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Abstract 

Several models from the literature were used to predict the fatigue limit in notched components subjected to 

biaxial cyclic loading. The predictions of these models are based on the elastic stresses along a line which is 

considered to be representative of the crack direction in its initial part. The line used in the models changes 

considerably. For one of the studied models, the line direction corresponds to Mode I, while for another it is 

Mode II, and for the other two models considered the direction is between Mode I and Mode II. However, 

quite naturally, the experimental crack direction is unique. In recent years, a study of experimental fatigue 

limits and crack directions in its initial part for three materials was carried out in hollow cylindrical 

specimens with a circular hole subjected to cyclic axial, torsional and in-phase biaxial loading. The 

directions of the cracks that were measured experimentally are on average similar for the three materials and 

close to Mode I. The analysed models give, in general, good predictions of the experimental fatigue limits, 

although they use directions that are completely different and that they too differ markedly from the 

experimentally found ones. The predictions of the models using, in a forced way, the measured experimental 

directions are good in most cases, which reveals a surprising insensitivity of these models to the main 

hypotheses on which their own formulations are based.  

 

 

Keywords: Multiaxial fatigue, Notch, Fatigue limit, Crack path, Biaxial cyclic 

loading. 

 

 

1. INTRODUCTION 

Fatigue failure in real components generally occurs at stress concentrations, commonly referred to 

as notches. There are various models in the literature to predict the fatigue limit in notched 

components subjected to cyclic multiaxial loading. Three of them are analyzed in this document. 
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Two of these models ( [1], [2]) combine the Critical Plane Approach for unnotched solids under 

multiaxial loading with Taylor's Theory of Critical Distances (TCD) for notches under axial 

loading [3]. The third model is a short crack model that analyzes the interaction of the crack with 

the microstructural barriers of the material in the presence of a notch [4]. In the analysed models, 

the predictions are made based on the elastic stresses along a line whose length is of the order of 

the El Haddad small crack parameter, a0 [5]. This line used in the models is considered 

representative of the experimental crack direction in its initial part. In the analyzed models, the 

direction of the line used varies considerably from one model to another: the Mode I direction, the 

Mode II direction and a mixed direction between that of Mode I and Mode II, depending on the 

type of material. Therefore, a great diversity of directions is used even though, evidently, the 

experimental crack direction is unique for a given geometry, loading and material. This diversity of 

directions used in the models might be due to the lack of a comprehensive experimental database 

on the direction of fatigue cracks growing from a notch for common industrial materials, especially 

in its initial part.  

There are several investigations in the literature on the matter, such as the classical investigations 

by Fenner et al. on mild-steel specimens containing sharp V-grooves under alternating axial 

loading [6], by Frost on non-propagating cracks from sharp V-notches in cylindrical specimens 

under reversed axial and rotating bending loading for mild steel and aluminum alloy [7] and by 

Kitagawa and Takahashi on very small surface notches under uniaxial cyclic loading [8]. More 

recently, Endo’s research on specimens containing small surface defects subjected to combined 

stress loading [9], Susmel and Taylor’s work on sharply notched specimens under in-phase Mode I 

and II loading [10], Meneghetti et al.’s study on U-notch steel specimens under axial loading [11], 

Tanaka et al.’s study on steel specimens with a hole subject to in-phase and out-of-phase axial and 

torsional loadings [12], Berto et al.’s tests on V-notched specimens made of hardened and 

tempered steel [13], Gates and Fatemi’s research on aluminum specimens with a circular hole 

subject to multiaxial loading [14], and Lorenzino and Navarro’s tests on aluminum alloy plates 

with a circular hole under axial loading [15]. All these experimental results from the literature 

present a great diversity of directions of the initial part of the crack, so that it would be very 

difficult to establish a clear criterion to define the crack direction in its initial part for a given 

material, load and notch geometry. 

In recent years, a comprehensive study of the experimental fatigue limits and crack directions in 

the initial part was carried out in hollow cylindrical specimens with a circular hole subjected to 

cyclic axial, torsional and in-phase biaxial loading. Three materials were tested, a stainless steel 

[16], a carbon steel [17] and an aluminum alloy [18]. All the details about the materials and the 

tests can be consulted in these previous documents ([16], [17], [18]). These materials can be 

considered as brittle, intermediate ductile-brittle and ductile in fatigue, respectively, as will be seen 

later, which allows this study to analyze the effect of various material fatigue behaviors in the crack 

direction. The experimental crack directions were measured only for the broken specimens 

subjected to fatigue at a high number of cycles, with a life above 105 cycles. The present document 

shows an analysis of the measured experimental results. The fatigue limits predictions for the 

studied notches with the three multiaxial fatigue models for notches are also shown, and the 

average experimental crack directions are compared with the directions of the lines used by the 

models. As far as the authors are concerned, the exhaustive analysis of experimental crack 

directions for several materials from notches and the analysis of the models’ predictions from two 
points of view, the numerical fatigue limit prediction and the direction of the crack used in the 

models, are novelties in our scientific field. In addition, the models’ predictions using, in a forced 

way, as the line for the prediction the average experimental direction measured for each case are 

shown, constituting the second main novelty of this work. The objective is to analyze the 

adaptation capacity of each one of the models to the use of the experimental direction to make the 
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predictions, which could be highly desirable in the near future, trusting that there will be a wide 

database of experimental cracks directions for notch multiaxial fatigue. 

 

2. MATERIALS AND TESTS 

The three materials analyzed in this work are commercial AISI 304L stainless steel, S355 low 

carbon steel and 7075-T6 aluminum alloy. The main mechanical properties of the three materials 

are shown in Table 1, which are as follows: tensile strength 𝜎𝑈𝑇𝑆, yield strength 𝜎𝑌𝑆, axial and 

torsion fatigue limits, 𝜎𝐹𝐿 and 𝜏𝐹𝐿 (for Rσ=-1), average grain size d and El Haddad short-crack 

parameter 𝑎0 = (1/𝜋)(∆𝐾𝑡ℎ/∆𝜎𝐹𝐿)2 [5], where ∆𝐾𝑡ℎ is the threshold value of ∆𝐾 for fatigue crack 

growth and ∆𝜎𝐹𝐿 the fatigue limit range. In the case of aluminum alloy, the values of 𝜎𝐹𝐿 and 𝜏𝐹𝐿 

correspond to an estimated life of one million cycles, as aluminum does not have a defined fatigue 

limit. The ratio of the fatigue limits 𝜏𝐹𝐿/𝜎𝐹𝐿 is also shown. This ratio has been used by several 

authors as an indicator of ductility in fatigue, suggesting that ductile materials in fatigue have a 

value close to 0.5 and brittle materials a value close to 1 [19], [20]. In this case, the values of the 

ratio are 0.91, 0.76 and 0.58 for AISI 304L, S355 and 7075-T6, respectively. Thus, AISI 304L can 

be considered as a brittle material in fatigue, 7075-T6 as a ductile material in fatigue (with a value 

of a von Mises type material), and S355 as a material with an intermediate ductile-brittle behavior 

in fatigue. The chemical composition and other properties of these materials can be consulted in 

[16], [17] and [18]. 

Table 1. Properties of the studied materials 

 

(a) Estimated as a0=3.12d/2 (see [21]). 

 

The geometry of the notched specimen was a thin-walled tube of 1.5 mm thickness with a passing-

through hole in the central section. Several hole radii R were studied, ranging from 0.4 to 1.7 mm. 

Figure 1 shows the geometry of the specimen, in particular, the one with the hole radius R = 0.5 

mm (1 mm diameter). 

Material 𝜎𝑈𝑇𝑆         

(MPa) 

𝜎𝑌𝑆              

(MPa) 

𝜎𝐹𝐿              

(MPa) 

𝜏𝐹𝐿               

(MPa) 

𝜏𝐹𝐿/𝜎𝐹𝐿  d, grain size 

(mm) 

a0                  

(mm) 

AISI 304L 

stainless steel 

[16] 

654 467 316 288 0.91 0.080 0.180 

S355 low 

carbon steel 

[17] 

586 412 275 208 0.76 0.033 0.158 (a) 

7075-T6 

aluminum alloy 

[18] 

657 595 258 149 0.58 0.015 0.072 (a) 
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Figure 1. Geometry of the notched specimen. 

 

Three types of tests were performed with the notched specimens, in all cases under fully-reversed 

loading: axial tests, torsion test and in-phase axial-torsion tests, of the type 𝜎 = 𝜏, where 𝜎 is the 

normal stress amplitude and 𝜏 is the maximum shear stress amplitude, at the transverse cross-

section, calculated with the equations of elasticity. The axial tests were made in a resonance 

machine, at a frequency of 100-150 Hz, and the torsional and biaxial tests in a servo-hydraulic 

axial-torsion load frame, at 6-10 Hz. The tests were stopped when a long crack of at least several 

mm was obtained or when a certain number of cycles were reached (run-outs). For AISI 304L 

stainless steel, the run-out was established at 3.5 × 106 cycles, for S355 steel at 5 × 106 cycles and 

for 7075-T6 aluminum at 50 × 106 cycles for axial tests and at 5 × 106 cycles for torsion and 

biaxial tests. 

 

3. FATIGUE LIMITS OF THE NOTCHED SPECIMENS 

The results of the fatigue tests of the notched specimens were used to construct the S-N curves and 

calculate the fatigue limits. Table 2 shows the experimental fatigue limits, expressed in term of 

stress amplitude, of the notched specimens, 𝜎𝐹𝐿𝑁  and 𝜏𝐹𝐿𝑁 , including the three materials, various hole 

radii R and the three types of loading, with a total of 15 values. For aluminum, the fatigue 

resistance values corresponding to one million cycles were taken again. Table 2 also includes the 

fatigue limit predictions with the models, which will be explained later in the document. 
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Table 2. Experimental fatigue limits of the notched specimens and model’s predictions. 

Material R, hole 

radius 

(mm) 

Type of loading Notch fatigue limit, 𝜎𝐹𝐿𝑁  𝑜𝑟 𝜏𝐹𝐿𝑁  (MPa) 

Experimental Model’s predictions 

MWCM+PM 

(Mode I) 

MWCM+PM 

(Mode II) 

Carpinteri 

et al. 

Biaxial 

N-R 

AISI 304L 0.5 Axial 148 125.6 124.7 149.1 145.0 

1 Axial 154 118.4 116.0 128.6 118.7 

1.5 Axial 151 114.7 112.6 121.5 110.3 

0.5 Torsion 133 107.9 104.1 124.5 124.6 

1 Torsion 130 94.5 91.2 102.1 96.0 

0.5 Biaxial (𝜎 = 𝜏) 117 73.1 71.5 85.7 84.5 

S355 0.4 Axial 175 127.2 121.8 134.1 142.4 

0.75 Axial 152 112.4 107.8 117.2 117.9 

1.7 Axial 138 101.2 98.7 105.8 102.4 

7075-T6 0.5 Axial 95 105.1 100.1 96.6 119.6 

1 Axial 94 95.5 92.8 91.2 110.0 

1.5 Axial 85 92.3 90.5 89.5 107.3 

0.5 Torsion 75 82.5 77.7 74.9 94.5 

1 Torsion 67 73.3 70.8 69.6 83.8 

0.5 Biaxial (𝜎 = 𝜏) 65 58.8 55.7 53.7 66.6 

Average error (%) 17.5 % 18.1 % 12.1 % 18.7 % 

 

4. EXPERIMENTAL CRACK DIRECTIONS 

This section shows the experimental values of the crack initiation location and the crack direction 

in its initial part, both measured on the outer surface of the specimen. As mentioned in the 

introduction, it is important to determine the experimental crack direction in its initial part, since 

the most common models to calculate the fatigue limit in notches base their prediction on the 

elastic stresses in a line that is representative of the crack direction in this phase. Only specimens 

that failed after 105 cycles, within the so-called high cycle fatigue regime were considered. For the 

three materials all the cracks originated from the circular hole, and on both sides of the hole, as 

expected, since the hole is a stress concentrator. Figure 2(a) shows the coordinate system OXYZ to 

define the crack direction, with its origin O located at the center of the circular hole on the outer 

surface of the specimen. The X-axis is in the central transverse section of the specimen, the Y-axis 

runs along the longitudinal dimension of the specimen and the Z-axis coincides with the axis of the 

hole. The location of the crack initiation point at the hole contour and the crack direction for a 

certain crack length 𝑎 = √(∆𝑥′)2 + (∆𝑦′)2 are indicated by the angles θ and θ1, respectively, 

whose geometrical definition are sketched in Figure 2(b). Angles are measured counterclockwise. 

The crack initiation point angle θ is defined as tan−1(∆𝑌/∆𝑋). The crack direction angle θ1 is 

measured using an additional coordinate system o'x'y' whose origin coincides with the crack 

initiation point at the hole contour. The angle θ1 is defined as tan−1(∆𝑦′/∆𝑥′). This crack direction 

angle θ1 was measured experimentally for a crack length a equal to 0.50, 0.08 and 0.15 mm for the 
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AISI 304L, S355 and 7075-T6 specimens, respectively. These crack length values are equal in 

length to 2.8a0, 0.5a0, and 2.1a0, respectively, or expressed as a function of average grain size, 

equal to 6.2d, 2.4d, and 10d, respectively. These values, of the order of magnitude of a0, were 

considered representative of the crack direction in its initial part. As will be seen later in the 

description of the models, they use a line whose length is of this order of magnitude to make the 

predictions. The choice of these lengths will be justified in the discussion section. 

 

 

               

     (a)                             (b) 

Figure 2. (a) Sketch of the specimen with the axes. (b) Detail of the hole with the cracks and the 

variables used to define the crack direction. 

 

The methodology used for measuring the crack initiation location and the crack direction angles is 

as follows: 

- The diameter of the circular hole is measured before the fatigue tests is carried out. 

- Once the fatigue test is complete, a high-quality picture of the hole with the crack is taken 

with an optical microscope. Before taking the picture, the specimen is carefully placed 

longitudinally under the microscope so that the y-axis of the picture coincides with the 

longitudinal axis of the specimen. On this picture, displayed on a large computer screen, the 

angles will be measured. 

- The presence of the crack divides the circular hole into two halves. One of the hole halves 

and its adjacent crack lines are selected for the measurements. 

- A circumference is drawn on the picture with a diameter equal to the diameter of the hole 

measured before the test. This circumference is made to coincide with the chosen half of the 

circular hole. The center of this circumference provides the center of the circular hole 

(origin of the OXYZ coordinate system defined in Fig. 2). The horizontal and vertical axes 

of the picture will be the X and Y axes of the coordinate system, respectively. Then, the 

OXY coordinate system is established in the picture. 
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- The crack initiation point at the edge of the hole half is located and the crack initiation 

location angle θ is measured. 

- The additional coordinate system o’x’y’ is defined at the crack initiation point. 

- From the origin o’, an arc of radius a is drawn. Its intersection with the crack line defines a 

point. The line that joins this point with the origin o’ provides the angle θ1. 

A limitation of this measurement methodology is that the crack angle is defined by just two points 

and a straight line, so the possible zig-zagging of the crack path between these two points is not 

taken into account.   

Figure 3, Figure 4 and Figure 5 show representative pictures of the experimental cracks for the 

AISI 304L, S355 and 7075-T6, respectively. The calculated crack angles are also shown. Please 

note that for the sake of clarity the circumferences were not drawn in these pictures. For material 

S355 there are only axial tests. For this material, an enlarged picture of the left crack and another of 

the right crack have been added (Figure 4(b) and Figure 4(c)), since the angle θ1 could not be 

clearly observed in the general picture (Figure 4(a)), due to the fact that this material crack length a 

is very small. A tortuous crack path in these initial zones of the two cracks is observed. In some 

torsional tests, such as the one in Figure 3(b), four cracks were observed. In this work only the two 

main cracks were analyzed. Table 3 shows a summary of the averages experimental crack angles θ 

and θ1 for the studied materials, loading and hole radii. In addition, standard deviation values are 

included in parentheses. In total, the angles of 106 specimens were measured, 37 of AISI 304L, 22 

of S355 and 47 of 7075-T6. Table 3 also includes the crack lines angles θ and θ1 used by the 

models to make the predictions, which will be explained later in the document. For the three 

materials, on average, the experimental crack initiation point is close to the point of maximum 

principal stress at the hole contour, i.e. θ = 0º for axial load, θ = 45º for torsional load and θ = 31.7º 

for biaxial load. The experimental crack direction in its initial part, measured for a crack length a, 

is, for the three materials, on average, close to the direction of maximum principal stress, i.e. θ1 = 

0º for axial load, θ1 = 45º for torsional load and θ1= 31.7º for biaxial load. An effect of the type of 

material in the average crack initiation point and crack direction was not appreciated. 

 

         

 

 

         
     (a)                         (b) 
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(c) 

 

Figure 3. Examples of experimental crack angles for AISI 304L: (a) Axial loading, R=1 mm, 

σ=200 MPa, N=320,500 cycles. (b) Torsional loading, R=0.5 mm, τ=156 MPa, N=385,700 cycles. 

(c) Biaxial loading, R=1 mm, σ=τ=130 MPa, N=178,400 cycles.  
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(a) 

 

           
                   (b)                 (c) 

    

Figure 4. Example of experimental crack angles for S355: (a) Axial loading, R=0.75 mm, σ=158 
MPa, N=876,500 cycles. (b) Detail of the angle θ1 for the left crack. (c) Detail of the angle θ1 for 

the right crack.  
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     (a)                         (b) 

 

 
(c) 

 

Figure 5. Examples of experimental crack angles for 7075-T6: (a) Axial loading, R=1 mm, σ=110 
MPa, N=139,300 cycles. (b) Torsional loading, R=1 mm, τ=80 MPa, N=788,700 cycles. (c) 

Biaxial loading, R=1 mm, σ=τ=80 MPa, N=130,400 cycles.   
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Table 3. Average experimental crack angles and crack lines angles used by the models. 

Material R, hole 

radius             

(mm) 

Type of 

loading 

Average 

experimental 

angles 

Angles used by the models 

MWCM+PM 

(Mode I) 

MWCM+PM 

(Mode II) 

Carpinteri et 

al. 

Biaxial N-R 

θ θ1 θ θ1 θ θ1 θ θ1 θ θ1 

AISI 

304L 

0.5 Axial -0.3º 

(12.5º) 

4.4º 

(8.5º) 0.0º 0.0º 0.0º 45.0 0.0º 11.4º 4.0º -25.0º 

1 Axial 1.3º 

(9.8º) 

1.3º 

(3.8º) 0.0º 0.0º 0.0º 45.0 0.0º 11.4º 2.0º -20.0º 

1.5 Axial 0.9º 

(4.6º) 

0.9º 

(7.8º) 0.0º 0.0º 0.0º 45.0 0.0º 11.4º 1.0º -17.0º 

0.5 Torsion 46.8º 

(6.7º) 

45.2º 

(2.1º) 45.0º 45.0º 45.0º 0.0 45.0º 33.6º 45.0º -7.0º 

1 Torsion 45.9º 

(6.3º) 

42.2º 

(2.8º) 45.0º 45.0º 45.0º 0.0 45.0º 33.6º 45.0º 16.0º 

0.5 Biaxial 29.0º 

(4.4º) 

32.0º 

(3.1º) 31.7º 31.7º 31.7º -13.3 31.7º 20.3º 35.0º -6.0º 

S355 

0.4 

Axial 0.3º 

(7.5º) 

-1.0º 

(14.1º) 0.0º 0.0º 0.0º 45.0 0.0º 28.7º 9.0º -42.0º 

0.75 

Axial 0.4º 

(4.5º) 

0.4º 

(13.3º) 0.0º 0.0º 0.0º 45.0 0.0º 28.7º 4.0º -35.0º 

1.7 

Axial -0.5º 

(4.2º) 

-5.1º 

(7.8º) 0.0º 0.0º 0.0º 45.0 0.0º 28.7º 1.0º -30.0º 

7075-T6 0.5 Axial -1.5º 

(8.5º) 

1.2º 

(18.8º) 0.0º 0.0º 0.0º 45.0 0.0º 45.0º 5.0º -29.0º 

1 Axial -1.1º 

(7.9º) 

-0.4º 

(15.8º) 0.0º 0.0º 0.0º 45.0 0.0º 45.0º 2.0º -32.0º 

1.5 Axial -0.1º 

(10.2º) 

2.4º 

(19.5º) 0.0º 0.0º 0.0º 45.0 0.0º 45.0º 1.0º -33.0º 

0.5 Torsion 42.4º 

(10.4º) 

47.4º 

(7.2º) 45.0º 45.0º 45.0º 0.0 45.0º 0.0º 45.0º -7.0º 

1 Torsion 45.2º 

(8.0º) 

48.3º 

(11º) 45.0º 45.0º 45.0º 0.0 45.0º 0.0º 45.0º 11.0º 

0.5 Biaxial 29.2º 

(7.6º) 

36.6º 

(5.4º) 31.7º 31.7º 31.7º -13.3 31.7º -13.3º 38.0º 4.0º 
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5. BRIEF DESCRIPTION OF THREE BIAXIAL FATIGUE MODELS FOR NOTCHES 

In this section a brief description of the following three multiaxial notch fatigue models is 

presented: the combined model of Susmel and Taylor (MWCM+PM), the combined model of 

Carpinteri et al. and the biaxial Navarro-Rios model. 

5.1. The combined model of Susmel and Taylor (MWCM+PM) 

It consists of combining the Critical Plane Approach proposed by Susmel for solids without 

notches under multiaxial loading, called the Modified Whöler Curve Method (MWCM) [1], with 

Taylor's Critical Distance Theory (TCD) for notches under axial loading [3]. The combined model 

consists of locating the point of maximum principal stress at the notch contour (the hot-spot). A 

straight line is then drawn from that point, representing the crack direction. There are two variants 

of the model: the Mode I variant, in which the line is drawn perpendicular to the notch contour at 

the hot-spot [22]; and the Mode II variant, in which the line is drawn at 45º with respect to the line 

of the Mode I variant [23]. It is worth remembering also that, for the Mode I variant, the focus path 

is suggested as being taken coincident with the notch bisector when stress concentrators are 

modelled by imposing that the notch root radius equals zero. Within the TCD, if the point method 

PM is chosen, then the point to make the prediction is located at the chosen line and at a distance of 

a0/2 from the hot-spot. At this point, the critical plane is calculated as the one with the greatest 

value of the shear stress amplitude τa. The stress normal to that plane at the chosen point is called 

σn,max. From these two stresses, the fatigue limit of the notched component is reached if the 

following criterion is met: 

 𝜏𝑎 + (𝜏𝐹𝐿 − 𝜎𝐹𝐿2 ) 𝜎𝑛,𝑚𝑎𝑥𝜏𝑎 = 𝜏𝐹𝐿       (1) 

 

Figure 6(a) shows a sketch of the crack lines used for the MWCM+PM model for its two variants. 

The case of a plate with a hole under biaxial loading (𝜎𝑦∞, 𝜏∞) is represented. It is also shown the 

crack line used in the Carpinteri et al. model, which will be described below. 
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               (a)                                (b) 

Figure 6. Sketch of the crack lines used in the models: (a) MWCM+PM (Mode I and Mode II 

variant) and Carpinteri et al., (b) Biaxial N-R model.  

 

5.2. The combined model of Carpinteri et al. 

This model is qualitatively similar to the previous one. The prediction is based on the stresses at a 

point located at a0/2 from the hot-spot. In this case, the line where this point is located depends on 

the material and is defined by the angle δ with respect to the line normal to the notch contour at the 

hot-spot. The value of δ is calculated by the following equation [2]: 

 

 𝛿 = 3𝜋8 [1 − (𝜏𝐹𝐿𝜎𝐹𝐿)2]        (2) 

 

For materials with brittle behavior in fatigue, i.e. 𝜏𝐹𝐿/𝜎𝐹𝐿 = 1, the line will coincide with that of 

the Mode I variant of the previous model, and for materials with ductile behavior in fatigue, with a 

value 𝜏𝐹𝐿/𝜎𝐹𝐿 = 0.58, the line will coincide with that of the Mode II variant. Next, the normal 

stress N and shear stress C to the line at the critical point are calculated. An equivalent stress 𝜎𝑒𝑞,𝑎 

and the fatigue limit are defined by the following criterion: 
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𝜎𝑒𝑞,𝑎 = √𝑁2 + (𝜎𝐹𝐿𝜏𝐹𝐿)2 𝐶2 = 𝜎𝐹𝐿       (3) 

 

5.3. Biaxial Navarro-Rios model (biaxial N-R model) 

The Navarro and de los Rios model (N-R model) [24] [25] is a microstructural model that analyses 

the interaction of the crack and its associated plastic zone with microstructural barriers, such as 

grain boundaries. Mathematically, the crack, its plastic zone, and the microstructural barrier are 

modelled as a straight line by a distribution of dislocations. The remote applied stress necessary for 

the crack to overcome the successive barriers is calculated, the maximum of these values being the 

fatigue limit of the notched component. The equation to calculate the remote stress to overcome the 

i-th barrier, located at a distance of i grains from the crack initiation point, is the following [4]: 

 𝜎3𝑖𝑚𝜎𝑖∗ ·𝜏𝑐 + 𝜏3𝑖𝑚𝜏𝑖∗ ·𝜏𝑐 = 1          (4) 

 

 

The stresses 𝜎3𝑖  and 𝜏3𝑖  represent the shear and normal stresses in the i-th barrier, calculated from 

the equilibrium of dislocations in the crack line, for the specific notched geometry and applied 

loads. The parameters 𝑚𝜎𝑖∗ · 𝜏𝑐 and 𝑚𝜏𝑖∗ · 𝜏𝑐 represent the normal and tangential stresses required to 

overcome the i-th barrier and are adjusted for each material, based on the axial and torsional fatigue 

limits, 𝜎𝐹𝐿 and 𝜏𝐹𝐿, and the Kitagawa-Takahashi diagram of the material. A characteristic of this 

model is that the crack line is not established a priori, as in previous models, but is calculated as the 

one for which the applied stress required to overcome the successive barriers is a minimum. So the 

application of the model requires the repetition of the calculations for all possible initiation points 

and crack directions, defined by the crack initiation point (angle θ) and the crack line direction 

(angle θ1).  

6. PREDICTIONS WITH THE MODELS 

This section shows the notch fatigue limits predictions, 𝜎𝐹𝐿𝑁  and 𝜏𝐹𝐿𝑁 , with the described models for 

the three materials, the three types of loading and the various hole radii previously shown. The 

elastic stress fields to make the predictions with the models were calculated with the analytical 

expression of Kirsch for an infinite plate with a circular hole subjected to biaxial loading, available 

in elasticity books [26]. The simplification of using this analytical stress field for the studied 

geometry is reasonably justified, as discussed in [27]. For the MWCM+PM and Carpinteri et al. 

models, plane strain was assumed. Predictions with the two variants of the MWCM+PM, Mode I 

variant and Mode II variant, are presented. For the biaxial N-R model, the Kitawaga-Takahashi 

diagram was approximated with the equation proposed in [28], using f=2.5. The number of 

algebraic equations was set to 200, the maximum crack length studied was set at 30 grains in length 

and the step of the θ and θ1 angles for the study of the various directions was set at 1º, all with the 

aim of achieving a high precision in the numerical solution without an excessive computational 

cost. 

To illustrate how the models were applied, the calculations with the various models for a specific 

case, material AISI 304L, R = 0.5 mm and axial loading, are shown below. Beginning with the 

MWCM+PM model, Mode I variant, the hot-spot is for this case at θ = 0º and the crack direction at 

θ1 = 0º. The stresses in the point located at the chosen line and at a distance of a0/2=0.09 mm from 
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the hot-spot, according to Kirsch's expression, for an applied axial load of 1 MPa are as follows: σrr 

= 0.3036 MPa, σθθ = 2.1328 MPa and ττθ = 0 MPa. For this point, making simple calculations with 

the stress tensor, the maximum shear stress τa = 0.9146 MPa and its corresponding normal stress 

σn,max = 1.2182 MPa, are calculated. These stresses when introduced in the criterion (Eq. (1)) give 

the prediction 𝜎𝐹𝐿𝑁 = 125.6 MPa. For the Mode II variant of the MWCM+PM model, the crack 

direction changes to θ1 = -45º. The stresses at a0/2 are in this case: σrr = 0.2561 MPa, σθθ = 2.2588 

MPa and ττθ = 0.0828 MPa, only slightly different from those of the Mode I variant. The stresses 

for the criterion are τa = 1.0048 MPa and σn,max = 1.2575 MPa, giving the prediction 𝜎𝐹𝐿𝑁 = 124.7 

MPa. Regarding the model of Carpinteri et al., θ = 0º as in the previous model, while θ1 is 

calculated from the angle δ. Using Eq. (2) for this material, δ = 0.1995 rad = 11.43º is obtained, 

providing θ1 = -11.43º. Again, the stresses at a0/2 are: σrr = 0.3009 MPa, σθθ = 2.1403 MPa and ττθ 

= 0.0267 MPa. The normal and shear stresses to the crack line in this point are, in modulus, N = 

2.0970 MPa, C = 0.2802 MPa. When these stresses are introduced into the criterion (Eq. (3)), they 

provide the prediction 𝜎𝐹𝐿𝑁 = 149.1 MPa. Regarding the biaxial N-R model, the calculated crack 

line for this case, the one for which the required applied stress to overcome the successive barriers 

is minimum, is defined by the angles θ = 4º and θ1 = -25º. In this line, the stresses of the biaxial N-

R model at the first barrier, for an applied axial load of 1 MPa, are 𝜎31 = 10.77 MPa, 𝜏31 = 3.25 

MPa. For this material, the criterion parameters for the first barrier are 𝑚𝜎1∗ · 𝜏𝑐 = 1547 MPa and 𝑚𝜏1∗ · 𝜏𝑐 = 2240 MPa. If these stresses are introduced in Eq. (4), the applied axial stress required 

to overcome the first barrier is 118.82 MPa. The applied stresses required to overcome the 

following three barriers are 138.93 MPa, 145.04 MPa and 145.02 MPa, respectively. According to 

previous studies, the first local maximum is the global maximum [29]. Then, the predicted fatigue 

limit is calculated with the third barrier and the prediction is 𝜎𝐹𝐿𝑁 = 145.04 MPa. 

Table 2 shows the predictions of the notch fatigue limits for the 15 studied cases. Besides, an 

average error for each model is presented. The fatigue limit prediction error was calculated as 

follows: 

 Error =  Prediction-ExperimentalExperimental 100 (%)            (5) 

 

The absolute value of the errors was used to calculate the average error in order to prevent the 

positive and negative errors from compensating one another. In general, the models provide 

predictions close to the experimental ones, with an average error of less than 20% for all the 

models, which is considered a reasonable error in fatigue [3] [1]. The smallest average error occurs 

for the Carpinteri et al. model, 12.1%. The other models give a very similar average error: 17.5%, 

18.1% and 18.7%, for the MWCM+PM Mode I, MWCM+PM Mode II and biaxial N-R, 

respectively. In the case of the biaxial N-R model, the barrier that defined the notch fatigue limit 

was almost always within the first 10 grains. 

Regarding the crack line used in the models, Table 3 includes the crack lines angles θ and θ1 used 

by the models to make the predictions. The MWCM+PM and Carpinteri et al. models use the angle 

θ = 0º for axial load, θ = 45º for torsional load and θ = 31.7º for biaxial load, i.e the point of 

maximum principal stress at the hole contour, which are very close to the average experimental 

values also shown in Table 3. For the biaxial N-R model, the values of the angles θ used to make 

the predictions, obtained by scanning directions, are also close to the experimental values for all the 

studied cases. Regarding the angle θ1, the MWCM+PM (Mode I variant) uses the Mode I direction, 

i.e θ1= 0º for axial load, θ1 = 45º for torsional load and θ1 = 31.7º for biaxial load, which are close 

to the average experimental values. However, the MWCM+PM (Mode II variant) uses the Mode II 
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direction, i.e θ1= 45º for axial load, θ1 = 0º for torsional load and θ1 =-13.3º for biaxial load, which 

are clearly far away from the average experimental values. In the case of the Carpinteri et al. 

model, the angle θ1 depends on the material, being relatively close to the experimental values for 

AISI 304L, further away for S355 and quite far away for Al 7075-T6, since for this last material 

the Mode II direction is used. For the biaxial N-R model, an intermediate value between the 

direction of Mode I and Mode II is generally obtained, and therefore far from the experimental 

values, which are close to that of Mode I. In summary, the MWCM+PM (Mode I variant) uses a 

crack line that is very similar to the experimental crack line, which is not the case for the rest of the 

models. 

 

7. PREDICTIONS WITH THE MODELS USING THE EXPERIMENTAL CRACK 

DIRECTION 

An interesting exercise is to carry out the models’ predictions imposing the crack direction 

measured experimentally, i.e using in the models the experimental angles θ and θ1, which in the 

studied cases have turned out to be, on average, close to the point of maximum principal stress and 

to the Mode I direction, respectively. This allows us to analyze whether the models could in the 

future be easily adapted to using the experimental crack direction to make the predictions.  

Table 4 shows a comparison of the models’ average errors using theoretical and average 

experimental angles θ and θ1. The results are differentiated for the three materials. Note that when 

using the experimental angles, the two variants of the MWCM+PM model merge into one. As 

previously explained, the theoretical θ angles of all the studied models are very similar to each 

other, and very similar to the experimental ones, all of them are equal or close to the angle defined 

by the hot-spot. However, the theoretical θ1 angles of the models present great differences among 

them, varying between the direction of Mode I and Mode II. 

 

Table 4. Comparison of models’ errors using theoretical and average experimental angles θ and 
θ1. 

Material 

 

Average error using the theoretical crack angles (%) Average error using the average 

experimental crack angles (%) 

MWCM

+PM 

(Mode I) 

MWCM+PM 

(Mode II) 

Carpinteri 

et al. 

Biaxial 

N-R 

MWCM+PM Carpinteri 

et al. 

Biaxial 

N-R 

AISI 304L 23.4 25.2 14.3 17.8 23.4 14.7 14.3 

S355 26.7 29.3 23.2 22.3 26.7 25.2 5.7 

7075-T6 8.3 6.1 5.2 20.4 8.3 6.5 175.7 

Total average 

error (%): 18.0 18.4 12.4 19.8 18.0 13.5 77.1 

 

As seen in Table 4, the average errors of the MWCM+PM model using the average experimental 

angles are practically the same for the three materials as those obtained with the MWCM+PM 

model (Mode I) using the theoretical angles. It is reasonable, since as previously mentioned, the 

average experimental angles were very close to the Mode I direction for the studied cases. 

Furthermore, these errors are not far to those obtained with the MWCM+PM model (Mode II) 
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using the theoretical angles. This result was not expected given that the average experimental 

angles were very far from the Mode II direction. This indicates that the MWCM+PM model is very 

insensitive to the angle θ1 used for the predictions. The reason is that the stresses used in the model 

criterion, the maximum shear stress amplitude τa and its normal stress σn,max, change very little if 

the angle θ1 is varied from the Mode I to the Mode II direction, at least for this geometry, loads and 

materials. Regarding the model of Carpinteri et al. there is also little difference in the predictions, 

and therefore in the errors, when using the average experimental direction or the theoretical 

direction. In this case, the variation of θ1 does cause considerable changes in the values of the 

criterion stresses, N and C (normal and shear stresses to the crack line). Generally, there is an 

increase in one of the stresses and a decrease in the another, but when introducing them into the 

criterion, the increase in one of them is offset by the decrease in the other, giving rise to a similar 

prediction. As an example, the case of material S355, R = 1 mm and axial load (1 MPa), with θ = 0º 

(hot-spot) and θ1 varying from 0º (Mode I) to 45º (Mode II) is analyzed. The stresses of the 

MWCM+PM model are τa = 1.18 MPa, σn,max = 1.36 MPa for θ1 = 0º and τa = 1.25 MPa, σn,max = 

1.39 MPa for θ1 = 45º, which when introduced in the criteria give the predictions 𝜎𝐹𝐿𝑁 = 107.6 MPa 

and 𝜎𝐹𝐿𝑁 = 103.8 MPa, respectively. That is, for this model the stresses and the predictions are very 

similar using the Mode I and Mode II directions. For the Carpinteri et al. model, the stresses are N 

= 2.53 MPa, C = 0 MPa for θ1 = 0º and N = 1.54 MPa, C = 1.24 MPa for θ1 = 45º, which give the 

predictions 𝜎𝐹𝐿𝑁 = 108.5 MPa and 𝜎𝐹𝐿𝑁 = 122.4 MPa, respectively. In this case the stresses are very 

different for Mode I and Mode II directions, but the predictions are quite close, although not as 

much as for the MWCM+PM model. 

Regarding the biaxial N-R model, as seen in Table 4, the average errors for the AISI 304L and 

S355 materials with the average experimental angles are even smaller than those with the 

theoretical angles. However, for 7075-T6, the errors using the average experimental directions are 

extremely large. As it happens with the Carpinteri et al. model, the criterion stresses, in this case 𝜎3𝑖  
and 𝜏3𝑖 , change considerably as the angle θ1 varies, so that generally one of them increases while 

the other decreases. The materials AISI 304L and S355, with brittle and intermediate ductile-brittle 

behavior, respectively, have values of the criterion parameters, 𝑚𝜎𝑖∗ · 𝜏𝑐 and 𝑚𝜏𝑖∗ · 𝜏𝑐, of the same 

order of magnitude, so the increase of one of the stresses is partially compensated by the decrease 

of the other when they are introduced into the criterion, giving rise to predictions that are not very 

different. However, for the material 7075-T6, considered to be brittle in fatigue, the parameters 𝑚𝜎𝑖∗ · 𝜏𝑐 and 𝑚𝜏𝑖∗ · 𝜏𝑐 have a very different magnitude. So the changes of the stresses 𝜎3𝑖  and 𝜏3𝑖  with 

the variation of θ1 are not compensated in any way when introduced into the criterion, giving rise to 

very different predictions. Let´s analyze again the example of R = 1 mm and axial load (1 MPa), 

with θ = 0º (hot-spot) and θ1 varying from 0º (Mode I) to 45º (Mode II). For the material S355, the 

stresses of the biaxial N-R model at the first barrier are 𝜎31 = 14.3 MPa, 𝜏31 = 0 MPa for θ1 = 0º 

and 𝜎31 = 9.0 MPa, 𝜏31 = 4.7 MPa for θ1 = 45º. For this material, the criterion parameters for the 

first barrier are 𝑚𝜎1∗ · 𝜏𝑐 = 1785 MPa and 𝑚𝜏1∗ · 𝜏𝑐 = 1076 MPa. Assuming for simplicity that the 

fatigue limit is obtained with the first barrier, the predictions would be 𝜎𝐹𝐿𝑁 = 125.3 MPa and 𝜎𝐹𝐿𝑁 = 105.6 MPa, respectively, that is, not very different from each other. If the same analysis is 

done for material 7075-T6, the stresses of the model are 𝜎31 = 14.5 MPa, 𝜏31 = 0 MPa for θ1 = 0º 

and 𝜎31 = 9.1 MPa, 𝜏31 = 4.8 MPa for θ1 = 45º, that is, quite similar to those obtained for the 

material S355. However, the criterion parameters for the first barrier are now 𝑚𝜎1∗ · 𝜏𝑐 = 4247 

MPa and 𝑚𝜏1∗ · 𝜏𝑐 = 666 MPa, that is, quite different in magnitude. The predictions would be now 𝜎𝐹𝐿𝑁 = 292.3 MPa and 𝜎𝐹𝐿𝑁 = 106.5 MPa, respectively, which means that difference between both 

predictions is extremely large. In summary, although the biaxial N-R predictions with the average 

experimental directions are the best for AISI 304L and S355, they turn out to be unacceptable for 

Al 7075-T6. 
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7.1. Analysis of the effect on the predictions of the experimental angles’ standard deviations 

As seen in Table 3, the average experimental angles θ are close to those defined with the hot-spot 

and θ1 are close to Mode I direction. But the dispersion of these values are relatively large for all 

the materials, hole radii and loading, as seen in the standard deviation of these values, shown in 

parentheses in Table 3. This dispersion in the experimental crack angles is reasonable, since for the 

tested specimens there is obviously a dispersion in the surface finish quality at the notch surface 

and in the material microstructure (distribution of grains, pores, inclusions, etc.), which has an 

influence on where the crack initiates and in which direction, especially in high cycle fatigue. This 

section shows an analysis of the effect of this dispersion on the models’ predictions calculated with 

the experimental angles. Starting from the average experimental angles θ and θ1, whose predictions 

are called 𝜎𝐹𝐿𝑁 (exp(𝜃, 𝜃1)), a sweep of θ and θ1 angles of ±1 standard deviation s of each of the 

variables was performed. The model’s predictions were made for all these directions, providing a 

range of predictions (𝜎𝐹𝐿𝑁 (max), 𝜎𝐹𝐿𝑁 (min)) . Their dimensionless values, expressed as a 

percentage, were calculated using the following expressions: 

 𝜎𝐹𝐿𝑁 (max, dim) = 𝜎𝐹𝐿𝑁 (max)−𝜎𝐹𝐿𝑁 (exp(𝜃,𝜃1))𝜎𝐹𝐿𝑁 (exp(𝜃,𝜃1)) ∙ 100     (6) 

 

 𝜎𝐹𝐿𝑁 (min, dim) = 𝜎𝐹𝐿𝑁 (min)−𝜎𝐹𝐿𝑁 (exp(𝜃,𝜃1))𝜎𝐹𝐿𝑁 (exp(𝜃,𝜃1)) ∙ 100     (7) 

 

Note that Eq. (6) will always provide a positive value while Eq. (7) will always provide a negative 

value. Table 5 shows the average of these values for each material and model. Besides, a total 

average for each model is shown. As expected, after the analysis in the previous section, the 

dispersion of θ and θ1 experimental angles generates very low dispersion in the MWCM+PM’s 
predictions for the three materials, and a bit more dispersion in the Carpinteri et al.’s predictions. 

Regarding the biaxial N-R model, there is a clear effect of the material, generating low dispersion 

for the AISI 304L, a higher dispersion for the S355 and a very high dispersion for the 7075-T6. 

These results indicate that the MWCM+PM’s and Carpinteri et al.’s predictions using the average 

experimental angles are highly representative of these models’ predictions for the entire range of 

experimental angles. The same is not the case with the biaxial N-R model, especially for the 7075-

T6 material, for which it would be convenient to give a range of predictions and not just the value 

for the average experimental angles. 

 

Table 5. Range of predictions using the average experimental angles θ and θ1 ±1s. 

Material Range of predictions: 

 (𝜎𝐹𝐿𝑁 (max, dim), 𝜎𝐹𝐿𝑁 (min, dim)) (%) 

MWCM+PM Carpinteri et al. Biaxial N-R 
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AISI 304L (3.5, -0.2) (4.8, -0.1) (1.8, -4.0) 

S355 (1.5, -0.6) (1.6, 0.0) (3.1, -15.9) 

7075-T6 (4.8, -0.6) (4.6, -3.1) (25.9, -46.6) 

Total average: (3.6, -0.4) (4.1, -1.3) (11.7, -23.4) 

 

 

8. DISCUSSION 

The experimental results shown in this work indicate that the fatigue crack initiates from a point of 

the notch contour close to the hot-spot and grows in its initial part close to the Mode I direction. 

These results were obtained after analyzing 106 specimens of three materials, with several hole 

radii and three types of loading, in the high cycle fatigue regime. This is a large study, although it 

is not comprehensive. Regarding the hole radii, values around 1 mm were analyzed, missing the 

study of very small radii, of the order of grain size, and very large radii, of the order of several mm. 

Recently, Lorenzino and Navarro tested an aluminum alloy with very large grains [15]. The 

specimens had a circular hole whose radius was of the order of the grain size and were subjected to 

cyclic axial loading. They observed a great dispersion of the crack initiation point and very 

irregular crack paths in their initial part, greatly affected by the microstructure of the material. 

From which it can be deduced that the main conclusions of the experimental results shown in the 

present work should not be extrapolated to very small holes as compared to the microstructure, 

expecting for these cases a great dispersion on the crack initiation direction. Regarding very large 

holes, according to our knowledge there are no crack initiation direction studies in the literature on 

this size. The effect of the microstructure would be expected to be less than for small holes and 

therefore the crack would initiate close to the hot-spot and grow in its initial part close to the Mode 

I direction, with lower dispersion in the crack initiation direction. Regarding the type of notch, the 

present study was focused on circular notches, with a Kt value of approximately 3. It would be very 

interesting to complete the present study in the future with the analysis of other notch geometries, 

such as V-notches, with Kt values higher and lower than 3. With respect to the type of loading, the 

most common load cases were studied, such as axial, torsional and in-phase biaxial. The study of 

the mean stress and the out-of-phase effects would be enriching. Regarding the studied materials, 

three materials were tested: a stainless steel, a carbon steel and an aluminum alloy, considered as 

brittle, intermediate ductile-brittle and ductile in fatigue. Therefore, regarding the ductility of 

materials the present work can be considered as very complete. No significant differences were 

observed in the crack direction in its initial part for the three materials. An initial direction in Mode 

II for the ductile material was not observed, that is, for all materials the direction was that of Mode 

I. Forsyth literally said in his fatigue book [30]: “…it has been observed that this slip-band crack 

growth commonly changes to normal growth when the tip of the crack reaches the first grain 

boundary…”. According to this statement, a Mode II initiation at the first grain could have 

occurred in the studied materials, but it would not have been observed in the present study, where 

cracks of, at least, several grains in length were analyzed. It would be interesting for the future to 

carry out a study of experimental crack directions in the first grain for notches and verify if the 

Mode II direction prevails. 

An important parameter of the present study is the crack length a used to measure the 

experimental crack direction angle θ1. It was set to 0.50, 0.08 and 0.15 mm for the AISI 304L, 

S355 and 7075-T6 specimens, respectively, that is, a different length for each material. These 

lengths are also different if they are expressed as a function of the El Haddad length a0, being 
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2.8a0, 0.5a0, and 2.1a0, respectively, or, as a function of the average grain size, 6.2d, 2.4d and 10d, 

respectively. The reason for choosing these lengths is explained below. For the AISI 304L, 

chronologically the first tested material, a length that was of the order of 5-10 grains and of the 

order of a0 was sought, so that it would be representative of the typical lengths used for the 

predictions with the N-R model and the TCD (a0/2 for the point method and 2a0 for the line 

method), respectively. In addition, the length should not be too small, in order to make possible an 

optical analysis of the crack. The chosen length was 0.50 mm, equivalent to 6.2 grains and 2.8a0. 

The second studied material was the 7075-T6. This material had a very small grain, 0.015 mm, so it 

was decided to choose the largest possible length without exceeding 10 grains. So, a length of 

0.150 mm was chosen, equivalent to 10 grains and 2.1a0. For the third studied material, the S355, a 

length of a0/2 was chosen, as the chosen lengths for the two previous materials were clearly larger 

than a0/2, length used in the point method. The length was 0.08 mm, equivalent to 2.4 grains. The 

study done on S355 steel included experimental angles θ1 measured at various lengths, such as 

0.5a0, a0, and 2a0, in order to analyze the influence of this length in the measured angles θ1. The 

average θ1 angles were very similar for these three lengths. For example, for the radius R = 0.4 

mm, the average θ1 angles were -1.0º, -2.9º and 0.8º for lengths 0.5a0, a0, and 2a0, respectively. 

This indicates that for this material the average crack direction changes little for crack lengths of 

the order of a0. Based on these results, the average measured angles θ1 shown in this work, 

measured for the lengths defined above for the three studied materials, were considered 

representative of the crack direction in its initial part, which is the part of the crack that the studied 

models are supposed to use for their predictions. 

Regarding the analyzed models, used for the prediction of the notch fatigue limit under biaxial 

loading, they provided in general good predictions for the studied cases. In addition, the application 

of the models using, in a forced way, the experimental crack direction to make the predictions were 

also good (with the exception of the biaxial N-R model applied to the 7075-T6 material). These 

results allow us to glimpse that in the near future the models could use directions close to the 

experimental ones for the predictions, so that both the numerical predictions of the fatigue limits 

and the directions used were close to the experimental measurements. Although previously it will 

be necessary to extend the experimental work of the type shown in the present document to more 

geometries, loads, etc. In our opinion, this would result in a higher quality of the models, which 

would increase the confidence of the industry in them. 

 

9. CONCLUSIONS 

In this work an analysis of the fatigue limits in notched specimens under biaxial cyclic loading was 

shown, including the experimental results for specimens with several hole sizes, three materials and 

three types of loading, and the experimental predictions with three models. Two of the models were 

based on a combination of the Critical Plane Approach with the Theory of Critical Distances and 

the third was a short crack microstructural model. Regarding the experimental work, the crack 

directions of 106 notched specimens were analyzed. The most remarkable thing is that for the three 

studied materials and the three types of loading the crack initiation point was approximately that of 

maximum principal stress at the notch contour and the crack direction in its initial part was close to 

that of Mode I, despite the fact that the three materials were very different in terms of their 

ductility, being one of the ductile type, another semi-ductile and the other brittle. Regarding the 

models, they generally gave good predictions, even if the use of the experimental crack direction 

was imposed to make the predictions. This last conclusion opens the possibility for the models to 



21 

 

unify the crack lines used for the predictions, based on the experimental ones, which would make 

them closer to the experimental reality, and therefore more reliable. 
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