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Can gaze control steering?
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When steering a trajectory, we direct our gaze to
locations (1–3 s ahead) that we want to steer through.
How and why are these active gaze patterns conducive
to successful steering? While various sources of visual
information have been identified that could support
steering control, the role of stereotypical gaze patterns
during steering remains unclear. Here, experimental and
computational approaches are combined to investigate
a possible direct connection between gaze and steering:
Is there enough information in gaze direction that it
could be used in isolation to steer through a series of
waypoints? For this, we test steering models using
waypoints supplied from human gaze data, as well as
waypoints specified by optical features of the
environment. Steering-by-gaze was modeled using a
“pure-pursuit” controller (computing a circular
trajectory toward a steering point), or a simple
“proportional” controller (yaw-rate set proportional to
the visual angle of the steering point). Both controllers
produced successful steering when using human gaze
data as the input. The models generalized using the
same parameters across two scenarios: (a) steering
through a slalom of three visible waypoints located
within lane boundaries and (b) steering a series of
connected S bends comprising visible waypoints without
a visible road. While the trajectories on average broadly
matched those generated by humans, the differences in
individual trajectories were not captured by the models.
We suggest that “looking where we are going” provides
useful information and that this can often be adequate
to guide steering. Capturing variation in human steering
responses, however, likely requires more sophisticated
models or additional sensory information.

Introduction

Studies of human steering have demonstrated
tight coupling between eye movements and steering
behaviors (Land & Lee, 1994; Wilkie & Wann, 2003b;
Kountouriotis et al., 2013; Mole, Kountouriotis,
Billington, & Wilkie, 2016; Lappi et al., 2020;
Tuhkanen, Pekkanen, Wilkie, & Lappi, 2021). Typical
gaze behavior during steering is a repeating pattern of
eye movements, comprising smooth pursuit tracking
of a point on the ground (for approximately 0.5 s)
followed by a saccade to a new point at a time
headway 1–3 s ahead (Lappi & Lehtonen, 2013;
Lappi, Pekkanen, & Itkonen, 2013; Lehtonen, Lappi,
Kotkanen, & Summala, 2013; Tuhkanen et al., 2019).
This pattern is intermittently broken by forward-polling
“look-ahead” fixations further ahead (Lehtonen
et al., 2013; Mole, Pekkanen, Sheppard, Markkula, &
Wilkie, 2021), return fixations closer to the observer
(Navarro et al., 2021), and scanning of the scenery and
vehicle instruments (for review, see Lappi, 2022). Such
gaze patterns have been observed in other contexts
such as walking (Imai, Moore, Raphan, & Cohen,
2001; Matthis, Yates, & Hayhoe, 2018) and cycling
(Vansteenkiste, Cardon, D’Hondt, Philippaerts, &
Lenoir, 2013) and therefore seem to represent a general,
robust visual strategy during locomotion.

In terms of how gaze and steering are functionally
related, we know that gaze leads steering by about 1 s
(e.g., when steering to the right, the head and eyes will
move rightward first, followed by the steering wheel;
Chattington, Wilson, Ashford, & Marple-Horvat,
2007). Furthermore, various studies have demonstrated
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that manipulating gaze behavior can bias steering
(Readinger, Chatziastros, Cunningham, Bülthoff, &
Cutting, 2002; Wilkie & Wann, 2003b; Robertshaw &
Wilkie, 2008; Kountouriotis, Floyd, Gardner, Merat,
& Wilkie, 2012). The possible causal mechanisms to
explain “how” and “to what extent” gaze informs
steering have been more difficult to determine.

For example, sometimes the role of gaze control
in supporting skilled human behavior is linked with
the need to direct more accurate foveal vision onto
successive visual targets. When reading text, for
example, a characteristic pattern of eye movements is
well explained by the need to sample visual information
from the point of fixation (Rayner, 1998); due to
crowding and/or lower visual acuity, individual
characters in text are difficult to resolve using the
visual periphery. In contrast, when steering, useful
information is available from the whole of the visual
field (Wolfe, Dobres, Rosenholtz, & Reimer, 2017), and
it is less clear that there is unique information available
directly at the point of fixation. So what is the purpose
of fixating (and tracking) specific points in the scene?

Another possibility is that the act of directing gaze
toward a point when steering effectively produces a
transformation of retinal visual signals that in itself
supplies information useful for controlling steering.
Such signals would include the pattern of optic
flow on the retina (after it has been transformed by
gaze rotations), which could directly specify steering
demands (Kim & Turvey, 1999; Wann & Swapp, 2000;
Matthis, Muller, Bonnen, & Hayhoe, 2022). Another
possibility is that (perhaps irrespective of where exactly
one is looking) visual input from each fixation can be
processed to glean geometrical information from the
entire scene layout—for example, the direction of “the
tangent point” in the visual field (Land & Lee, 1994) or
the directions and (relative) distances of interception
targets (waypoints; Wilkie, Wann, & Allison, 2008).
Finally, when there is a change in the angle of the
head and eye relative to the body, extraretinal gaze
direction signals are provided that can be useful for
steering (Wilkie & Wann, 2003a, 2005). On the sensory
side, these changes can be registered proprioceptively,
whereas on the motor side, the “efference copy” of
gaze control could provide a useful control signal
(Donaldson, 2000).

When fixating waypoints (interception targets on
the ground), information related to the direction and
distance of each point in the world could thus also be
made available in the form of oculomotor output: If the
gaze control system “places” the gaze point in the world,
then that place can automatically become a target for
the steering system to intercept. Of course, some kind
of mapping from oculomotor to locomotor coordinates
would need to be in place. Perhaps the depth distance
to the point of fixation and the horizontal angle of
gaze relative to the current direction of travel are used
to specify the path curvature needed to intercept the

point of fixation, or alternatively, a point of fixation
with a 2-s time headway and the gaze angle could
be used to specify the required rate of rotation. By
either method, the gaze control information could be
useful in itself as a (nonvisual) steering input. If such
information is available from the oculomotor system,
and sufficient to support steering, then, somewhat
counterintuitively, looking where we are going might
not be so much to see what is there (visual analysis
of local features at the point of fixation), but rather
to tell the rest of the motor system how to move
there.

Aims of the study

Our aim was to investigate whether gaze direction
information (as opposed to optical information from
the scene) would be sufficient for controlling steering
(see Figure 1 for a visual conceptualization). To
achieve this aim, gaze behavior was recorded using a
head-mounted eye tracker, while human participants
steered a winding path during two simulated driving
experiments (lateral steering control but no longitudinal
velocity control). We then used the actual human gaze
patterns as the steering input for simple controllers,
before finally assessing whether these simulations could
produce successful steering from extraretinal gaze
direction alone.

To determine whether the fit to human steering
behavior was specific to the control law being used,
two different controllers modeled steering-by-gaze: (a)
a proportional controller that sets a target yaw-rate in
proportion to the visual angle between gaze/target and
locomotor heading and (b) a pure-pursuit controller
(Coulter, 1992; Samuel, Hussein, & Mohamad, 2016)
that steers on a circular trajectory toward a given
steering point in the world, a point of fixation projected
on the virtual plane of travel. The actual gaze data of
participants were used to derive the steering points of
the controllers.

The aim was to take the simplest possible controller
that we could imagine (the proportional controller) as
well as a more commonly used but still simple controller
(the pure-pursuit controller) to examine how sensitive
steering by gaze control was to the specifics of the
control law. In addition to testing steering-by-gaze,
we also reran each model using optically available
waypoints as steering points (instead of using gaze)
to establish how well the given controllers could
in principle steer when using the available optical
information.

We ran the models on two different datasets (collected
during different steering tasks and with gaze data from
different participants in different laboratories) to assess
how well the steering models generalized to the second
dataset with model parameters that were estimated
from the first dataset. The goal was to see how well (if
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Figure 1. The steering by gaze concept. (1) Traditional steering models steer directly from the optics (i.e., environmental texture
projected to the point of vantage as optic flow or the visual angle of a steering point relative to locomotor heading). (2) These
stimulus features are not, however, present as such in the proximal input (e.g., retinal angles and retinal flow also depend on the
movements of the eye), and perceptual processes are commonly thought to intervene between the distal stimulus and the steering
response but rarely specified. Proprioceptive and efference copy information of gaze direction is often thought to feed into
perceptual processes to allow recovery of the optical information by subtracting changes in retinal input caused by active movement
of the eye. (3) The steering-by-gaze concept suggests a complementary role for efference copy from gaze control: It could be used to
drive steering control directly that is, sending to the steering controller motor coordinate information about the current (gaze) target,
as opposed to first doing perceptual processing to estimate nonmotor (e.g., optical feature) information about that target.

at all) the control laws could operate when human gaze
direction was the sole input.

Methods

Experimental procedure

Two datasets were taken from two separate driving
simulator experiments with human participants,
where steering and eye movements were recorded (See
Figure 2 for sample screenshots). These data were used
to simulate steering-by-gaze behaviors (components of
these datasets were first presented in Mole et al. [2021]
and Tuhkanen et al. [2021]). The two experimental
settings and their designs are described briefly below.
More detailed descriptions of the equipment and
procedures can be found in two previously published
studies. Experiment 1 data were collected at the
University of Leeds with the same experimental
procedure as described in Mole et al. (2021), but in the
present article, only the “slalom” sections of each trial
were used (the empty straight and bending portions of
each trial were not included). Experiment 2 data were
collected at the University of Helsinki using the same
experimental procedure as described in Tuhkanen et al.

(2021), but only the “control trials” were used (the trials
with the “missing waypoints” manipulation were not
included in the present analysis).

The datasets and code for model implementa-
tion/analysis are available at https://github.com/
samtuhka/Gaze_Steering_Models.

Ethics

Data collection for Experiment 1 was conducted at
the School of Psychology at the University of Leeds.
Participants were briefed on the experiment procedure
on arrival and signed an informed consent form for
the publication and use of collected data for scientific
purposes. The study was approved by the University of
Leeds Research Ethics Committee (Ref: PSC435) and
complied with the guidelines set out in the Declaration
of Helsinki.

The data collection for Experiment 2 was conducted
at TRUlab at the University of Helsinki. The
participants were debriefed on the experiment
procedure and signed an informed consent form for
the publication and use of the collected data for
scientific purposes. The study was approved by the
ethical review board of the University of Helsinki (Ref:
Ethical Review Board in the Humanities and Social and

https://github.com/samtuhka/Gaze_Steering_Models
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Figure 2. Left panel. Sample screenshot from a trial in Experiment 1. The participants were instructed to steer through the blue
waypoints. Speed of the virtual vehicle was set constant to 8 m/s. The square optical markers were used to estimate a homography
between each frame of the camera and the display in order to determine where the participant gaze was on the display. Right panel.
Sample screenshot from a trial in Experiment 2. The participants were instructed to steer through a track that was indicated visually
by the white waypoints. If the participants veered off the (invisible) 3.5-m-width track, loudspeakers played a beeping sound. Speed
of the virtual vehicle was set to (approximately) constant 10.5 m/s.

Behavioural Sciences, 2017/7) and complied with the
guidelines set out in the Declaration of Helsinki and
guidelines of the Finnish committee for research ethics
(www.tenk.fi).

Experiment 1

The participants (N = 11) steered through a short
slalom while also completing a continuous driving task,
steering around a larger circuit (see Figure 3). On the
straight road section following a right-turning curve,
three circular visible waypoints were placed along the
road ahead, 8 m from each other (measured along the
road centerline), at a 0.75-m horizontal displacement
(right, left, and right) from the centerline. The speed
of the virtual car was kept constant at 8 m/s. Virtual
eye height was 1.2 m above the ground. The simulated
environment was displayed at a 60 Hz frame rate and
presented on a display with a horizontal field of view of
roughly 90°. Note that the vehicle did not have a full
physics model. The virtual vehicle moved at the exact
set speed, and yaw-rate was in constant proportion to
the position of the steering wheel.

The participants were instructed to use the steering
wheel to pass over each of the visible waypoints. For the
purposes of the analyses, the slalom was determined to
start from approximately 12 m before the first waypoint
and end 4 m after the last waypoint. The width of the
lane was 3 m.

The full dataset contained multiple trial
configurations (“narrow” and “wide” separations
between waypoints) with the driving sometimes being
fully automated, or the participant being tasked to
avoid rather than intercept the waypoints. The focus of
the current study was on modeling steering-to-intercept
behavior, rather than steering-to-avoid (in obstacle

avoidance, steering and gaze may be decoupled as
drivers may look at the obstacle where they wish not to
go). Further, the “narrow; intercept” conditions proved
to be trivial; drivers could steer over the waypoints
with only minor steering adjustments, so gaze and
steering coordination appeared relaxed (Vansteenkiste
et al., 2013). For the present analysis, therefore, only
the “wide; intercept” condition with manual steering
control was considered, with the waypoints placed with
a 0.75-m displacement from the centerline.

We took the mean trajectory of the human
participants as the reference “slalom path” (see the
red line in the left panel of Figure 3) and used this to
determine how far along the track both the human and
model drivers were positioned. For technical purposes,
the averaged-out “slalom path” was indexed into
discrete positions a few centimeters apart. When the
car’s “track position” is referred to later in the article,
this means the closest indexed position on the slalom
path to the vehicle position (NB: Experiment 2 uses
a different reference path). As described in “Model
inputs,” the track position was used to derive the gaze
input from where the human driver was looking at the
corresponding track position. We use the empirical
slalom path as the reference line rather than an a priori
“optimal path” (such as passing over the centers of the
waypoints) because the task of intercepting or “hitting”
a waypoint is inherently ambiguous in terms of where
the optimal line should lie since it will depend on the
characteristic of steering that is being optimized.

Experiment 2

The participants (N = 16) steered through a track
consisting of 120-degree arc curves (radius = 50 m)
alternating to the left and right (total of 16 curves).
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Figure 3. Left panel. The complete track in Experiment 1 with a zoomed-in depiction of one of the slalom components below. The
slalom sections are depicted in red, and the waypoints the participants were instructed to steer through are shown using blue circles.
Direction of travel is clockwise. The red paths are the empirical average “slalom path” as described in the main text. Right panel.
Section of the Experiment 2 track, consisting of 120-degree arc curves alternating to the left and right. The gray dashed lines indicate
the invisible edges, the blue circles the waypoints, and the red line the centerline, which was used as the reference line. The direction
of travel is from top-left to bottom-right.

The track was visually indicated only by circular
white waypoints (see Figure 2), which appeared at
a distance of 21 m from the point of observation
(along the path centerline, corresponding to a 2-s
time headway if driving on the centerline). Waypoints
were placed every 10.5 m (i.e., they appeared at
an approximate rate of 1/s). The placement of the
waypoints in Experiment 2 had been designed to
produce gaze behavior akin to that observed in more
naturalistic settings, while also minimizing spurious eye
movements from non-steering-related tasks. The speed
of the virtual car was kept constant at approximately

10.5 m/s. Virtual eye height was at 1.2 m above the
ground.

The simulated environment was displayed at a 60 Hz
frame rate and presented on a display with a horizontal
field of view of roughly 70°. Participants were
instructed to simply stay on the track—loudspeakers
played a “beeping sound” if the participant veered off
the (invisible) 3.5-m-width track. The simulator used a
raycast vehicle model (as implemented in the Cannon.js
JavaScript physics library) to simulate vehicle physics.

We took the centerline of the track as our reference
track (see the red line in the right panel of Figure 3) and
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Figure 4. Gaussian kernel-density estimates of points of fixation (locations where the gaze vector intercepts the plane of travel) in
Experiments 1 and 2. The color coding indicates the gaze density estimate per square meter (i.e., what proportion of projected gaze
points is estimated to fall on each part of the track). Left panel. Gaze density distribution in Experiment 1. The right-turning oval track
contained two identical slalom sections as depicted in Figure 3 (we treat them as one, identical slalom in our data). The blue circles
indicate the location of the waypoints the participants were instructed to steer through. The black lines indicate the visible edge lines.
The arrow indicates the direction of travel from top to bottom. Right panel. Gaze density distribution in Experiment 2. All right- and
left-turning curves have been transformed to matching coordinates (i.e., the depicted curve contains data from all curves). The blue
circles indicate the visible waypoints and the dashed black lines the invisible road edge lines. The arrow indicates the direction of
travel from top-left to bottom-right.

used this to determine how far along the track both the
human and model drivers were positioned. The model
car’s “track position” in Experiment 2 thus refers to the
indexed position on the track centerline that is closest
to the vehicle position. Like in Experiment 1, the track
positions were used to determine the gaze input for the
models from where the human driver was looking at the
corresponding track position.

In the analysis of Experiment 2, the first and last
curves of each trial were removed (leaving a total of 14
curves). The first curve was removed because the virtual
car would at the start accelerate to the automatically
kept speed of 10.5 m/s, which was not simulated with
the models. The last curve was removed simply to keep
the number of left and right curves equal.

Steering and gaze behavior measurement

Steering control was produced using a Logitech
G27 (Logitech, Fremont, CA, USA) steering wheel
in Experiment 1 and Logitech G920 (Logitech)
steering wheel in Experiment 2. Steering behavior

was recorded for each frame of the simulators
(60 Hz).

In both experiments, the participants’ eye movements
were recorded with a binocular head-mounted Pupil
Core (Pupil Labs UG haftungsbeschränkt, Berlin,
Germany) eye tracker. Eye image data were collected
binocularly at 60 Hz, at a resolution of 640 × 480, and
a forward-facing camera recorded the scene at 30 Hz, at
a resolution of 1920 × 1080 in Experiment 1 and 1280
× 720 in Experiment 2.

The gaze distribution of participants from
both experiments is displayed in Figure 4. Gaze
behaviour from individual trials is displayed
in the Supplementary Movies (available at:
https://doi.org/10.6084/m9.figshare.23456540) with
sample frames shown in Figures 5 and 6. The
Supplementary Movies show the reconstructed
first-person view of the human and model drivers with
the driver’s gaze and future path overlaid on top—the
movies have been reconstructed from the data so they
do not display the textures as seen by the human
participants (see Figure 2 for sample screenshots of the
view that was presented to participants).

https://doi.org/10.6084/m9.figshare.23456540
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Figure 5. Experiment 1. Sample frame from the Supplementary Movies. The full movies depict the model runs from a first-person
perspective side-by-side with the trial from the human driver. Left panel. Human driver’s view. The green circle depicts the screen
coordinates of the gaze signal as recorded by the eye tracker. The dashed green line depicts the driver’s future path (the actual
trajectory they will take). The blue circles depict the visible waypoints and the gray lines the visible track edges. Right panel. The
model driver’s view in the corresponding trial and track position. The purple circle depicts the steering point, which in this case is
based on the gaze point of the human driver—having been projected out onto the three-dimensional world and then reprojected back
to screen coordinates based on the model car’s position and rotation. The purple line shows the future path that the model will take.

Figure 6. Experiment 2. A sample frame from the Supplementary Movies. The full movies depict the model runs from a first-person
perspective side-by-side with the trial from the human driver. Left panel. Human driver’s view. The green circle depicts the screen
coordinates of the gaze signal as recorded by the eye tracker. The dashed green line depicts the driver’s future path (the actual
trajectory they will take). The blue circles depict the visible waypoints and the gray dashed lines the invisible track edges. Right panel.
The model driver’s view in the corresponding trial and track position. The purple circle depicts the steering point, which in this case is
based on the gaze point of the human driver—having been projected out onto the three-dimensional world and then reprojected back
to screen coordinates based on the model car’s position and rotation. The purple line shows the future path that the model will take.

Data modeling methods: Steering controllers

Proportional controller
The proportional controller was deployed to test

how well steering-by-gaze could be achieved by the
simplest means we could imagine, effectively using
the simplest linear controller with a one-dimensional
input (here: horizontal gaze direction relative to current
direction of travel), similar to the much-used 2-point
proportional derivative (PD) controllers like those by
Salvucci and Gray (2004) and van Maanen, Heiden,

Bootsma, and Janssen (2021), but even simpler. Given
the horizontal screen coordinate of the steering point,
the proportional controller will simply set the target
yaw-rate to be proportional to the angular offset of the
steering point from the middle of the screen.

To determine the angular offset, the controller is first
provided with the steering point (x, z) in egocentric
world coordinates where the z-axis is the straight-ahead
direction/locomotor heading of the vehicle and x-axis
is the lateral axis, perpendicular to the z-axis and the
vehicle’s current position is the origin. Assuming no
vehicle roll or pitch, the horizontal screen coordinate h
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is thus:

h = arctan(x/z) (1)

The proportional controller sets target yaw-rate y′ to

y′ = k ∗ h (2)

where k is the gain parameter.
Note that the proportional controller uses only the

horizontal direction of the gaze and does not use any
explicit depth information, unlike the pure-pursuit
controller.

Pure-pursuit controller
The pure-pursuit controller was chosen because it

is a simple controller for intercepting waypoints (here:
points of fixation on the plane of travel). It has been
widely used in vehicle automation as a solution for
steering a vehicle through a designated path or a series
of designated targets (Samuel et al., 2016).

Pure-pursuit calculates the required constant angular
velocity of a moving body/vehicle to intercept a
given steering point when traveling at a constant
speed (forward velocity in moving observer frame of
reference). In other words, given a steering point and
some fixed speed, the pure-pursuit controller calculates
the target yaw-rate that would allow the vehicle to
reach the steering point on a circular trajectory at a
constant yaw-rate from the current position. As the
target yaw-rate is recomputed at every point in time, the
actual resulting trajectory is not necessarily circular.

Mathematical description of the controller is fairly
simple. The controller is given a steering point (x, z) in
egocentric world coordinates where again the z-axis is
the straight-ahead direction/locomotor heading of the
vehicle and x-axis is the lateral axis and the vehicle’s
current position is the origin. The target yaw-rate y′
that allows the vehicle to reach the steering point on a
circular trajectory of constant yaw-rate with speed v is

y′ = k ∗ 2 ∗ v ∗ x/(x2 + z2) (3)

where k is the gain parameter.
Typically, in engineering models, the controller is

given a steering point at some constant distance away
from the vehicle/robot, but in the present study, we
test how the controller performs when given as input
gaze landing points in the scene (points of fixation)
measured from actual human drivers.

Exponential smoothing
For all the models, the target yaw-rate produced by

the controllers was exponentially smoothed to produce
the actual simulated yaw-rate. The yaw-rate yt at given
time t was thus:

yt = a ∗ y′
t + (1 − a) ∗ yt−1 (4)

where a is the smoothing factor, y′
t is the target yaw-rate

given by the controller at time t, and yt − 1 is the
yaw-rate at the previous time step. The smoothing
restricts how fast the virtual vehicle’s yaw-rate could
change (i.e., when a is small, the simulated car cannot
instantaneously change direction when the steering
point/target yaw-rate changes). Note that in the discrete
implementation, the scale of a is sensitive to the frame
rate (60 Hz in both experiments).

In Experiment 1, the yaw-rate was also clipped to a
maximum of 35°/s and a minimum of −35°/s to match
the limits set on the human drivers. In Experiment 2,
no clipping was performed as no such limits were set on
the human drivers.

Model inputs (steering points)

We refer to the coordinates of a point (in a suitable
frame of reference), which can be given to a steering
controller as “steering points” (Lappi, 2014). We
investigated two kinds of steering points: (a) gaze
points from human participants projected as points
of fixation on the plane of travel in the (virtual) world
and (b) the fixed optical waypoints placed on the plane
of travel in the (virtual) world. In the case of the
pure-pursuit controller, the steering points were then
transformed into egocentric (virtual) world coordinates
in reference to the current position and locomotor
heading of the driver. In the case of the proportional
controller, the steering points were transformed from
virtual world coordinates back to (simulated) display
coordinates with the only consideration being the
angular distance from the current locomotor heading
(vertical meridian of the virtual field of view). A more
detailed explanation for how the steering points were
derived follows below.

Points of fixation and gaze direction
For each frame in the data, the gaze direction

(calibrated in the head-mounted camera coordinates)
provided by the eye tracker was projected from
camera coordinates to the display coordinates. The
transformation from camera to display coordinates
was done by estimating a homography between each
frame of the camera and the display via optical screen
markers with known screen coordinates (see Figure 2).
The display coordinates were then projected to points
of fixation in world coordinates of the simulation, that
is, interception of the line of sight and the plane of
travel, via the known pose (translation and rotation) of
the virtual camera. These points of fixation were then
associated with the driver’s track position at the time
of the frame, that is, the closest point on the reference
track to the virtual car (in Experiment 1, the reference
track is the mean path, and in Experiment 2, it is the
circular arc).
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For the steering models, the points of fixation on the
plane of travel were linearly interpolated, according
to the model car’s track position. The interpolation
was done as a function of track position rather than
time in order to avoid accumulation of error over time
(i.e., if the model car took a longer path by steering
closer to the outer edge than the human, then the gaze
points would be given from an increasingly further
distance from the model car if the interpolation was
done in respect to time). In other words, the models
were provided the moment-to-moment gaze direction
from where the human driver looked at from the
corresponding track position in the trial that was being
simulated.

For the proportional controller, the point of fixation
was transformed back from three-dimensional world
coordinates to simulated display coordinates according
to the model car’s position and rotation, and the
horizontal coordinate was then given to the model as
the egocentric gaze direction.

Optical waypoints
In addition to running the controllers on the

human-derived gaze data, we ran the controllers
using the optically available waypoint cues (the blue
waypoints in Experiment 1 and white waypoints in
Experiment 2) as steering inputs. The location of the
closest-to-the-observer waypoint on the track was used
as the steering point for the controller until the distance
between the optical waypoint and the simulated vehicle
became smaller than th*v, where v is the speed of the
vehicle and th a free parameter that represents the time
headway (in seconds) when the active steering point is
switched to the next optical waypoint on the track.

In the case of the pure-pursuit controller, both the
x,z egocentric world coordinates were provided to the
controller. In the case of the proportional controller,
only the gaze direction (i.e., the simulated horizontal
display coordinate) was given.

Running the models

In total, we chose four different models to compare,
with two different controllers and two different inputs:

(1) Pure-pursuit controlled model with gaze as steering
input

(2) Proportional controlled model with gaze as steering
input

(3) Pure-pursuit controlled model with optical
waypoints as steering input

(4) Proportional controlled model with optical
waypoints as steering input

The models were then run for each frame of each
participant and trial in both experiments. The starting

position and rotation of the model car were set
according to the actual participant’s position and
rotation, but beyond that, the models had to steer
through the entire track in both experiments without
any manual corrections. Vehicle physics were not
simulated for either experiment.

Given that they were always given the same steering
inputs, the between-trial variation in optically guided
model performance was only determined by their
starting position and direction. The gaze-guided
models, however, were given the actual participant’s
gaze point as their input at each point in time for each
trial (however, correspondence of the point in time was
determined by the distance traveled on the track, rather
than the index of the frame).

If more than 10% of the gaze points in a trial were
more than −2 degrees above the horizon, the trial was
excluded from the data. This was done as gaze points
near the horizon would be projected very far into the
distance, or even behind the driver (for points above
the horizon), making point of fixation estimation
unreliable—as previously mentioned, the rationale for
the projection was to ensure the gaze input would refer
to the same location in the (virtual) world regardless of
the model vehicle’s pose and position. In Experiment
2, one participant was excluded from the data entirely
because of this (leaving a final N = 15).

Parameter optimization

Before running the final models, we optimized the
values of the parameters (gain k and smoothing factor
a in case of the gaze-guided models and k, a, and time
headway th in case of the waypoint-guided models) for
the four models to minimize the mean distance error
from the human trajectories. Although the values of the
parameters were kept the same for all participants, the
models were run separately for each human participant
with the minimized distance error being determined as
the grand mean of the participant-wise means (i.e., the
mean distance between the human and model positions
in respect to closest track position, pooled across all
participant trials).

The optimization was done by first performing a
grid search through a specified search space (th range:
0.1–0.8, k range: 0.9–3, a: 0.05–1) to find a rough initial
guess of the optimal values. The minimums found by
the grid search were then used as the initial guesses
for the Nelder–Mead algorithm that was used to find
the approximate (local) minimums. See Table 1 for the
resulting values.

To avoid overfitting, and to test how well the
parameter values would generalize, the optimization
was done only for Experiment 1 with the resulting
values used also in Experiment 2. As the participants in
the two experiments were not the same and to avoid
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Model Parameters

Input Controller Gain k Smoothing factor a Waypoint switch th

Gaze Pure-pursuit 1.24 0.06 N/A
Gaze Proportional 2.23 0.06 N/A
Waypoints Pure-pursuit 1.25 0.06 0.59
Waypoints Proportional 2.83 0.16 0.25

Table 1. Parameter values resulting from the optimization for the four models: resulting from two different inputs and control laws.

overfitting for individual participants, the optimization
was performed with all data pooled together.

Results

To evaluate the performance of each model, we
calculated three different metrics: (a) the distance
between the model-produced trajectories and the
human-produced trajectories at each track position
(determining a participant-wise mean error and grand
mean error for the model) to measure the positional
difference in the real and simulated trajectories, (b) the
total time off track (beyond the road boundaries) as
percentage of trial duration to measure, and (c) the
Pearson correlation coefficient between the human- and
model-produced yaw-rates (yaw-rate correlation) to
measure the similarity in steering. All the metrics were
measured within participants and then averaged across
participants.

In addition, we estimated trajectory correlations at
three different points to better estimate if and how well
the models could explain within-participant variation in
the trajectories. Because of the sequential time-course
nature of the steering trajectories, it is possible that the
correlation decreases over time as the distance from
the starting conditions increases, or that the models
capture steering at different times with different degrees
of success. To test this in both experiments, we took
three points on the track (representing the beginning,
middle, end) and calculated the correlation between the
human- and model-produced trajectory coordinates
for each participant over all trials. In Experiment 1,
the three points used were the waypoints (labeled
“Trajectory correlation”WP 1, WP 2, WP 3), whereas
in Experiment 2, the exact beginning, middle, and the
end of the track (first and last curves omitted) were used
(labeled “Trajectory correlation” Beginning, Middle,
End). This analysis provided an estimate of whether the
variance in the model-produced trajectories correlated
with the variance in the actual trajectories.

Experiment 1: Modeling results

The trajectories produced by the gaze-guided models
are displayed in Figure 7. It can be seen that these

models are generally successful in steering via each of
the waypoints. The density plots (Figure 7, right panels)
show that the models cross Waypoints 1 and 3 at a
similar location to the Human trajectories. Waypoint 2,
however, is only clipped by the models, with the density
shifted nearer to the road center when compared to
Human trajectories. This “understeering” at Waypoint
2 may potentially be the result of look-ahead fixations
to Waypoint 3, attracting the models to steer early in
the direction of Waypoint 3.

Trajectories produced by the waypoint-guided
models are displayed in Figure A1. For both controllers,
the trajectories universally pass through the waypoints.
As the trials only vary in their starting position and
direction, the trajectories quickly converge with very
little variation between them.

Example individual yaw-rates and trajectories for
the gaze-guided models are shown in Figures 8 and 9.
The yaw-rate time series for both controllers (Figures 8
and 9, upper panels) appears quite similar between the
human and model drivers, with comparable amplitudes
and timing for changes in steering/yaw-rate across all
examples. The displayed example trials were selected
based on the goodness of fit (and lack thereof).
The trajectories (Figures 8 and 9, lower panels), on
the other hand, demonstrate more variation in fit,
though the models still cross or at least clip all of the
waypoints (interestingly, the 10th percentile example
in Figure 8 shows the human driver failing to cross
two of the waypoints). Sample trajectories for the
optical waypoint-guided models are displayed in
Figures A2 and A3, but there is effectively no difference
between individual trials as far as model behavior
goes.

A summary of the different performance metrics
can be seen in Table 2, and participant-wise results are
reported in Tables A1–A4. The grand mean error for
both the gaze-guided pure-pursuit and proportional
controllers was around 0.2 m and mean yaw-rate
correlation coefficients were around 0.85 (for both
controllers). No significant differences were found
between the performance of the two gaze-guided
models (paired samples t-test for participant mean
errors, t = 1.51, p = 0.16; paired samples t-test for
z-transformed yaw-rate correlations, t = 1.0, p = 0.34).
The time spent off track was minimal for both models;
we found no statistically reliable difference between
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Figure 7. First three columns. Human and (gaze-input) model trajectories in Experiment 1. Black lines indicate visible edgelines of the
track and blue circles the visible waypoints. Human drivers’ trajectories are depicted in green and model trajectories in purple.
Rightmost column. The kernel density estimates depict the distribution of deviations from each of the three waypoints for the human
and model drivers when passing over the waypoint in question.

Figure 8. Five sample trials comparing model (pure-pursuit controller with gaze input) and human performance in Experiment 1.
Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th, 75th,
50th, 25th, and 10th percentile trials. Top row. Model (purple line) and human (green line) yaw-rates as a function of time. Bottom
row. Model (purple line) and human (green line) trajectories.
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Figure 9. Five sample trials comparing model (proportional controller with gaze input) and human performance in Experiment 1.
Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th, 75th,
50th, 25th, and 10th percentile trials. Top row. Model (purple line) and human (green line) yaw-rates as a function of time. Bottom
row. Model (purple line) and human (green line) trajectories.

Model Performance Trajectory correlation

Input Controller Mean yaw-rate r Grand mean error (m) Mean offtrack time (%) WP 1 WP 2 WP 3

Gaze Pure-pursuit 0.85 0.22 0.32 0.24 0.20 0.48
Gaze Proportional 0.84 0.21 0 0.15 0.24 0.47
Waypoints Pure-pursuit 0.92 0.17 0 0.53 0.31 0.04
Waypoints Proportional 0.88 0.16 0 0.36 0.26 0.04

Table 2. Summary table of model performance in Experiment 1. The mean yaw-rate correlation for all the models is high (∼0.85 for
the gaze-guided models), indicating similar patterns of steering. The grand mean error is approximately 0.2 m for all the models with
minimal time spent off track. The grand mean error has been calculated as the mean of participant-wise mean errors across trials, and
the mean offtrack proportion was similarly calculated by determining the proportion spent off the invisible edgelines over all trials
within each participant and taking the mean across participants. The trajectory correlations have been calculated by taking the
horizontal position of the human and model driver as they pass each waypoint and calculating the Pearson’s correlation coefficient for
each participant—the reported value is the retransformed mean of the participant-wise Fisher z-transformed correlations. Note that
the models start from the same position as where the human driver was located, which can lead to spurious correlation at the early
WPs (in the waypoint-guided models, the trials only differ by their starting conditions and then converge to essentially a single
trajectory, likely explaining the decrease in trajectory correlation).

the two models (Binomial test, p = 1.0). Overall, both
of the models steered similarly to the human drivers,
although some individual modeled trials fail to pass
over the waypoints (though that is also true for some
of the human trials—not necessarily in the same trials,
however).

We estimated correlations between the model-
produced and individual human trajectories by looking
at the driver’s signed horizontal position when passing
each of the waypoints (i.e., at the track position where
the reference trajectory was closest to the waypoint
in question). At least as far as WPs 1 and 2 are
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Figure 10. Human and (gaze-input) model trajectories in Experiment 2. All left- and right-turning curves (14 total) have been
transformed and projected to a single curve. Dashed black lines indicate invisible edge lines of the track and blue circles the visible
waypoints. Upper left panel. Human trajectories in green. Upper right panel.Model trajectories produced by the pure-pursuit
controller with gaze input depicted with purple lines. The model ends up spending roughly 1.5% of the time off track, with most
“offtrack time” likely being caused by gaze being off the track—due to the inclusion of depth information, the pure-pursuit controller
is also sensitive to changes in the vertical position of gaze, unlike the proportional controller (gazing over the horizon is especially
problematic with the projected point of fixation being projected behind the driver instead). Lower left panel.Model trajectories
produced by the proportional controller with gaze input depicted with purple lines. The model tends to steer more toward the inner
edge—likely caused by the controller parameters being derived from Experiment 1, which has resulted in high gain.

concerned, we found no strong correlation between
the model trajectories and the individual human
trajectories. Curiously, there was a moderate correlation
(retransformed mean of Fisher z-transformed Pearson’s
correlation coefficient was 0.48 for the pure-pursuit
controller and 0.47 for the proportional controller)
at WP 3 with both controllers, resulting in 10 of 11
participants having a positive correlation (Binomial
test, p = 0.006). We have no obvious explanation for this
pattern, but it could have been due to some behavioral
change (e.g., the result of fewer look-ahead fixations
past the second waypoint and gaze being directed more
consistently in the direction of travel near WP 3).

Experiment 2: Modeling results

The trajectories produced by the gaze-guided
models (using parameters based on Experiment 1) are
displayed in Figure 10. Both controllers appear to steer
successfully within the track most of the time (∼98%)
with some exceptions: The proportional controller
sometimes exhibits oversteering and leaves the track
via the inner edge, whereas the pure-pursuit controller
sometimes leaves via the inner and outer track edges.
Trajectories produced by the waypoint-guided models
are displayed in Figure A4. The waypoint-guided
models steer successfully through the waypoints
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Model Performance Trajectory correlation

Input Controller Mean yaw-rate r Grand mean error (m) Mean offtrack time (%) Beginning Middle End

Gaze Pure-pursuit 0.95 0.51 1.49 0.19 0.06 −0.07
Gaze Proportional 0.96 0.71 1.68 0.03 0.10 −0.15
Waypoints Pure-pursuit 0.98 0.37 0 −0.03 0.11 −0.10
Waypoints Proportional 0.91 0.27 0 −0.03 −0.32 −0.04

Table 3. Summary table of model performance in Experiment 2. The mean yaw-rate correlation is above 0.9 for all the models,
indicating similar patterns of steering. The grand mean error ranges from approximately 0.3 to 0.7 m (for context, the path width was
3.5 m) with a small amount ( 1.5%) of time spent off track for the gaze-guided models and none for the optical waypoint-guided
models. The grand mean error has been calculated as the mean of participant-wise mean errors across trials, and the mean offtrack
proportion was similarly calculated by determining the proportion spent off the invisible edgelines over all trials for each participant
and taking the participant-wise mean. The trajectory correlations have been calculated by taking the lane position of the human and
model driver as they pass each position and calculating the Pearson’s correlation coefficient for each participant—the reported value
is the retransformed mean of the participant-wise Fisher z-transformed correlations.

without leaving the track (and with little variation
between trials), and there are no clear differences in
performance between the two controllers (Table 3).

Sample yaw-rates and trajectories are shown in
Figures 11 and 12. Similar to Experiment 1, the
yaw-rate time series of the model and human drivers
look very similar, but with occasional spikes in the
model-produced yaw-rates (corresponding with the
spikes in the gaze signal). Despite the similarity in
yaw-rates, the steering input still leads to differences in
the resulting trajectories. Sample trajectories for the
waypoint-guided models are displayed in Figures A5
and A6, but there are effectively no differences between
individual trials as far as waypoint-guided model
behavior goes.

The summary of the different performance metrics
can be seen in Table 3 and participant-wise results
can be seen in Tables A6–A9. The mean error for the
gaze-guided pure-pursuit controller was 0.51 m and
0.71 m for the proportional controller. The difference
in performance in terms of mean error is significant
(paired samples t-test, t = −3.36, p = 0.005) with the
difference likely being explained by the proportional
controller steering closer to the inner edge of the
track. Yaw-rate correlations were even higher than in
Experiment 1, but we found no significant difference
between the two gaze-guided models (0.95 and 0.96
mean correlations for the gaze-guided controllers;
paired samples t-test, t = −1.20, p = 0.25). In the
majority of trials, the models were able to successfully
steer through the entire track, but they did occasionally
veer off (1.49% of the total runtime in the case of
the pure-pursuit controller and 1.68% in the case of
the proportional controller); we found no significant
difference between the two models (binomial test, p =
1.0). The pure-pursuit controller failed one trial entirely
by veering off more than 10 m away from the edge lines.

We estimated the correlation between the model and
individual human trajectories by comparing the model

and human driver’s signed lane positions when passing
the very beginning of the track (i.e., the beginning of
the second bend after accounting for the omission
of the first bend from the analysis), the middle of
the track, and the very end of the track. There was
no correlation between the human trajectories and
the model trajectories at the designated positions
(Beginning, Middle, End) with any of the models. There
was no replication of the moderate correlation found
later in trials (WP 3) as in Experiment 1. It appears,
then, that the models fail to capture the variability of
the individual trajectories of the human drivers.

Discussion

The aim of this study was to investigate the
relationship between steering and gaze behavior
by examining how different computational steering
models behave when only gaze direction is given
as the models’ steering input. Each controller
was made to steer-by-gaze without access to any
visual information from the environment (“steering
based on where you are looking,” not “steering
based on what you see”) in order to gauge whether
successful steering can be produced from gaze
alone.

While the experimental designs were highly
controlled, there was still considerable room for
variability in the timing and placement of gaze. For
example, in the slalom task of Experiment 1, the
participants could look at any of the three waypoints or
onto the ground between them, or simply fixate at the
horizon, at any particular instant. With around three
fixations a second, gaze could have shifted between any
of these zones in a wide variety of possible patterns,
many of which would not have supported successful
steering (e.g., looking further ahead than the most



Journal of Vision (2023) 23(7):12, 1–28 Tuhkanen et al. 15

Figure 11. Five sample trials comparing model (pure-pursuit controller with gaze input) and human performance in Experiment 2.
Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th, 75th,
50th, 25th, and 10th percentile trials. The time series depict performance across 14 bends in each single trial (with the first and last
curves omitted from the total of 16 bends as described in Methods). Top panels.Model (purple lines) and human (green lines)
yaw-rates as a function of time. Bottom panels. The corresponding lane positions (on the x-axis) as a function of time (y-axis). The
lane position indicates the distance from the centerline, with positive values indicating the driver is more toward the outer edge
rather than the inner edge. The vertical dashed lines indicate the track edges. The faint gray horizontal lines indicate the locations
where the sign of the road changes (i.e., when the driver passes from a left-turning curve to a right-turning curve or vice versa)—this
also explains the sudden changes in lane position as what was the outer edge of the previous curve becomes the inner edge of the
new curve and vice versa.

immediate waypoint or switching between waypoints
too soon).

The observed gaze behavior, however, was sufficiently
compatible with the assumptions of the the gaze-guided
models to allow them to successfully (for the most
part) steer through the different tracks employed in
Experiment 1 and Experiment 2 (using parameters
optimized for Experiment 1). The average trajectories
of the models appeared to be similar to human
drivers, with the difference in position being 0.4 m
on average (the path widths were 3 and 3.5 m for the
two experiments). While the position of the driver

in the world is important from the perspective of
the steering task (i.e., ensuring the driver physically
crosses the intended goal), the actual execution of
steering is via changes in the direction of travel (the
yaw-rate). Overall, the models were able to produce
successful steering across two different scenarios using
gaze information alone, producing steering patterns
that were similar to those of human drivers. This
suggests that the human driver’s gaze placement
is at least in principle able to facilitate steering
(i.e., gaze contains sufficient information to guide
steering).
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Figure 12. Five sample trials comparing model (proportional controller with gaze input) and human performance in Experiment 2.
Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th, 75th,
50th, 25th, and 10th percentile trials. The time series depict performance across 14 bends in each single trial (with the first and last
curves omitted from the total of 16 bends as described in Methods). Top panels.Model (purple lines) and human (green lines)
yaw-rates as a function of time. Bottom panels. The corresponding lane positions (on the x-axis) as a function of time (y-axis). The
lane position indicates the distance from the centerline, with positive values indicating the driver is more toward the outer edge
rather than the inner edge. The vertical dashed lines indicate the track edges. The faint gray horizontal lines indicate the locations
where the sign of the road changes (i.e., when the driver passes from a left-turning curve to a right-turning curve or vice versa)—this
also explains the sudden changes in lane position as what was the outer edge of the previous curve becomes the inner edge of the
new curve and vice versa.

In terms of general performance (yaw-rate
correlation, grand mean error, and mean offtrack time),
there did not appear to be major differences between
the two controllers. In Experiment 2, the difference in
mean error was higher for the gaze-guided proportional
controller than for the gaze-guided pure-pursuit,
but detailed examination showed that the latter had
more “extreme” failures (causing some trajectories to
travel far from the road), whereas the former more
often drifted off the inner edge, cutting the corners
(which could have been reduced using a smaller gain
parameter). The difference was likely the result of
the pure-pursuit controller being sensitive to depth

information and thus having additional sources of
noise. When the inputs were waypoints (rather than
gaze), both controllers produce extremely similar
trajectories with no variation between trials—which
is to be expected given that the models are given the
same steering points with just slightly different initial
conditions.

Limitations and future directions

We found that the pure-pursuit and proportional
controller models performed similarly, despite
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relying upon different inputs (only the pure-pursuit
controller made use of depth/eye height information).
Distinguishing between the performance of these
types of steering models may require going beyond
the relatively simple steering tasks used in the present
experiments. Future work will need to test the models
further to see whether they can still steer-by-gaze
in more challenging situations such as when speeds
vary, tracks have obstacles to avoid, or there are
intersections/multiple paths to choose from. Steering
models with additional parameters and/or sensory
information may well be required to capture human
behavior in these circumstances.

We observe that while the gaze-guided models
produce significant variation in the trajectories, that
variation does not correlate well with the variation in
the trajectories of the human drivers. In other words,
while the variance in gaze produces variance in the
trajectories, the present models do not capture the
variance in human behavior. There are several potential
(not mutually exclusive) explanations for this mismatch,
which we cannot presently tease apart but could guide
future modeling efforts:

i Measurement noise (e.g., calibration bias) would
produce variation in the steering points fed to the
models that obviously would not affect human
steering behavior.

ii The models treat every point of fixation as
a potential steering point, so when humans
occasionally make glances that are decoupled from
steering (e.g., look-ahead fixations; Lehtonen,
Lappi, Koirikivi, & Summala, 2014; Schnebelen,
Lappi, Mole, Pekkanen, & Mars, 2019; Mole et al.,
2021), the model nevertheless steers toward these
points.

iii The models are optimized to a single set of
parameters that are used for every participant’s
steering, so if there is systematic individual
variation in the way steering is coupled with (and/or
occasionally decoupled from) gaze, this will not be
captured.

iv The models use a single steering point, which is the
point of gaze, as the sole information to steer by,
which means the vast majority of visual information
in the visual field (i.e., all of peripheral vision) is
unused, despite the plausible use of that information
by humans (note, however, that most psychological
steering models in the literature tend to rely on a
single steering point; Lappi, 2014).

v The models have no track memory, or other
“cognitive” top-down inputs, while humans can
learn and remember track characteristics with
repetition (Tuhkanen et al., 2019; Tuhkanen et al.,
2021).

Capturing such additional sources of variation
(individual differences in gaze strategy, full retinal

input, memory of the track layout) would be desirable
for more sophisticated modeling of steering control
mechanisms in humans.

While the performance of the models was largely
successful, it should be noted that they did occasionally
fail. On detailed inspection, many of these failures
appear to be related to periods when the gaze input falls
near the horizon, which (due to foreshortening in the
optical projection) results in the steering points being
projected extremely far into the distance (or even behind
the driver if the gaze is above the horizon). Despite
every effort being taken to ensure well-calibrated gaze
data, some of these observations could be the result
of bias in the calibration of the eye tracker. It is also
possible that occasionally, the participants genuinely
looked into the distance and not where they were
going. The models had no allowance for the occasional
decoupling of steering from gaze, while in reality,
humans do seem to be able to do this.

Some assumptions have been made in the modeling
approaches presented here that could be challenged.
The present investigation was based on the following
theoretical premises: If the oculomotor system
maintains information about the current direction of
gaze relative to the direction of locomotor heading,
and possibly depth information about the current
distance to the point of fixation (by whatever means:
perceptual, cognitive, motor), and if this information
was passed to steering control, then this information
could be useful as “efference copy” to perform steering
by gaze. Even determining the visual angle of gaze
relative to heading (horizontally, parallel to the
plane of travel) may not be trivial, especially during
natural locomotion (e.g., walking or running) where
the eye, head, body, and vehicle may all point in
different directions (and there may be no convenient
visual reference like the horizon). Whether the model
assumptions hold—that is, whether the oculomotor
system in fact retains such gaze-vector-to-heading,
or distance-to-point-of-fixation (or equivalently
gaze-to-horizontal angle plus eye height) information,
and whether such information is passed to and used by
locomotor control systems—remains beyond the scope
of this article and should be independently investigated.
Also, we do not of course claim that even if these
assumptions were justified, other information would
not also be passed to steering control (i.e., that humans
would steer-by-gaze only).

The two steering-by-gaze control strategies that
we investigated were the simplest effective ones (with
fewest parameters) that we found: using egocentric gaze
direction for proportional control and using egocentric
direction and distance of the point of fixation for
pure-pursuit control. The rationale was that the simpler
the controller, the more the simulations would be a test
of the underlying control signal. It is worth emphasizing
that there is no suggestion that these models reflect the
actual processing performed by the human brain (and
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would most likely fail in more complex task settings),
but we do hope they are at least somewhat cognitively
plausible from the perspective that their control inputs
are derived directly from where the human drivers
look. In the future, more sophisticated steering control
strategies (e.g., model predictive control) could be
implemented with an aim to increase fidelity as well as
generalizability.

We tested two different controllers to ensure some
degree of robustness to the investigation and to
determine whether steering by gaze control would
be sensitive to the specifics of the control law or its
parameterization. We found that both models were
able to steer through the S-bends (Experiment 2) using
parameters estimated from the slalom task (Experiment
1). Note, however, that we used fairly straightforward
steering tasks—and generalization is from the arguably
more challenging slalom task to the easier (though
longer) S-bend task. More complex environments
would likely challenge these simple models and therefore
could necessitate more sophisticated control models
that take into consideration the fusion of signals from
multiple information sources. And even if the models
are able steer via gaze, it of course does not mean
that human drivers necessarily do so, only that the
information or some of the information required for
steering in principle is there.

Future models should look into multisensory
integration in both gaze control and steering. Note that
the possible use of additional sources of information
should not necessarily be considered mutually exclusive,
and each might play a role to different extents
depending on the strength, quality, and variability of
other sources, making the “true” steering mechanisms
difficult to disentangle when examining steering and
gaze behavior. It might be valuable to also account
for possible differences in timing between gaze and
steering in a more sophisticated manner beyond simple
smoothing.

In addition to using the measured gaze data as
inputs, we did also use optically specified waypoint
markers along the track (which were visible to the
participants and visually designated the path they were
meant to follow) as control inputs. This was in order to
see how well the models performed in principle when
given the “best possible” path information (which is
the usual type of input they are designed for, i.e., the
optical input, steering-by-what-is-there compared to
steering-by-gaze).

Conclusions: Why do we look where we look?

Previous experiments have shown that gaze reliably
anticipates steering by “picking up” steering points
in the direction of locomotion (waypoints with
approximately a 1-s lead time and a 2-s time headway),
with steering actions coupled to gaze control (Wilkie,
Kountouriotis, Merat, & Wann, 2010; Lappi et al.,

2020; Tuhkanen et al., 2021; Mole et al., 2021). But
do humans really need to bring steering points into
“foveal vision” to use them for visual guidance? Most
often, this gaze control pattern tends to be discussed
in terms of the (debatable) function of directing foveal
vision to successive targets in the environment. That
is, the rationale for different gaze control strategies is
implicitly given in terms of being able to resolve visual
detail at the point of gaze: We look at task-relevant
visual targets in order to see them clearly. In this vein,
the natural assumption would be that the purpose of
the visual strategy of looking where you are going is to
see in sharp detail where you are going (i.e., to observe
the path that one desires to traverse). This might not
be as straightforward of an explanation as it sounds,
however.

By looking at an object or location, we bring it to
central vision. Usually, the reason we need to bring
objects into central vision is to resolve fine detail
(small texture elements that cannot be resolved in the
periphery due to crowding; Wolfe et al., 2017; Vater,
Wolfe, & Rosenholtz, 2022). But during locomotion,
when we are moving our whole body to intercept an
object, performance can be supported by blurred or
peripheral vision. For example, high-speed sports can be
performed under conditions of experimental blurring
(Mann, Abernethy, & Farrow, 2010) and driving is a
task that can be carried out using peripheral vision
(in case of foveal degeneration; Lamble, Summala, &
Hyvärinen, 2002)—and even when visual information
around the point of gaze is withheld, the coordination
pattern of looking where you steer persists (Tuhkanen
et al., 2019; Tuhkanen et al., 2021). So, experiments
have shown that high-resolution central vision is not
in fact critical for successful steering and interception.
Why do humans do it then? Why do humans generally
“look where they are going” in visually controlled
locomotion?

The control of gaze, when directed to a viable
steering point, in itself, contains information related to
the direction and distance of that steering point. This
information could be used to steer-by-gaze where the
oculomotor system “designates” via gaze deployment
a visual direction or a point in the world, as a steering
point for the locomotor system. Designating a fixed
waypoint in the world to be intercepted was labeled
“the waypoint identification hypothesis” in Lappi and
Mole (2018).

This raises the interesting possibility that looking
where you are going is not so much about seeing where
you are going (i.e., fulfilling the need for bottom-up
visual input), but part of an embodied “do it where
I’m looking” (Ballard, Hayhoe, Li, & Whitehead, 1992)
coordination pattern where the eyes, as opposed to just
vision, lead the rest of the body.

Keywords: eye tracking, steering, guidance, waypoints,
visuomotor control
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Appendix

Figure A1. First three columns. Human and (waypoint-input) model trajectories in Experiment 1. Black lines indicate visible edgelines
of the track and blue circles the visible waypoints. Direction of travel is from top to bottom. Human drivers’ trajectories are depicted
in green and model trajectories in purple. Last column. Density estimations of horizontal deviations from each of the three waypoints
for the human and model drivers when passing over the waypoint in question.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) WP 1 WP 2 WP 3 Excluded trials

1 0.75 0.27 (SD = 0.19) 0 0.62 0.25 −0.45 0
2 0.88 0.33 (SD = 0.33) 0 0.68 −0.02 0.78 0
3 0.88 0.19 (SD = 0.18) 0 −0.19 0.53 0.81 0
4 0.80 0.25 (SD = 0.24) 0.58 0.34 0.22 0.20 1
5 0.91 0.12 (SD = 0.11) 0 0.60 0.19 0.59 0
6 0.83 0.16 (SD = 0.18) 0.28 0.31 0.26 0.54 0
7 0.88 0.16 (SD = 0.15) 0.25 0.05 −0.10 0.44 0
8 0.90 0.2 (SD = 0.14) 0.49 −0.05 0.08 0.51 0
9 0.91 0.22 (SD = 0.2) 0 0.44 0.46 0.54 0
10 0.83 0.22 (SD = 0.24) 1.90 0 −0.17 0.58 0
11 0.71 0.24 (SD = 0.24) 0 −0.51 0.44 0.34 0

Table A1. Participant-wise model results table from Experiment 1 with a pure-pursuit controller and gaze inputs.
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Figure A2. Five sample trials comparing model (pure-pursuit controller with waypoint input) and human performance in Experiment
1. Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th,
75th, 50th, 25th, and 10th percentile trials. Top row. Model (purple line) and human (green line) yaw-rates as a function of time.
Bottom row. Model (purple line) and human (green line) trajectories.

Figure A3. Five sample trials comparing model (proportional controller with waypoint input) and human performance in Experiment
1. Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th,
75th, 50th, 25th, and 10th percentile trials. Top row. Model (purple line) and human (green line) yaw-rates as a function of time.
Bottom row. Model (purple line) and human (green line) trajectories.
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Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) WP 1 WP 2 WP 3 Excluded trials

1 0.69 0.26 (SD = 0.2) 0 0.62 0.42 −0.48 0
2 0.82 0.32 (SD = 0.29) 0 0.41 0.09 0.59 0
3 0.89 0.19 (SD = 0.19) 0 −0.06 0.38 0.86 0
4 0.87 0.26 (SD = 0.22) 0.01 0.14 0.18 0.25 1
5 0.90 0.11 (SD = 0.08) 0 0.63 0.55 0.74 0
6 0.82 0.14 (SD = 0.14) 0 0.42 0.49 0.45 0
7 0.86 0.17 (SD = 0.15) 0 −0.08 −0.44 0.49 0
8 0.87 0.15 (SD = 0.13) 0 −0.22 0.24 0.85 0
9 0.88 0.2 (SD = 0.18) 0 −0.02 0.53 0.31 0
10 0.81 0.2 (SD = 0.19) 0 −0.01 −0.21 0.22 0
11 0.72 0.26 (SD = 0.25) 0 −0.44 0.29 0.10 0

Table A2. Participant-wise model results table from Experiment 1 with a proportional controller and gaze inputs.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) WP 1 WP 2 WP 3 Excluded trials

1 0.81 0.19 (SD = 0.15) 0 0.01 0.23 0.69 0
2 0.88 0.27 (SD = 0.24) 0 0.80 0.10 −0.53 0
3 0.96 0.21 (SD = 0.26) 0 0.61 0.51 0.07 0
4 0.93 0.15 (SD = 0.14) 0 0.68 −0.01 −0.24 1
5 0.94 0.1 (SD = 0.09) 0 0.86 0.47 −0.34 0
6 0.92 0.12 (SD = 0.11) 0 0.94 0.17 0.30 0
7 0.93 0.12 (SD = 0.11) 0 0.26 −0.02 0.04 0
8 0.95 0.17 (SD = 0.14) 0 0.35 0.60 0.41 0
9 0.93 0.17 (SD = 0.16) 0 −0.07 0.74 −0.29 0
10 0.91 0.15 (SD = 0.14) 0 0.39 0.28 0.08 0
11 0.89 0.18 (SD = 0.22) 0 −0.12 0.02 0.10 0

Table A3. Participant-wise model results table from Experiment 1 with a pure-pursuit controller and waypoint inputs.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) WP 1 WP 2 WP 3 Excluded trials

1 0.75 0.19 (SD = 0.15) 0 −0.74 0.81 0.71 0
2 0.85 0.27 (SD = 0.22) 0 0.79 0.07 −0.34 0
3 0.92 0.2 (SD = 0.23) 0 0.50 0.55 −0.35 0
4 0.90 0.15 (SD = 0.11) 0 0.48 0.03 0.18 1
5 0.91 0.12 (SD = 0.09) 0 0.89 0.25 0.71 0
6 0.91 0.11 (SD = 0.1) 0 0.40 −0.30 −0.41 0
7 0.88 0.11 (SD = 0.1) 0 0.56 −0.15 0.34 0
8 0.91 0.15 (SD = 0.12) 0 0.65 0.33 −0.33 0
9 0.89 0.16 (SD = 0.15) 0 −0.20 0.59 −0.26 0
10 0.87 0.14 (SD = 0.12) 0 0.12 −0.03 −0.34 0
11 0.83 0.19 (SD = 0.19) 0 −0.24 0.32 0.22 0

Table A4. Participant-wise model results table from Experiment 1 with a proportional controller and waypoint inputs.
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Participant Position SD (m) Offtrack time Failed trials Excluded trials

1 0.1797 0 0 0
2 0.2278 0 0 0
3 0.2012 0 0 0
4 0.1088 0 0 1
5 0.0902 0 0 0
6 0.1086 0 0 0
7 0.1012 0 0 0
8 0.1021 0 0 0
9 0.1347 0 0 0
10 0.1184 0 0 0
11 0.1736 0 0 0

Table A5. Participant-wise position (referenced to the reference track/mean path) standard deviation of the true, human-driven
trajectories in Experiment 1.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) Beginning Middle End Failed trials Excluded trials

1 0.98 0.55 (SD = 0.53) 3.54 0.38 0.14 −0.61 0 1
2 0.90 0.63 (SD = 0.29) 0.05 0.50 0.72 0.70 0 0
3 0.89 0.68 (SD = 0.95) 7.95 0.76 0.45 −0.99 1 2
4 0.98 0.38 (SD = 0.26) 0.85 −0.50 0.68 0.92 0 3
5 0.87 0.58 (SD = 0.38) 1.63 0.24 −0.20 −0.25 0 2
6 6
7 0.96 0.45 (SD = 0.29) 0.15 0.29 0.67 0.55 0 0
8 0.78 0.5 (SD = 0.42) 1.98 −0.41 0.13 0.28 0 0
9 0.98 0.44 (SD = 0.27) 0 0.10 0.44 0.03 0 0
10 0.98 0.22 (SD = 0.16) 0 −0.29 0.01 −0.30 0 0
11 0.94 0.58 (SD = 0.36) 0.83 0.20 −0.43 −0.71 0 0
12 0.96 0.42 (SD = 0.26) 0.21 0.17 0.25 −0.44 0 0
13 0.97 0.6 (SD = 0.3) 0 0.85 −0.52 0.64 0 0
14 0.98 0.47 (SD = 0.29) 0 0.65 0.70 0.10 0 0
15 0.92 0.43 (SD = 0.46) 2.29 0.38 −0.90 −0.01 0 0
16 0.97 0.76 (SD = 0.41) 2.93 −0.86 −0.86 −0.17 0 3

Table A6. Participant-wise model results table from Experiment 2 with a pure-pursuit controller and gaze inputs.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) Beginning Middle End Failed trials Excluded trials

1 0.97 0.62 (SD = 0.44) 1.09 −0.89 0.06 −0.87 0 1
2 0.93 0.58 (SD = 0.31) 0.30 0.39 0.67 0.65 0 0
3 0.94 0.99 (SD = 0.67) 3.78 −0.90 0.86 −0.96 0 2
4 0.97 0.71 (SD = 0.38) 1.15 0.24 −0.95 −0.99 0 3
5 0.96 0.81 (SD = 0.42) 0 0.58 0.20 −0.36 0 2
6 6
7 0.96 0.64 (SD = 0.35) 0 0.52 0.34 0.07 0 0
8 0.93 0.54 (SD = 0.3) 0.04 0.21 0.45 −0.02 0 0
9 0.97 0.42 (SD = 0.28) 0.06 0.08 0.51 0.31 0 0
10 0.98 0.39 (SD = 0.2) 0 0.08 0.06 0.43 0 0
11 0.96 0.72 (SD = 0.4) 0 −0.67 −0.55 −0.73 0 0
12 0.97 0.48 (SD = 0.31) 0 −0.28 0.08 −0.42 0 0
13 0.96 0.78 (SD = 0.46) 0.22 0.82 −0.92 0.42 0 0
14 0.97 0.71 (SD = 0.34) 0 0.28 0.89 −0.22 0 0
15 0.97 0.6 (SD = 0.36) 0.02 −0.43 0.33 0.89 0 0
16 0.93 1.68 (SD = 0.78) 18.49 0.80 −0.18 0.96 0 3

Table A7. Participant-wise model results table from Experiment 2 with a proportional controller and gaze inputs.
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Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) Beginning Middle End Failed trials Excluded trials

1 0.98 0.28 (SD = 0.2) 0 −0.49 0.26 −0.22 0 1
2 0.97 0.38 (SD = 0.22) 0 −0.53 −0.23 −0.28 0 0
3 0.98 0.51 (SD = 0.32) 0 −0.46 0.32 0.30 0 2
4 0.98 0.35 (SD = 0.23) 0 −0.58 0.60 −0.95 0 3
5 0.99 0.38 (SD = 0.17) 0 0.62 −0.42 −0.47 0 2
6 6
7 0.98 0.38 (SD = 0.24) 0 −0.43 0.19 0.52 0 0
8 0.98 0.31 (SD = 0.18) 0 −0.65 0.16 0.81 0 0
9 0.97 0.35 (SD = 0.28) 0 −0.61 −0.41 −0.53 0 0
10 0.99 0.23 (SD = 0.15) 0 0.14 0.43 −0.42 0 0
11 0.99 0.34 (SD = 0.22) 0 0.74 0.11 −0.44 0 0
12 0.98 0.3 (SD = 0.2) 0 −0.20 −0.18 0.01 0 0
13 0.98 0.51 (SD = 0.26) 0 0.66 −0.54 0.07 0 0
14 0.98 0.35 (SD = 0.22) 0 0.87 0.90 −0.79 0 0
15 0.98 0.28 (SD = 0.2) 0 −0.19 0.66 −0.12 0 0
16 0.97 0.64 (SD = 0.29) 0 0.26 −0.74 0.96 0 3

Table A8. Participant-wise model results table from Experiment 2 with a pure-pursuit controller and waypoint inputs.

Performance Trajectory correlation

Participant Yaw-rate correlation Mean error (m) Offtrack time (%) Beginning Middle End Failed trials Excluded trials

1 0.92 0.19 (SD = 0.16) 0 −0.46 0.43 0.30 0 1
2 0.91 0.26 (SD = 0.18) 0 0.30 −0.51 −0.41 0 0
3 0.91 0.39 (SD = 0.28) 0 0.32 −0.44 −0.93 0 2
4 0.91 0.25 (SD = 0.19) 0 −0.89 −0.54 0.96 0 3
5 0.91 0.26 (SD = 0.15) 0 0.69 −0.41 0.30 0 2
6 6
7 0.91 0.27 (SD = 0.2) 0 −0.38 −0.14 −0.32 0 0
8 0.90 0.21 (SD = 0.14) 0 −0.46 −0.68 0.45 0 0
9 0.90 0.3 (SD = 0.24) 0 0.58 −0.60 0.46 0 0
10 0.91 0.16 (SD = 0.11) 0 0.17 −0.62 −0.03 0 0
11 0.91 0.24 (SD = 0.17) 0 0.42 0.21 −0.03 0 0
12 0.91 0.22 (SD = 0.16) 0 0.47 0.72 0 0 0
13 0.91 0.38 (SD = 0.22) 0 −0.08 −0.24 −0.78 0 0
14 0.91 0.24 (SD = 0.17) 0 0.90 0.11 −0.37 0 0
15 0.91 0.2 (SD = 0.15) 0 −0.41 0.76 0.59 0 0
16 0.91 0.5 (SD = 0.27) 0 −0.95 −0.99 −0.71 0 3

Table A9. Participant-wise model results table from Experiment 2 with a proportional controller and waypoint inputs.

Participant Position SD (m) Offtrack time Failed trials Excluded trials

1 0.2694 0 0 1
2 0.2787 0 0 0
3 0.4533 0 0 2
4 0.3097 0 0 3
5 0.3162 0 0 2
6 6
7 0.3255 0 0 0
8 0.256 0 0 0
9 0.3887 0 0 0
10 0.204 0 0 0
11 0.2813 0 0 0
12 0.2896 0 0 0
13 0.4046 0 0 0
14 0.301 0 0 0
15 0.261 0 0 0
16 0.4947 0 0 3

Table A10. Participant-wise lane position standard deviation of the true, human-driven trajectories in Experiment 2.
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Figure A4. Human and (waypoint-input) model trajectories in Experiment 2. All left- and right-turning curves have been transformed
and projected to a single curve. Dashed black lines indicate invisible edgelines of the track and blue circles the visible waypoints.
Upper left panel. Human trajectories in green. Upper right panel.Model trajectories produced by the pure-pursuit controlled with
gaze input depicted with purple lines. Lower left panel.Model trajectories produced by the proportional controlled with gaze input
depicted with purple lines.
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Figure A5. Five sample trials comparing model (pure-pursuit controller with waypoint input) and human performance in Experiment
2. Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th,
75th, 50th, 25th, and 10th percentile trials. Top panels.Model (purple line) and human (purple line) yaw-rates as a function of time.
Bottom panels. The corresponding lane positions (on the x-axis) as a function of time (y-axis). The lane position indicates the distance
from the centerline with positive values indicating the driver is more toward the outer edge rather than the inner edge. The vertical
dashed lines indicate the track edges. The faint gray horizontal lines indicate the locations where the sign of the road changes (i.e.,
when the driver passes from a left-turning curve to a right-turning curve or vice versa).
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Figure A6. Five sample trials comparing model (proportional controller with waypoint input) and human performance in Experiment
2. Sample trials have been chosen on the basis of yaw-rate correlation between the model and human drivers: choosing the 90th,
75th, 50th, 25th, and 10th percentile trials. Top panels.Model (purple line) and human (purple line) yaw-rates as a function of time.
Bottom panels. The corresponding lane positions (on the x-axis) as a function of time (y-axis). The lane position indicates the distance
from the centerline with positive values indicating the driver is more toward the outer edge rather than the inner edge. The vertical
dashed lines indicate the track edges. The faint gray horizontal lines indicate the locations where the sign of the road changes (i.e.,
when the driver passes from a left-turning curve to a right-turning curve or vice versa).


