0.9 m

0.3 m

2.7 m

Figure 8. Flat arch on stone columns—solutions obtained via: (a) traditional thrust line method; (b) rigid block method, after

three extra vertical failure planes added; (c) thrust line method with thrust constrained at block interfaces only; (d) rigid block

method, after two extra vertical failure planes added; (e) TLO, showing force flows confined to areas where material is present

(transmissible self-weight vectors also plotted); (f ) rigid blockmethod,with no extra failure planes added to provide agreement

with TLO solution, since this takes actual block stereotomy into account (all five blocks in the arch have a top breadth of 0.54 m

and a bottom breadth of 0.42 m; a width of 1 m and material unit weight of 25 kN m−3 are assumed; thrust lines obtained

using vertical strips of 0.05 m width; thrust layouts obtained using internal and boundary node spacings of 0.05 and 0.01 m,

respectively, and qtmax = 250 N).

By contrast, when using TLO, weak interfaces are explicitly taken into account, with a limited

amount of tension inside blocks permitted as part of the formulation. While the resulting TLO

solution (figure 8e) includes thick blue lines reminiscent of a traditional thrust line, tensile forces

are now also evident in the keystone and springing blocks, providing an indication as to how

the self-weight of the latter are mobilized. In the keystone block, the thrust layout resembles

the form of the optimal half-wheel truss structure, whereas in each springing block the thrust

layout resembles an optimal Michell cantilever truss structure [56]. In addition, transmissible self-

weight vectors are also shown in figure 8e, making the transmissible load representation of the

self-weight of the masonry clear.

It is also of interest to investigate the sensitivity of the TLO solutions for this example to

both the selected nodal density and the maximum allowed tensile force, qt
max. Thus figure 9

shows how the computed collapse load converges towards the exact value, of P = 45.1 kN, as the
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Figure 9. Flat arch on stone columns: computed collapse load versus nodal density for a range of maximum allowed

tensile force values, qtmax (quoted nodal density is the reciprocal of the internal node spacing; boundary node spacing is

0.2×internal node spacing; values in italics used to generate figure 8e).

nodal density is increased for a range of values of qt
max. It is evident that for higher qt

max values,

convergence occurs at lower nodal densities, with the computed collapse load converging to the

exact collapse load at a very low nodal density when qt
max = 1000 N.

As an alternative to considering the maximum tensile force, qt
max, the thickness of material

required to carry this can instead be considered, calculated assuming the masonry blocks possess

finite but low tensile strength, here taken as 1 N mm−2. Thus figure 10 shows how the computed

collapse load varies with required stressed thickness, for a range of different nodal densities. It

is evident that a very low required stressed thickness of 0.25 mm (equivalent to qt
max = 250 N)

is required in order for the solution to converge to the exact rigid block collapse load in this

case. This stressed thickness is several orders of magnitude smaller than the physical dimensions

of the structure, and is well within the limits of what could safely be carried by most stone

materials. Also, when even lower maximum stressed thickness values are used (e.g. 10−5 mm,

equivalent to qt
max = 0.01 N) it is evident from figure 10 that the solutions lie in close proximity

to the compression-only thrust line solution of figure 8a. (Note though that the compression-only

TLO solution will at the limit lie below the corresponding thrust line method solution. This is

because the transmissibility of the block self-weight is constrained at interfaces when using TLO,

such that ‘pulling up’ the weight of lower blocks to the main part of the thrust line will require a

finite, albeit small, tensile capacity.)

Finally, the CPU times required to obtain TLO solutions for a range of nodal densities are

summarized in table 1, with the associated number of links and nodal interface pairs also shown.

Note that internal nodes are positioned on a Cartesian grid while boundary nodes are uniformly

spaced though with extra boundary nodes added to model load transmissibility. It has been

observed that although the exact collapse load can be obtained using a coarse nodal density, the

use of finer nodal densities often allows the flow of forces to be more clearly visualized, albeit at

higher computational cost.

(b) Applications

The TLO method is now applied to two rather more practical masonry structures, namely (i) a

two-ring arch, and (ii) a masonry buttress wall.

(i) Two-ring arch

This examples involves a two-ring brickwork arch rib load tested to collapse in the laboratory by

Melbourne & Gilbert [28]. The specific arch rib considered here incorporated a continuous sand

joint between the two rings of brickwork to replicate a structure in the field with debonded arch
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Figure 10. Flat arch on stone columns: computed collapse load versus stressed thickness, for a range of nodal densities (stressed

thickness indicated based on an assumed tensile strength of 1 N mm−2; values in italics used to generate figure 8e).

Table 1. Flat arch on stone columns: CPU time for solutions at different nodal densities (nodal density with respect to internal

nodes; boundary node spacing is×0.2 internal node spacing; qtmax of 250 N ; values in italics used in figure 8e).

CPU time (s)a

nodal density (divs/m) nodes links interface pairs collapse load (kN) load eval. vol. min.

5 1091 61 672 264 43.536 0.4 3.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.67 1430 106 641 326 44.265 0.6 6.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 2261 274 726 470 45.100 2.0 9.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 3968 858 443 776 45.100 5.7 24.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 5628 1 769 939 990 45.100 15.2 48.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 9645 5 465 060 1384 45.100 49.1 122.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 15 146 13 713 614 1984 45.100 139.8 476.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aLP time as reported by the solver; load evaluation with full ground-structure; volume minimization with member adding starting with a

minimal ground structure—see [57].

rings; see figure 11. The material unit weight was reported to be 23.7 kN m−3 and the friction

coefficient of the sand joint to be 0.53.

Firstly, considering the traditional thrust line analysis method, to bound the solution from

above the arch can be represented by a single 215 mm thick arch ring. Thus, assuming the thrust

line is constrained only at weak radial interfaces, the predicted collapse load is 3.79 kN, and the

corresponding thrust line solution is shown in figure 12a. Alternatively, by constructing a separate

thrust line for each arch-ring, the solution can be bounded from below, with the predicted collapse

load now 1.15 kN (based on 0.55 kN being carried by the top ring and 0.60 kN carried by the

bottom ring, and no interaction between rings), and the corresponding thrust line solution is

shown in figure 12b.
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(c)(b)(a)

Figure 11. Two-ring arch—experimental testing: (a) initial set-up; (b) hinges forming; (c) collapse of structure (arch has 3 m

span, 0.75 m rise, 215 mm thickness and 215 mmwidth and is subject to point load 0.84 m from left abutment [28]).

P = 1.48 kN (d)(c)

P = 1.15 kN(b)P = 3.79 kN(a)

thrust line

experimentalthrust layout optimization

P = 1.5 kN

Figure 12. Two-ring arch—solutions obtained via: (a) traditional thrust-line method, assuming single monolithic arch ring;

(b) traditional thrust-line method, determining separate thrust lines for each arch ring; (c) TLO, showing associated force flows;

(d) experimental test, showing observed failure mechanism [28] (thrust lines obtained assuming self-weight lumped at block

centroids; thrust layouts obtained using internal and boundary node spacings of 0.01 and 0.005 m, respectively, and qtmax = 1 N;

thrust layout tensile force line thickness scaled by a factor of 2 for emphasis).

By contrast, when using TLO the combined effects of both rings can be modelled directly.

The TLO solution for this problem is shown in figure 12c, with the corresponding predicted

collapse load being 1.48 kN, which closely matches the experimentally obtained value of 1.5 kN

[28]. Whereas the thrust line method is able to successfully bracket the experimental value, the

upper and lower bound thrust line solutions (3.79 and 1.15 kN) are too far apart to be practically

useful.

The TLO solution shown in figure 12c also provides an indication as to how the load is being

carried, here indicating that the loading is primarily carried by the bottom arch ring, with the

main thrust hugging the intrados near the left-hand support and in the three-quarter span region,

also touching the extrados of the bottom arch ring directly below the loading point and at the

right hand support. These appear broadly in line with the experimentally observed mechanism;

see figure 12d.
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Figure 13. Masonry buttress—horizontal mid-height load test: blocks below diagonal black line deemed ineffective in

resisting the load (test carried out by Ochsendorf [58], reproduced here as a colourized image).

(ii) Masonry buttress

When the traditional thrust line method is applied to structures such as leaning towers [24] and

buttresses [58] an additional step is generally required in order to identify how much of the

masonry will be effective in resisting the applied loading; e.g. see figure 13. A benefit of TLO

is that this is not required when the structure is modelled using the appropriate discretization

of blocks (size, aspect-ratio and stacking pattern) and friction capacity, since the effective (and

ineffective) regions can in this case be identified automatically. Alternatively, were a buttress

wall to be modelled as a continuum using TLO then plotting the transmissible self-weight load

vectors would likely cause the engineer to quickly question this representation, as the self-weight

of sections of the wall being ‘lifted up’ would be clearly visible. Furthermore, this suggests that

only the region of masonry lying below the thrust line would need to be faithfully modelled—

and hence also suggests a potential staged approach to modelling, in which the masonry is only

modelled in detail in regions where an initial analysis has indicated that this is necessary.

Here, the masonry buttress in figure 14a is considered; this has a base width of 0.54 m and a

total weight of 19.05 kN, acting along a line of action at a distance of 0.30 m from the left-hand

corner. An external load, inclined to the horizontal at an angle tan−1 1.25, is applied at a height of

1.68 m. This loading is representative of the load applied from a flying buttress. The material unit

weight is 18 kN m−3 and a unit width of buttress is assumed.

Using the traditional thrust line method, a collapse load of 9.04 kN is predicted for the buttress

(figure 14b), reducing to 6.61 kN if an ineffective area of the structure is assumed (using the

method proposed by Ochsendorf [58]; see figure 14c). In this example, the fracture line defining

the extent of the ineffective area extends to 0.87 m above ground level.

Modelling the structure as a continuum in TLO reproduces the traditional thrust line method

collapse load of 9.04 kN, but how the self-weight loading is carried is now clearer (figure 14d).

Taking account of the masonry bonding pattern but assuming infinite joint friction capacity,

the same collapse load of 9.04 kN is predicted via TLO. However, the self-weight load is now

mobilized via a different mechanism (figure 14e). The inset figure gives a closer view of the flow of

forces, which suggest that tensile forces are being transmitted across block interfaces, even though

these have been prescribed to be non-tensile resistant; this arises from the frictional resistance of

block interfaces. This is also influenced by the aspect ratio of the blocks and the adopted bonding
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(d)

P = 9.04 kN

P = 6.61 kN

ineffective
area

(c)(b)

P = 9.04 kN

(a)

thrust line

thrust layout optimization

(e)

P = 9.04 kN P = 7.91 kN

( f )

0.54

0.43

2
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6

1
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0
.1

0

0
.1
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8

0
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Figure 14. Masonry buttress – geometry shown in (a) and assessed using: (b) traditional thrust line method; (c) traditional

thrust line method, considering fracture of the buttress; (d) TLO, considering the structure as a continuum, rationalized via a

geometry optimization post-processing step and with transmissible load vectors plotted; (e) TLO, as a block assembly with

infinite friction resistance; (f ) TLO, as a block assembly with friction limited by a friction coefficient of 0.7 (thrust lines obtained

using vertical strips of 0.03 mwidth; thrust layouts in continuum solution obtained using internal and boundary node spacings

of 0.03 m; thrust layouts in block assembly solutions obtained using internal and boundary node spacings of 0.025 and 0.01 m,

respectively; qtmax = 150 N; tensile force line thickness scaled by a factor of 2 for emphasis; links with forces lower than

0.0001 fmax not plotted; all dimensions in metres).
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(interlocking) pattern, a phenomenon previously investigated by Bacigalupo et al. [59], and more

recently in [60,61].

When the friction coefficient is set to a realistic value, in this case 0.7, the predicted collapse

load reduces to 7.91 kN. The resulting thrust layout in figure 14f indicates that the self-weight of

several blocks in the bottom-right corner are now not ‘lifted up’ to the main line of compression

that runs from the applied load down to the supports. However, this region is not fully inactive,

and does contribute to resisting the applied load. This suggests that the method proposed by

Ochsendorf provides a conservative estimate of the load capacity (amounting to 84 % of the TLO

solution in this case). This is because it does not consider the tensile strength of the blocks or the

bonding pattern, with the degree of underestimation becoming more significant as blocks become

larger.

(c) Commentary

In several of the examples considered in this section, it has been demonstrated that frictional

(sliding) failures at interfaces between blocks can readily be modelled in the TLO procedure.

However, it is worth noting that although the flow rule is not explicitly specified in the TLO

formulation presented, the use of a maximization step in the procedure means that the friction

is implicitly assumed to be associative (i.e. that any sliding movement will be accompanied by

dilation (e.g. [11]), with the angle of dilation equal to the angle of sliding friction, i.e. tan−1 µ).

Although this behaviour is not physically realistic, and can lead to overestimates of the safety

of a given structure, the degree of any overestimation is likely to be relatively modest when the

structure is discretized using a large number of blocks [62]. Also, this issue could potentially be

addressed by replacing the single maximization step used in the presented TLO method with an

iterative procedure, similar to that proposed for use with rigid block limit analysis by Gilbert et al.

[14].

Finally, although two-dimensional examples have been used to demonstrate the capability of

the TLO procedure, this is in principle readily extendable to three-dimensional problems. The

procedure can also potentially be extended to be applicable to retrofit design problems, allowing

optimally placed strengthening measures to be identified in existing masonry gravity structures.

4. Conclusions
A new procedure has been developed that allows both the safety of masonry gravity structures

to be evaluated and the transmission of internal forces to be clearly visualized. The procedure

builds on a truss layout optimization with transmissible loads formulation, using this to model

self-weight, and with interfaces included in the formulation to model weak masonry joints. The

new procedure is herein termed thrust layout optimization (TLO):

— Although the traditional thrust line analysis method has proved useful for many years,

it has some limitations. For example, block stereotomy is not considered, leading to self-

weight being ‘lifted up’ across weak interfaces. Also, unlimited friction capacity is usually

assumed, leading to sliding failures not being identified. The TLO procedure overcomes

these limitations by considering block stereotomy, the low (but finite) tensile strength

of blocks, and the limited friction capacity of interfaces, to furnish the exact collapse

load for any given problem. Furthermore, TLO eliminates the need for case specific

assumptions, which are very often required when using the traditional thrust line method

(e.g. estimating the ineffective area in a buttress wall, or postulating potential load paths

in a multi-ring arch).

— The thrust layouts identified via TLO provide a rich visual representation of force

flows in masonry gravity structures. The procedure takes on board the limited tensile

capacity of masonry blocks and makes no prior assumptions about the topology of

thrust layouts. This enables visualization of forces flowing around internal holes, with
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the force flows associated with blocks rocking about vertices often resembling classical

Michell structures; more familiar funicular thrust line solutions can also be identified. It

is also possible to plot transmissible self-weight vectors, eliminating ambiguity as to how

self-weight forces are mobilized.
— The TLO procedure thus provides a fully automated means of generating a thrust

layout and determining the associated collapse load for any given problem, comprising

an arbitrary arrangement of masonry blocks. Computed collapse loads are found to

be comparatively insensitive to the chosen numerical discretization (spacing of nodes)

and the tensile force allowed within masonry blocks, with exact solutions obtainable

at modest computational cost by taking advantage of efficient and widely available LP

solvers.

Although a range of sophisticated nonlinear analysis methods are now available for masonry

structures, these are generally too demanding of computer time and operator expertise for routine

use. This means that there remains a need for simple and intuitive analysis models, which provide

clear and reliable results. Since the proposed TLO procedure successfully overcomes a number

of the known weaknesses of the traditional thrust line analysis method, it has the potential to

form an invaluable part of the tool-sets of engineers responsible for analysing masonry gravity

structures.
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