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Abstract: The fluctuation of temperature leads to the changes of physical-mechanical properties 10 

of clayey soils. In some practical projects such as landfills, the compacted clay liner is usually 11 

subjected to a non-isothermal distribution state. For one-dimensional nonlinear consolidation 12 

process of saturated clay under non-isothermal distribution condition, the general analytical 13 

solutions considering time-dependent loading are derived for the first time, where the methods of 14 

algebraic transformation and separation variable are used. Moreover, two forms of boundary 15 

conditions are included according to engineering practice. Referring to the proposed general 16 

analytical solutions, the expressions for the analytical solutions under instantaneous loading pattern 17 

and single-stage linear loading pattern are developed. Besides, the correctness of the presented 18 

analytical solutions is validated by comparing with the existing analytical solutions and finite 19 

difference solutions. Based on the proposed analytical solutions, the influence of temperature 20 

gradient, final loading and loading time on the consolidation behaviors is analyzed. It is found that 21 

the increase in temperature gradient accelerates the consolidation rate, and the average volume 22 

compressibility coefficient decreases by 65.4% when final loading increases from 50kPa to 500kPa. 23 

In conclusion, the analytical solutions proposed in this study are more comprehensive and can be 24 

applied in different engineering cases. 25 

Key words: general analytical solutions; saturated clay; nonlinear consolidation; non-isothermal 26 

distribution; loading pattern; consolidation behavior  27 



3 
 

1 INTRODUCTION 28 

Consolidation theory of soils is one of the most basic theories in geotechnical engineering. 29 

Since Terzaghi1 proposed the one-dimensional small-strain consolidation theory, many scholars 30 

have carried out experimental and theoretical studies on the consolidation characteristics of soils2-31 

8. The consolidation theory evolved gradually from linear constitutive relationship to nonlinear 32 

constitutive relationship5-8. Besides, multi-layered soils5,9-10, time-dependent loading7,11-12, and 33 

continuous drainage boundary were considered13-15. Nevertheless, the effects of temperature on the 34 

one-dimensional consolidation behaviors were ignored in the above consolidation theories. 35 

Numerous experimental studies have found that the change of temperature would lead to the 36 

variation in physical-mechanical properties of soils16-23, which resulted in many geotechnical 37 

engineering problems such as soils deformation, strength loss and stability failures. For example, 38 

the physical-mechanical properties of saturated and compacted clay used as a liner system in the 39 

landfills or nuclear waste disposal sites can be obviously affected by temperature16,21,24-26. 40 

Meanwhile, the compressibility and permeability of soft soils usually show nonlinear changes 41 

during the consolidation process, especially for saturated clay3-4,27-28. Therefore, it is necessary to 42 

investigate the one-dimensional nonlinear consolidation process of clay by taking into 43 

consideration the effects of temperature. 44 

To explore the consolidation characteristics of clay considering the effects of temperature, 45 

many related experimental studies were carried out19,29-37. Paaswell carried out the heating test of 46 

soils under constant loading and found that the increase in temperature d led to the soil settlement, 47 

where the concept of “thermal consolidation” was proposed for the first time29. Some experimental 48 

researches showed that the influence of temperature on the compressibility of clay was related to 49 

the stress history33-34, and the pre-consolidation pressure of soils gradually decreased with 50 
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increasing the temperature30,36. Furthermore, the generation and dissipation of excess pore water 51 

pressure (EPWP) could be affected by temperature31. Besides, Di Donna and Laloui discovered 52 

that the primary consolidation coefficient and permeability coefficient of soils increased under 53 

thermal cycling loading, thus accelerating the consolidation rate19. 54 

Meanwhile, the related analytical theories of soils consolidation process considering 55 

temperature field were also investigated38-43. Based on the thermal-hydraulic-mechanical coupling 56 

consolidation theory, Bai and Abousleiman developed the analytical solution for one-dimensional 57 

thermal consolidation of soils by finite Fourier transformation38. Shen and Wu obtained the 58 

analytical solution for one-dimensional consolidation of soils with thermo-mechanical coupling by 59 

a variable separation method39. Liu et al. developed an analytical solution for one-dimensional 60 

nonlinear consolidation of soft soils under constant heat sources, where the secondary consolidation 61 

of soils was considered40. Subsequently, a semi-analytical solution under varied loading and 62 

constant heat source was proposed, where the top boundary was assumed to be a semi-permeable 63 

boundary42. Moreover, the creep and thermal consolidation behaviors of saturated clays were 64 

introduced into the consolidation process43. However, the above theoretical studies mainly 65 

considered the consolidation process with thermal loading, and the effects of temperature on the 66 

permeability were mostly neglected. At present, the non-isothermal distribution condition has not 67 

been introduced into the consolidation theory, in which the effects of temperature on the 68 

permeability should also be considered. 69 

For the barrier system of landfills and geological disposal of wastes, the saturated and 70 

compacted clay is commonly used16,21,24,26,44. The chemical reaction process of the medium 71 

produces large amounts of heat and increases the temperature in the internal field. In contrast, the 72 

temperature of the soils and groundwater outside the field is generally lower16,24,26,45-47. Therefore, 73 
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clay liner is usually subjected to a non-isothermal distribution condition. Moreover, in the areas 74 

with an extremely high temperature or extremely low temperature, the surface clay is greatly 75 

affected by the ambient temperature, while the temperature of the deep layer of clay remains 76 

stable41,48, thereby leading to a non-isothermal distribution condition of clay. To sum up, it is 77 

necessary to consider the non-isothermal distribution condition in the consolidation theory of clay. 78 

In this study, the governing equation for one-dimensional nonlinear consolidation of clay 79 

under non-isothermal distribution conditions is derived with some assumptions. Then, the general 80 

analytical solutions are proposed under time-dependent loading for the first time using the methods 81 

of algebraic transformation and variable separation, where two forms of boundary conditions are 82 

included. In addition, the proposed analytical solutions are demonstrated by comparing with the 83 

existing analytical solutions and finite difference solutions. Finally, the influence of temperature 84 

gradient, final loading and loading time on the consolidation behaviors is analyzed based on the 85 

analytical solutions developed in this study. 86 

2 MATHEMATICAL MODEL 87 

2.1 SCHEMATIC DIAGRAM AND BASIC ASSUMPTIONS 88 

The schematic diagram for one-dimensional nonlinear consolidation process of saturated clay 89 

under non-isothermal distribution condition is shown in Figure 1. Two forms of drainage boundary 90 

conditions are considered: single-sided drainage case and double-sided drainage case. The case that 91 

the top boundary is pervious and the bottom boundary is impervious is denoted as PTIB case, while 92 

the case that both boundaries are pervious is denoted as PTPB case. As shown in Figure 1, 𝑧 93 

represents the downward vertical coordinate, and 𝑞(𝑡)  represents the time-dependent loading 94 

subjected to the clay with a thickness of 𝐿. Moreover, to consider the effects of non-isothermal 95 

distribution condition on the consolidation process49, it is assumed that the temperature 𝑇 in clay 96 
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is linearly distributed with depth and rapidly reaches a stable state46-47,50-51, where 𝑇𝑎  and 𝑇𝑏 97 

represent the temperature at the top and bottom boundary, respectively. 98 

Experimental studies have shown that the permeability coefficient of clay increased with the 99 

increase of temperature, and it is general believed that the variation in permeability coefficient is 100 

mainly related to the change of dynamic viscosity coefficient16,20,52-53. Meanwhile, some 101 

experimental results showed that in a certain range of temperature (e.g. 20~80°C), the pre-102 

consolidation pressure of clay decreased slightly with the increase of temperature, and the effect of 103 

temperature on the compressibility index was negligible19,30,33-34. Furthermore, Zhang et al. 104 

discovered that the compressibility curves of clay at different temperatures remained almost 105 

unchanged after conducting consolidation experiments on two types of clay samples at different 106 

temperatures35. In addition, it is widely assumed that the initial effective stress is constant with 107 

depth for the nonlinear consolidation theory of clay, and the strain of soil particles and water under 108 

surcharge loading can be ignored2-3,6-8. In this case, the compressibility index is assumed to be 109 

constant to develop the analytical solutions considering the low compressibility of saturated clay. 110 

Besides, the following assumptions are made2-3,6-8,28,47-48: 111 

(1) The clay is homogeneous and saturated during the consolidation process; 112 

(2) The assumption of small-strain is established; 113 

(3) Soil particles and pore water are incompressible, and only the vertical drainage is 114 

considered; 115 

(4) The seepage of water in clay follows Darcy’s law; 116 

(5) The initial effective stress of clay remains constant along the depth; 117 

(6) The temperature distribution in clay will rapidly stabilize, and the effect of heat conduction 118 

can be neglected during the consolidation process; 119 
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(7) During the consolidation process, the following logarithm relations (𝑒 − log 𝜎′ and 𝑒 −120 log 𝑘𝑣) are defined to reflect the nonlinear variations of compressibility and permeability7,28,40: 121 𝑒 = 𝑒0 − 𝐶𝑐𝑇 log(𝜎′ 𝜎0′⁄ )                                                   (1) 122 𝑒 = 𝑒0 + 𝐶𝑘𝑇 log(𝑘𝑣 𝑘𝑣0⁄ )                                                  (2) 123 

where 𝑒 and 𝑒0 are the void ratio and initial void ratio of clay, respectively; 𝜎′ and 𝜎0′ are the 124 

effective stress and the initial effective stress of clay, respectively; 𝐶𝑐𝑇 is the compressibility index 125 

of clay; 𝑘𝑣 and 𝑘𝑣0 are the permeability coefficient and the initial permeability coefficient of 126 

clay, respectively; 𝐶𝑘𝑇 is the permeability index of clay. Referring to the existing studies2,3,40, 𝐶𝑐𝑇 127 

and 𝐶𝑘𝑇 are assumed to be constants. 128 

2.2 GOVERNING EQUATION 129 

The permeability coefficient 𝑘𝑣  of clay is affected by void ratio 𝑒  and temperature 𝑇 . 130 

Based on the existing researches16,20,52-53, the relationship of permeability coefficient 𝑘𝑣  with 131 

temperature 𝑇 can be written as: 132 𝑘𝑣(𝑇)𝑘𝑣(𝑅) = 𝐾𝑣(𝑇)𝜂𝑅𝐾𝑣(𝑅)𝜂𝑇                                                            (3) 133 

where 𝑅 is the reference temperature (e.g. 20°C); 𝐾𝑣 is the intrinsic permeability coefficient; 𝜂𝑅  134 

and 𝜂𝑇 are the dynamic viscosity coefficients at temperature 𝑅 and 𝑇, respectively. 135 

For clay, it is generally considered that the intrinsic permeability coefficient 𝐾𝑣  remains 136 

constant in a certain temperature range (e.g. 20~60°C), and the change of permeability coefficient 137 

is attributed to the change of the dynamic viscosity coefficient16,20,52-53. Thus, Eq. (3) can be 138 

rewritten as: 139 

𝑘𝑣(𝑇)𝑘𝑣(𝑅) = 𝜂𝑅𝜂𝑇                                                                (4) 140 

Under standard atmospheric pressure, the dynamic viscosity coefficients of water at different 141 

temperatures are shown in Table 1 (i.e. the temperature range of 0°C~100°C is considered). 142 
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According to Table 1, it is found that the following relationship can be used to approximately 143 

describe the change of dynamic viscosity coefficient with temperature: 144 𝜂𝑅𝜂𝑇 = 0.029𝑇 + 0.428    (𝑅2 = 0.993)                                         (5) 145 

According to Eq. (2) and Eq. (3), the relationship between the permeability coefficient 𝑘𝑣 146 

and temperature 𝑇 can be expressed as: 147 𝑘𝑣(𝑇) = 𝑘𝑣(𝑅)(0.029𝑇 + 0.428)                                             (6) 148 

Since the rapid conduction process of temperature, based on the related researches46-47,50-51, 149 

the distribution of temperature 𝑇 in clay can be expressed as: 150 𝑇(𝑧) = 𝑇𝑎 + 𝑀𝑧                                                          (7) 151 

where 𝑀 = (𝑇𝑏 − 𝑇𝑎 ) 𝐿⁄  , 𝑀  represents the temperature gradient, the unit of 𝑀  is ℃ m⁄  . It 152 

should be noted that to develop the analytical solutions, the case of 𝑀 = 0 ℃ m⁄  is not considered 153 

in this study (i.e. the isothermal distribution condition is not considered). 154 

Combining Eq. (6) with Eq. (7), the temperature-dependent permeability coefficient 𝑘𝑣(𝑇) 155 

can be transformed into the depth-dependent permeability coefficient 𝑘𝑣(𝑧): 156 𝑘𝑣(𝑧) = 𝑘𝑣,𝑅 × (𝜃𝑧 + 𝑄𝑎)                                                 (8) 157 

where 𝜃 = 0.029𝑀 , 𝜃  represents the permeability coefficient gradient, and the unit of 𝜃  is 158 1 m⁄ ; 𝑘𝑣,𝑅 is the permeability coefficient at the reference temperature 𝑅; 𝑄𝑎 = 0.029𝑇𝑎 + 0.428, 159 𝑘𝑣(0) = 𝑄𝑎𝑘𝑣,𝑅, 𝑘𝑣(0) is the permeability coefficient at the top boundary of clay. 160 

According to Eq. (1), Eq. (2) and Eq. (8), the permeability coefficient 𝑘𝑣  can be further 161 

expressed as: 162 

𝑘𝑣 = 𝑘𝑣0,𝑅(𝜃𝑧 + 𝑄𝑎) (𝜎0′𝜎′)𝐶𝑐𝑇 𝐶𝑘𝑇⁄
                                            (9) 163 

where 𝑘𝑣0,𝑅 is the initial permeability coefficient at the reference temperature 𝑅. 164 

Based on the above assumptions, the governing equation for one-dimensional nonlinear 165 
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consolidation can be written as: 166 

𝜕𝜕𝑧 (𝑘𝑣𝛾𝑤 𝜕𝑢𝜕𝑧) = − 11+𝑒0 𝜕𝑒𝜕𝑡                                                     (10) 167 

where 𝑢 represents the excess pore water pressure (EPWP); 𝛾𝑤 is the unit weight of water. 168 

According to the principle of effective stress and applied surcharge loading 𝑞(𝑡), the effective 169 

stress can be written as: 170 𝜎′ = 𝜎0′ + 𝑞(𝑡) − 𝑢                                                       (11) 171 

Combined with Eq. (1), Eq. (9) and Eq. (10), the governing Eq. (11) can be rewritten as:  172 

𝜕𝜕𝑧 [𝑘𝑣0,𝑅𝛾𝑤 (𝜃𝑧 + 𝑄𝑎) (𝜎0′𝜎′)𝐶𝑐𝑇 𝐶𝑘𝑇⁄ 𝜕𝑢𝜕𝑧] = 𝑚𝑣0 𝜎0′𝜎′ (𝜕𝑢𝜕𝑡 − 𝑑𝑞𝑑𝑡)                           (12) 173 

where 𝑚𝑣0 = 𝐶𝑐𝑇ln 10×(1+𝑒0)𝜎0′, 𝑚𝑣0 is the initial volume compressibility coefficient.  174 

The initial condition can be expressed as: 175 𝑢(𝑧, 0) = 𝑞0                                                             (13) 176 

where 𝑞0 = 𝑞(0), 𝑞0 is the surcharge loading at the initial moment.  177 

The boundary conditions can be presented as: 178 𝑢(0, 𝑡) = 0，𝜕𝑢(𝐿,𝑡)𝜕𝑧 = 0   (for PTIB case)                                   (14a) 179 𝑢(0, 𝑡) = 0，𝑢(𝐿, 𝑡) = 0   (for PTPB case)                                  (14b) 180 

3 ANALYTICAL SOLUTIONS FOR MATHEMATICAL MODEL 181 

3.1 GENERAL ANALYTICAL SOLUTIONS 182 

When the logarithm relations ( 𝑒 − log 𝜎′  and 𝑒 − log 𝑘𝑣 ) are adopted to describe the 183 

nonlinear variations in compressibility and permeability, the compressibility index and 184 

permeability index are usually close2-3,40. To develop the analytical solutions for the governing Eq. 185 

(12), it is assumed that 𝐶𝑐𝑇 𝐶𝑘𝑇 = 1⁄ . Therefore, the governing Eq. (12) can be further developed 186 

as: 187 
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𝐶𝑣0,𝑅 {(𝜃𝑧 + 𝑄𝑎) [𝜕2𝑢𝜕𝑧2 + 1𝜎′ (𝜕𝑢𝜕𝑧)2] + 𝜃 𝜕𝑢𝜕𝑧} = 𝜕𝑢𝜕𝑡 − 𝑑𝑞𝑑𝑡                            (15) 188 

where 𝐶𝑣0,𝑅 = 𝑘𝑣0,𝑅𝑚𝑣0𝛾𝑤，𝐶𝑣0,𝑅 is defined as the initial consolidation coefficient corresponding to the 189 

reference temperature 𝑅. 190 

By introducing a variable 𝑍 = √𝜃𝑧 + 𝑄𝑎  and considering the chain rule of derivative, the 191 

following transformation can be obtained: 192 

𝜕𝑢𝜕𝑧 = 𝜕𝑢𝜕𝑍 𝜃2𝑍                                                               (16) 193 

The governing equation can be further derived by introducing Eq. (16) into Eq. (15), which 194 

leads to Eq. (17): 195 𝜆2 [𝜕2𝑢𝜕𝑍2 + 𝜕𝑢𝜕𝑍 1𝑍 + 1𝜎′ (𝜕𝑢𝜕𝑍)2] = 𝜕𝑢𝜕𝑡 − 𝑑𝑞𝑑𝑡                                          (17) 196 

where 𝜆 = 12 √𝐶𝑣0,𝑅𝜃2, 𝜆 represents a constant coefficient. 197 

Thus, the corresponding initial conditions and boundary conditions can be rewritten as: 198 𝑢(𝑍, 0) = 𝑞0                                                            (18) 199 𝑢(𝑍0, 𝑡) = 0，𝜕𝑢(𝑍1,𝑡)𝜕𝑍 = 0 (for PTIB case)                                   (19a) 200 𝑢(𝑍0, 𝑡) = 0，𝑢(𝑍1, 𝑡) = 0 (for PTPB case)                                  (19b) 201 

where 𝑍0 = √𝑄𝑎, 𝑍1 = √𝜃𝐿 + 𝑄𝑎. 202 

To obtain the analytical solution, a new variable 𝑤(𝑍, 𝑡) is introduced, leading to Eq. (20):  203 𝑤(𝑍, 𝑡) = ln [ 𝜎′𝜎0′ +𝑞(𝑡)] = ln [𝜎0′+𝑞(𝑡)−𝑢𝜎0′ +𝑞(𝑡) ]                                        (20) 204 

According to Eq. (20), the governing Eq. (17) can be further expressed as: 205 𝜆2 [𝜕2𝑤𝜕𝑍2 + 𝜕𝑤𝜕𝑍 1𝑍] = 𝜕𝑤𝜕𝑡 + 𝐹(𝑡)                                               (21) 206 

where 𝐹(𝑡) = 1𝜎0′ +𝑞(𝑡) 𝑑𝑞𝑑𝑡 . 207 

Again, the corresponding initial conditions and boundary conditions can be rewritten as: 208 𝑤(𝑍, 0) = 𝑤0                                                            (22) 209 
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𝑤(𝑍0, 𝑡) = 0，𝜕𝑤(𝑍1,𝑡)𝜕𝑍 = 0  (for PTIB case)                                  (23a) 210 𝑤(𝑍0, 𝑡) = 0，𝑤(𝑍1, 𝑡) = 0  (for PTPB case)                                 (23b) 211 

where 𝑤0 = ln ( 𝜎0′𝜎0′+𝑞0). 212 

According to the forms of governing Eq. (21) and corresponding conditions, and referring to 213 

variable separation method used by Zhu and Yin54, it is assumed that: 214 𝑤(𝑍, 𝑡) = ∑ 𝐻𝑚(𝑍)𝑇𝑚(𝑡)∞𝑚=1                                                (24) 215 

where 𝐻𝑚(𝑍) and 𝑇𝑚(𝑡) are functions related to 𝑍 and 𝑡, respectively. 216 

By introducing Eq. (24) into Eq. (21), Eq. (25) can be obtained: 217 𝜆2 [𝜕2𝐻𝑚(𝑍)𝑇𝑚(𝑡)𝜕𝑍2 + 𝜕𝐻𝑚(𝑍)𝑇𝑚(𝑡)𝜕𝑍 1𝑍] = 𝜕𝐻𝑚(𝑍)𝑇𝑚(𝑡)𝜕𝑡 + 𝐹𝑚𝐻𝑚(𝑍)𝐹(𝑡)                    (25) 218 

where 1 = ∑ 𝐹𝑚𝐻𝑚(𝑍)∞𝑚=1 , 𝐹𝑚 is an undetermined constant related to 𝑚. 219 

Based on Eq. (25), the relationships related to 𝐻𝑚(𝑍) and 𝑇𝑚(𝑡) can be written as: 220 

𝜕2𝐻𝑚(𝑍)𝜕𝑍2 + 𝜕𝐻𝑚(𝑍)𝜕𝑍 1𝑍 = − 𝛽𝑚2𝜆2 𝐻𝑚(𝑍)                                            (26) 221 

𝜕𝑇𝑚(𝑡)𝜕𝑡 + 𝐹𝑚𝐹(𝑡) = −𝛽𝑚2 𝑇𝑚(𝑡)                                               (27) 222 

where 𝛽𝑚 is an undetermined constant related to 𝑚. 223 

According to the form of governing Eq. (26), it can be determined that the general solution of 224 𝐻𝑚(𝑍) is: 225 𝐻𝑚(𝑍) = 𝐴𝑚𝐽0 (𝛽𝑚𝜆 𝑍) + 𝐵𝑚𝑌0 (𝛽𝑚𝜆 𝑍)                                        (28) 226 

where 𝐽0 and 𝑌0 are the Bessel functions of the first and second kind of zero order, respectively; 227 𝐴𝑚 and 𝐵𝑚 are undetermined constants related to 𝑚, respectively. 228 

According to the form of governing Eq. (27), the general solution of 𝑇𝑚(𝑡) is expressed as: 229 𝑇𝑚(𝑡) = exp(−𝛽𝑚2 𝑡) [𝐶𝑚 − ∫ 𝐹𝑚𝐹(𝜏)exp(𝛽𝑚2 𝜏)𝑡0 𝑑𝜏]                            (29) 230 

where 𝐶𝑚 is an undetermined constant related to 𝑚. 231 

Combined with Eq. (28) and Eq. (29), the expression of 𝑤(𝑍, 𝑡) is shown as: 232 
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𝑤(𝑍, 𝑡) = ∑ 𝑊0𝑚(𝑍)∞𝑚=1 exp(−𝛽𝑚2 𝑡) [𝐶𝑚 − ∫ 𝐹𝑚𝐹(𝜏)exp(𝛽𝑚2 𝜏)𝑡0 𝑑𝜏]               (30) 233 

where 𝑊0𝑚(𝑍) = 𝐴𝑚𝐽0 (𝛽𝑚𝜆 𝑍) + 𝐵𝑚𝑌0 (𝛽𝑚𝜆 𝑍). 234 

When PTIB case is considered, the transcendental equation of 𝛽𝑚 can be expressed as: 235 𝐽0 (𝛽𝑚𝜆 𝑍0) 𝑌1 (𝛽𝑚𝜆 𝑍1) − 𝑌0 (𝛽𝑚𝜆 𝑍0) 𝐽1 (𝛽𝑚𝜆 𝑍1) = 0                               (31) 236 

where 𝐽1 and 𝑌1 are the Bessel functions of the first and second kind of one order, respectively. 237 

After determining 𝛽𝑚  in Eq. (31) and introducing 𝐴𝑚 = 1 , the expression of 𝐵𝑚  can be 238 

developed as: 239 𝐵𝑚 = −𝐽0 (𝛽𝑚𝜆 𝑍0) 𝑌0 (𝛽𝑚𝜆 𝑍0)⁄                                               (32) 240 

When PTPB case is considered, the transcendental equation of 𝛽𝑚 is determined as: 241 𝐽0 (𝛽𝑚𝜆 𝑍0) 𝑌0 (𝛽𝑚𝜆 𝑍1) − 𝑌0 (𝛽𝑚𝜆 𝑍0) 𝐽0 (𝛽𝑚𝜆 𝑍1) = 0                              (33) 242 

Similarly, introducing 𝐴𝑚 = 1, the expression of 𝐵𝑚 is shown as: 243 𝐵𝑚 = −𝐽0 (𝛽𝑚𝜆 𝑍0) 𝑌0 (𝛽𝑚𝜆 𝑍0)⁄                                               (34) 244 

Although the expressions of 𝐵𝑚 are the same in PTIB and PTPB cases, it should be pointed 245 

out that the transcendental equation for determining 𝛽𝑚 is completely different (i.e. Eq. (31) and 246 

Eq. (33) are different), which means the values of 𝐵𝑚 are different for the two cases. 247 

Referring to the related researches54-56, the expression for 𝐹𝑚 can be written as: 248 

𝐹𝑚 = ∫ 𝑍𝑊0𝑚(𝑍)𝑑𝑍𝑍1𝑍0∫ 𝑍𝑊0𝑚(𝑍)𝑊0𝑚(𝑍)𝑑𝑍𝑍1𝑍0                                                    (35) 249 

Similarly, the expression for 𝐶𝑚 is shown as: 250 

𝐶𝑚 = ∫ 𝑤0𝑍𝑊0𝑚(𝑍)𝑑𝑍𝑍1𝑍0∫ 𝑍𝑊0𝑚(𝑍)𝑊0𝑚(𝑍)𝑑𝑍𝑍1𝑍0 = 𝑤0𝐹𝑚                                           (36) 251 

Therefore, combined with 𝑍 = √𝜃𝑧 + 𝑄𝑎, the expression for 𝑤(𝑧, 𝑡) can be written as: 252 𝑤(𝑧, 𝑡) = ∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)∞𝑚=1 exp(−𝛽𝑚2 𝑡)𝐹𝑚 [𝑤0 − ∫ 1𝜎0′ +𝑞(𝜏) 𝑑𝑞𝑑𝜏 exp (𝛽𝑚2 𝜏)𝑡0 𝑑𝜏]    (37) 253 

Combined with Eq. (20), the expression of 𝑢(𝑧, 𝑡) can be written as:  254 
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𝑢(𝑧, 𝑡) = [𝜎0′ + 𝑞(𝑡)] × [1 − e𝑤(𝑧,𝑡)]                                         (38) 255 

Hence, the expression for the settlement of clay at any time 𝑡 can be written as: 256 

𝑆(𝑡) = 𝐶𝑐𝑇(1+𝑒0) ∫ log (𝜎′𝜎0′)𝐿0 𝑑𝑧 = 𝐶𝑐𝑇(1+𝑒0) ∫ log (𝜎′+𝑞(𝑡)−𝑢𝜎0′ ) 𝑑𝑧 =𝐿0 𝐶𝑐𝑇𝐿(1+𝑒0)𝐼 ∑ log (2𝜎0′+2𝑞(𝑡)−𝑢(𝑧𝑖 ,𝑡)−𝑢(𝑧𝑖−1,𝑡)2𝜎0′ )𝐼𝑖=1  (39) 257 

where 𝑧𝑖 = 𝐻 × 𝑖 𝐼⁄ , 𝑖 = 1, 2, 3, ⋯ , 𝐼, and 𝐼 is the number of intervals of clay. 258 

The magnitude of the final loading is denoted as 𝑞𝑢 . Thus, the expression for the final 259 

settlement is shown as: 260 𝑆∞ = 𝐶𝑐𝑇𝐿(1+𝑒0) log (𝜎0′+𝑞𝑢𝜎0′ )                                                     (40) 261 

Therefore, the consolidation degree 𝑈𝑠 defined by settlement is: 262 𝑈𝑠 = 𝑆(𝑡) 𝑆∞⁄                                                            (41) 263 

The consolidation degree 𝑈𝑝 defined by EPWP is: 264 𝑈𝑝 = ∫ [𝑞(𝑡)−𝑢] d𝑧𝐻0 ∫ 𝑞𝑢 d𝑧𝐻0 = 1𝑞𝑢𝐼 ∑ {𝑞(𝑡) − [𝑢(𝑧𝑖,𝑡)+𝑢(𝑧𝑖−1,𝑡)]2 }𝐼𝑖=1                            (42) 265 

Eq. (38), Eq. (41) and Eq. (42) are the general analytical solutions for the one-dimensional 266 

nonlinear consolidation of clay under non-isothermal distribution condition. When the drainage 267 

boundary condition and the variation patterns of surcharge loading are determined, the expression 268 

for analytical solutions can be obtained based on the above corresponding equations. 269 

3.2 EXPRESSIONS FOR TWO LOADING PATTERNS 270 

For the surcharge preloading method, instantaneous loading and linear loading are the most 271 

common patterns in the geotechnical engineering3,7,40. Figure 2 shows the variation of surcharge 272 

loading 𝑞(𝑡)  with time 𝑡  under two loading patterns, where Figure 2(A) represents the 273 

instantaneous loading pattern and Figure 2(B) represents the single-stage linear loading pattern, 274 

respectively. Based on the general analytical solutions proposed in the above section, the 275 

expressions for the analytical solutions of clay under two loading patterns in Figure 2 are given 276 

below. 277 
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3.2.1 INSTANTANEOUS LOADING PATTERN 278 

For the instantaneous loading pattern, 𝑞(𝑡) = 𝑞𝑢, we have: 279 𝑤0 = −ln𝑁𝑢                                                              (43) 280 

where 𝑁𝑢 = (𝜎0′ + 𝑞𝑢) 𝜎0′⁄  , 𝑁𝑢  represents the ratio of final effective stress to initial effective 281 

stress. 𝑁𝑢 is a parameter reflecting the nonlinear consolidation characteristics of saturated clay. 282 

The expression of 𝑤(𝑧, 𝑡) can be written as: 283 𝑤(𝑧, 𝑡) = ∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)exp(−𝛽𝑚2 𝑡)𝑤0𝐹𝑚∞𝑚=1                               (44) 284 

Therefore, combined with Eq. (44), the expression of 𝑢(𝑧, 𝑡) is: 285 𝑢(𝑧, 𝑡) = 𝑁𝑢𝜎0′{1 − exp [∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)exp(−𝛽𝑚2 𝑡)𝑤0𝐹𝑚∞𝑚=1 ]}                (45) 286 

3.2.2 SINGLE-STAGE LINEAR LOADING PATTERN 287 

For single-stage linear loading pattern, the expression of 𝑞(𝑡) can be expressed as: 288 𝑞(𝑡) = {𝑞𝑢 𝑡 𝑡𝑐 , 0 ≤ 𝑡 ≤ 𝑡𝑐⁄𝑞𝑢 , 𝑡 > 𝑡𝑐                                                 (46) 289 

where 𝑡𝑐 represents the linear loading time. 290 

Combined with Eq. (37) and Eq. (46), it is known that 𝑤0 = 0, and the expression of 𝑤(𝑧, 𝑡) 291 

is:  292 

𝑤(𝑧, 𝑡) = { ∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎) exp(−𝛽𝑚2 𝑡) 𝐹𝑚𝐶1, 0 ≤ 𝑡 ≤ 𝑡𝑐∞𝑚=1∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)exp(−𝛽𝑚2 𝑡)𝐹𝑚∞𝑚=1 𝐶2, 𝑡 > 𝑡𝑐                            293 

(47) 294 

In Eq. (47), the expression of 𝐶1 and 𝐶2 is:  295 𝐶1 = −exp (− 𝛽𝑚2 𝑡𝑐𝑁𝑢−1) [ln𝑇 + ∑ 𝛽𝑚2𝑘𝑡𝑐𝑘(𝑇𝑘−1)𝑘!𝑘(𝑁𝑢−1)𝑘∞𝑘=1 ]                                  (48) 296 𝐶2 = −exp (− 𝛽𝑚2 𝑡𝑐𝑁𝑢−1) [ln𝑁𝑢 + ∑ 𝛽𝑚2𝑘𝑡𝑐𝑘(𝑁𝑢𝑘−1)𝑘!𝑘(𝑁𝑢−1)𝑘∞𝑘=1 ]                                 (49) 297 

where 𝑇 = [(𝑁𝑢 − 1)𝑡 + 𝑡𝑐] 𝑡𝑐⁄ . 298 

Therefore, the expression of 𝑢(𝑧, 𝑡) is: 299 
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𝑢(𝑧, 𝑡) =300 

{ (𝜎0′ + 𝑞𝑢 𝑡 𝑡𝑐⁄ ){1 − exp [∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)exp(−𝛽𝑚2 𝑡)𝐹𝑚𝐶1∞𝑚=1 ]}, 0 ≤ 𝑡 ≤ 𝑡𝑐𝑁𝑢𝜎0′{1 − exp [∑ 𝑊0𝑚(√𝜃𝑧 + 𝑄𝑎)exp(−𝛽𝑚2 𝑡)𝐹𝑚𝐶2∞𝑚=1 ]},                   𝑡 > 𝑡𝑐        301 

(50) 302 

Once the expression of EPWP 𝑢  is determined, the consolidation degree 𝑈𝑠  defined by 303 

settlement and 𝑈𝑝 defined by EPWP can be obtained by Eq. (41) and Eq. (42), respectively. It 304 

should be noted that the determination of parameters in the above expressions should be combined 305 

with the corresponding boundary conditions. 306 

4 VERIFICATION 307 

4.1 COMPARISON WITH THE EXISTING ANALYTICAL SOLUTIONS 308 

Xie et al. studied the one-dimensional nonlinear consolidation process of clayey soil under 309 

time-dependent loading, where the analytical solutions for single-layer clay under instantaneous 310 

loading pattern and single-stage linear loading pattern were presented3. When the instantaneous 311 

loading pattern is considered, the expressions of EPWP 𝑢  and the consolidation degree 𝑈𝑠 312 

defined by settlement for PTIB case are given as3: 313 𝑢(𝑧, 𝑡) = 𝑞𝑢𝑁𝑢(𝑁𝑢−1) (1 − 𝑁𝑢−𝑃)                                                 (50) 314 𝑈𝑠 = 1 − ∑ 2𝑀2∞𝑚=1 exp (−𝑀2𝑇𝑣)                                             (51) 315 

where 𝑃 = ∑ 2𝑀 sin (𝑀𝑧𝐻 ) exp(−𝑀2𝑇𝑣)∞𝑚=1 , 𝑇𝑣 = 𝐶𝑣0,𝑅𝑡 𝐻2⁄ , 𝑀 = (2𝑚 − 1)π 2⁄ . 316 

When single-stage linear loading pattern is considered, the expressions of 𝑢  and 𝑈𝑠  are 317 

given as3: 318 

𝑢(𝑧, 𝑡) = { 𝑞𝑢𝑇(𝑁𝑢−1) [1 − exp(−𝑃1)], 0 ≤ 𝑡 ≤ 𝑡𝑐𝑞𝑢𝑁𝑢(𝑁𝑢−1) [1 − exp(−𝑃2)] , 𝑡 > 𝑡𝑐                                          (52) 319 
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𝑈𝑠 = { 1ln 𝑁𝑢 [ln 𝑇 − ∑ 2𝑄1𝑀2 exp(−𝑀2𝑇𝑣)∞𝑚=1 ] , 0 ≤ 𝑡 ≤ 𝑡𝑐1ln 𝑁𝑢 [ln 𝑁𝑢 − ∑ 2𝑄2𝑀2 exp(−𝑀2𝑇𝑣)∞𝑚=1 ] , 𝑡 > 𝑡𝑐                                 (53) 320 

In Eqs. (52)～(53), the expressions of related variables are: 321 𝑃1 = ∑ 2𝑄1𝑀 sin (𝑀𝑧𝐻 ) exp(−𝑀2𝑇𝑣)∞𝑚=1                                         (54a) 322 𝑃2 = ∑ 2𝑄2𝑀 sin (𝑀𝑧𝐻 ) exp(−𝑀2𝑇𝑣)∞𝑚=1                                         (54b) 323 𝑄1 = exp (− 𝑀2𝑇𝑣𝑐𝑁𝑢−1 ) [ln 𝑇 + ∑ (𝑀2𝑇𝑣𝑐)𝑘(𝑇𝑘−1)𝑘!𝑘(𝑁𝑢−1)𝑘∞𝑘=1 ]                                (54c) 324 𝑄2 = exp (− 𝑀2𝑇𝑣𝑐𝑁𝑢−1 ) [ln 𝑁𝑢 + ∑ (𝑀2𝑇𝑣𝑐)𝑘(𝑁𝑢𝑘−1)𝑘!𝑘(𝑁𝑢−1)𝑘∞𝑘=1 ]                              (54d) 325 𝑇 = 𝑇𝑣𝑐+(𝑁𝑢−1)𝑇𝑣𝑇𝑣𝑐                                                          (54e) 326 

where 𝑇𝑣𝑐 = 𝐶𝑣0,𝑅𝑡𝑐 𝐻2⁄ . 327 

Similarly, only 𝐻 in the above expressions needs to be changed to 𝐻 2⁄  for PTPB case3,7. 328 

To verify the correctness of the proposed analytical solutions in this study, two forms of 329 

drainage boundary conditions and two loading patterns are adopted for comparison. The calculation 330 

results of the analytical solutions under different temperature gradients are compared with the 331 

analytical solutions proposed by Xie et al.3 As shown in Table 2, the calculation parameters of clay 332 

are selected for comparative analysis. 333 

Figure 3 shows the comparison between the analytical solutions proposed in this study and 334 

the existing analytical solutions under two loading patterns3. When 𝑀 = 10 °Cmm or 𝑀 =335 −10°Cmm, the curves of consolidation degree 𝑈𝑠 defined by settlement of the proposed analytical 336 

solutions in this study are significantly different from the analytical solutions proposed by Xie et 337 

al.3 However, when the temperature gradient 𝑀  approaches to 0°Cmm (e.g. 𝑀 = 0.01 °Cmm or 338 𝑀 = −0.01 °Cmm), the curves of 𝑈𝑠   under the two analytical solutions are basically the same 339 

regardless of the loading patterns. Although the expressions for the two analytical solutions are 340 

completely different due to the consideration of non-isothermal distribution conditions in this study, 341 
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the comparison shows that the proposed analytical solutions can be degenerated into the analytical 342 

solutions proposed by Xie et al. when the non-isothermal distribution condition is not considered3, 343 

which verifies the correctness of the analytical solutions presented in this study. 344 

4.2 COMPARISON WITH THE FINITE DIFFERENCE SOLUTIONS  345 

Due to the strong stability and high calculation accuracy of the finite difference method for 346 

solving partial differential equations, this method is widely used for the consolidation analysis of 347 

soft soils4,40,57-58. To further verify the correctness of the analytical solutions presented in this study, 348 

the governing Eq. (13) can be solved by the finite difference method with the corresponding initial 349 

conditions and boundary conditions57. 350 

Figure 4 shows the comparison of the consolidation degree 𝑈𝑝 defined by EPWP with time 351 

using two calculation methods, where the parameters shown in Table 2 are adopted. Under different 352 

temperature gradients 𝑀, the curves of 𝑈𝑝 calculated by the analytical solutions proposed in this 353 

study are in good agreement with the curves of 𝑈𝑝 calculated by the finite difference solutions, 354 

which also verifies the correctness of the analytical solutions proposed in this study. 355 

5 CONSOLIDATION BEHAVIORS ANALYSIS 356 

To analyze the consolidation characteristics of saturated clay under non-isothermal 357 

distribution conditions, the effects of temperature gradient 𝑀, final loading 𝑞𝑢 and loading time 358 𝑡𝑐 on the consolidation behaviors are investigated under PTPB case. In the analysis, except for the 359 

specified parameters, the parameters shown in Table 2 are used. 360 

5.1 THE EFFECTS OF TEMPERATURE GRADIENT 361 

Figure 5 shows the distribution of EPWP with depth under different values of temperature 362 

gradients 𝑀  considering the single-stage linear loading pattern. It is observed that EPWP 363 

decreases with the increase of 𝑀  at the same depth, which indicates that the increase of 364 
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temperature accelerates the dissipation of EPWP. The difference of EPWP curves under different 365 

values of 𝑀 is more obvious at the bottom boundary than at the top boundary, which is mainly 366 

because the permeability coefficient of clay near the bottom boundary is larger than that of clay 367 

near the top boundary. 368 

Figure 6 presents the variation in consolidation degree 𝑈𝑠 defined by settlement with time 369 

under different values of temperature gradient 𝑀  considering the single-stage linear loading 370 

pattern. It is observed that 𝑈𝑠 increases with the increase of 𝑀, which is consistent with variation 371 

in EPWP with time in Figure 5. If 𝑡90 is defined as the time when the 𝑈𝑠 reaches 90%, the 𝑡90 372 

under 𝑀 = 10℃/m is about 21.2% shorter than the 𝑡90 under 𝑀 = 0.01℃/m. This is mainly 373 

because the existence of temperature gradients 𝑀  improves the permeability of clay, thus 374 

accelerating the consolidation rate. In short, the temperature gradient 𝑀 has a great impact on the 375 

consolidation behaviors of clay, and the influence of temperature should be considered in 376 

consolidation theory when the non-isothermal distribution condition exists. 377 

5.2 THE EFFECTS OF FINAL LOADING 378 

For the one-dimensional nonlinear consolidation process, the consolidation characteristics 379 

will be affected by final loading 𝑞𝑢 . To investigate the effects of 𝑞𝑢  on the consolidation 380 

behaviors, Figure 7 shows the variation in consolidation degree 𝑈𝑠  defined by settlement and 381 

consolidation degree 𝑈𝑝 defined by EPWP with time under different values of 𝑞𝑢. It can be seen 382 

that 𝑈𝑠  is always larger than 𝑈𝑝  under two loading patterns due to the gradual decrease in 383 

compressibility during the nonlinear consolidation process. Meanwhile, 𝑈𝑝  decreases with the 384 

increase of 𝑞𝑢, which is mainly because the impact of the decrease in permeability is greater than 385 

that of the decrease in compressibility. 386 

In Figure 7(A), when the instantaneous loading pattern is adopted, the curves of 𝑈𝑠 under 387 
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different 𝑞𝑢  are almost the same, which is consistent with the variation laws under the 388 

instantaneous loading pattern without considering the effects of temperature2-3. In Figure 7(B), 389 

when the single-stage linear loading pattern is adopted, 𝑈𝑠 increases slightly with the increase of 390 𝑞𝑢 at the initial stage of consolidation, but the curves of 𝑈𝑠 gradually tend to be consistent at the 391 

end of the linear loading stage. The main reason is that the increase in 𝑞𝑢  accelerates the settlement 392 

rate of clay during the stage of linear loading. 393 

To further analyze the influence of 𝑞𝑢  on the one-dimensional nonlinear consolidation 394 

behaviors, 𝑆𝑞(𝑡) = 𝑆(𝑡) 𝑞𝑢⁄  is defined, which represents the settlement under unit loading at any 395 

time 𝑡  (e.g. 𝑆𝑞,𝑓 = 𝑆∞ 𝑞𝑢⁄  , 𝑆𝑞,𝑓  represents the final settlement under unit loading). Figure 8 396 

presents the variation in settlement 𝑆 and 𝑆𝑞  (the ratio of settlement to final loading) with time 397 

under different values of 𝑞𝑢, where the instantaneous loading pattern is adopted. It is found that 398 

the settlement increases with the increase in 𝑞𝑢, while the values of 𝑆𝑞  decrease with the increase 399 

in 𝑞𝑢. In fact, the decrease in 𝑆𝑞  reflects the decrease in compressibility, which indicates that the 400 

increase of surcharge loading significantly decreases the compressibility of clay during the 401 

nonlinear consolidation process2-3,6-7. 402 

To more accurately investigate the one-dimensional nonlinear consolidation characteristics, 403 

Table 3 shows the value of 𝑆𝑞,𝑓 under different 𝑞𝑢. It can be seen that the value of 𝑆𝑞,𝑓  under 404 𝑞𝑢 = 500kPa  is 0.346 times smaller than that of 𝑞𝑢 = 50kPa , which means that the average 405 

volume compressibility coefficient decreases by 65.4%, when the final loading increases from 406 50kPa to 500kPa. To sum up, the increase of 𝑞𝑢 can significantly decrease the compressibility 407 

and permeability of clay, which significantly affects the nonlinear consolidation process and final 408 

settlement. 409 

5.3 THE EFFECTS OF LOADING TIME 410 
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To further explore the nonlinear consolidation characteristics of clay under the single-stage 411 

linear loading pattern, the variation of EPWP with time under different values of loading time 𝑡𝑐 412 

is given in Figure 9. It is observed that the time of reaching the peak value prolongs with the 413 

increase in 𝑡𝑐, where the peak value of EPWP also decreases. When the linear loading stage is 414 

finished, EPWP gradually decreases with time, and the influence of 𝑡𝑐 on the dissipation of EPWP 415 

gradually decreases in the consolidation process. 416 

Figure 10 shows the variation in consolidation degree 𝑈𝑠 defined by settlement with different 417 𝑡𝑐 . It is seen that 𝑈𝑠  decreases with the increase in 𝑡𝑐 , which is consistent with the variation 418 

features of EPWP in Figure 9. This is mainly because the surcharge loading applied in unit time 419 

decreases with the increase in 𝑡𝑐. The linear loading pattern is widely adopted in geotechnical 420 

engineering7-8,14. Therefore, the analytical solutions proposed in this study are more practical. 421 

6 CONCLUSIONS 422 

In this study, the general analytical solutions for one-dimensional nonlinear consolidation 423 

process of saturated clay under non-isothermal distribution conditions are derived with some 424 

assumptions for the first time, where the time-dependent loading and two forms of boundary 425 

conditions are considered. The proposed analytical solutions are verified by comparing with the 426 

existing analytical solutions and finite difference solutions. Based on the parameter analysis of 427 

consolidation behaviors for PTPB case under instantaneous and single-stage linear loading patterns, 428 

the following conclusions are obtained: 429 

(1) EPWP decreases with the increase of temperature gradient 𝑀 , thus increasing the 430 

consolidation degree 𝑈𝑠  defined by settlement. The time that 𝑈𝑠  reaches 90% under 𝑀 =431 10℃/m is about 21.2% shorter than that of 𝑀 = 0.01℃/m, which indicates that the influence of 432 

temperature should be considered in consolidation theory when the non-isothermal distribution 433 
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condition exists. 434 

(2) During the nonlinear consolidation process, the consolidation degree 𝑈𝑠   defined by 435 

settlement is always larger than the consolidation degree 𝑈𝑃  defined by EPWP, and 𝑈𝑃 decreases 436 

with the increase of final loading 𝑞𝑢. When the instantaneous loading pattern is adopted, the curves 437 

of 𝑈𝑠 under different 𝑞𝑢 are almost the same. However, when considering the single-stage linear 438 

loading pattern, the increase of 𝑞𝑢 will slightly increase 𝑈𝑠 at the initial stage. 439 

(3) The settlement 𝑆 increases with the increase of final loading 𝑞𝑢, while the values of 𝑆𝑞  440 

(the ratio of 𝑆  to 𝑞𝑢 ) decrease with the increase of 𝑞𝑢 , which is mainly due to the reduced 441 

compressibility. When 𝑞𝑢 increases from 50kPa to 500kPa, the average volume compressibility 442 

coefficient decreases by 65.4%.  443 

(4) For the consolidation process under the single-stage linear loading pattern, the 444 

consolidation degree 𝑈𝑠 decreases with the increase of 𝑡𝑐, which is mainly because the surcharge 445 

loading applied in unit time decreases with the increase of 𝑡𝑐. Nevertheless, the increase of 𝑡𝑐 446 

reduces the maximum EPWP generated in the clay. 447 
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TABLE 1 Dynamic viscosity coefficients of water under different temperatures59-60 657 

Temperature, 𝑇m℃ Dynamic viscosity coefficient, 𝜂m(10-3Pams) 
0 1.781 

5 1.519 

10 1.307 

20 1.002 

30 0.798 

40 0.653 

50 0.547 

60 0.466 

70 0.404 

80 0.354 

90 0.315 

100 0.282 

 658 

TABLE 2 Calculation parameters of clay 659 

Parameter Value 

Thickness, 𝐿mm 4.0 

Initial void ratio, 𝑒0 0.8 

Reference temperature, 𝑅m℃ 20 

Permeability coefficient, 𝑘𝑣0,𝑅m(mms) 4.0×10-10 

Temperature at top boundary, 𝑇𝑎m℃ 45 

Initial effective stress, 𝜎0′mkPa 50 

Temperature gradient, 𝑀m(℃mm) 10 

Compressibility index, 𝐶𝑐𝑇 0.26 

Permeability index, 𝐶𝑘𝑇 0.26 

Final loading, 𝑞𝑢mkPa 250 

Loading time, 𝑡𝑐mday 200 

 660 

TABLE 3 The values of 𝑆𝑞,𝑓 for different 𝑞𝑢  661 

Parameter 𝑆𝑞,𝑓m(×10-3mmkPa) 𝑞𝑢 = 50kPa 3.479 𝑞𝑢 = 200kPa 2.019 𝑞𝑢 = 350kPa 1.491 𝑞𝑢 = 500kPa 1.203 

 662 


