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Graph Edit Distance from Spectral Seriation
Antonio Robles-Kelly, Member, IEEE, and Edwin R. Hancock

Abstract—This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods

for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our

aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral

seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established

using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori

probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost

is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of

string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components

of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility

of the edit distance on a number of graph clustering problems.

Index Terms—Graph edit distance, graph seriation, maximum a posteriori probability (MAP), graph-spectral methods.

�

1 INTRODUCTION

THE quest for a robust means of inexact graph matching
has been the focus of sustained activity in the areas of

computer vision and structural pattern recognition for over
two decades [10], [12], [26], [31], [34], [44]. Many different
approaches have been adopted for the problem, including
relaxation labeling [6], [11], [12], [44] and constraint
satisfaction [4], [35], [44], structural pattern recognition
(including the use of graph edit distance) [10], [31],
information theoretic methods [26], and graph-spectral
methods [22], [40]. Each of these approaches has its merits.
For instance, information theoretic methods [6], [44] are
strongly principled since they model the graph-matching
process using probability distributions. Matching by mini-
mizing edit distance [10], [26], [31] is attractive since it
gauges the similarity of graphs by counting the number of
structural modifications needed to make graphs isomorphic
with one-another. Graph spectral methods are elegant
because of their use of a matrix representation [22], [40].
However, there are weaknesses too. Information theoretic
methods are limited by the fact that the required probability
distributions can become difficult to construct and manip-
ulate due the combinatorial nature of the underlying state-
space. Of course, this problem can be overcome to some
extent by making simplifying assumptions. For instance, in
relaxation labeling, the complexity can be curbed by
representing the distribution over edges or faces [6]. In
order to overcome the computational problems associated
with using discrete densities, Bagdanov andWorring [2] use
normal distributions to model the distribution of the
random variables in their first-order Gaussian graphs. These

methods can lead to algorithms for learning graph proto-
types from training data. In the case of graph edit distance,
the costs of elementary edit operations must be set
heuristically since no well-defined learning procedure exists
and, moreover, the method lacks some of the formal
underpinning of string edit distance. Graph-spectral meth-
ods can be fragile to structural error [40] unless expensive
iterative methods are adopted [22].

The aim in this paper is to exploit some of the strengths
of the methods listed above while overcoming their
weaknesses. The overall aim is to use a spectral representa-
tion and to pose the computation of graph edit distance in a
probabilistic setting. This work is timely for a number of
reasons. First, there has recently been renewed interest in
the problem of computing graph edit distance. For instance,
Bunke and his coworkers have returned to the problem and
have shown a relationship between graph edit distance and
the size of the maximum common subgraph [3]. Second,
graph spectral methods have been shown to work effec-
tively if either a careful choice of representation is made or
if they are combined with statistical methods. For instance,
Shokoufandeh et al. [36] have shown how to index shock
trees using an eigenvalue interleaving theorem and Luo and
Hancock [22] have shown how Umeyama’s [40] matrix
factorization method can be rendered robust to structural
error using the apparatus of the EM algorithm. However,
despite this progress, it is clear that there is still much
remaining to be done on the convergence of structural,
spectral, and statistical methods.

1.1 Motivation

One way of overcoming the problems listed above is to use
graph-spectral methods to convert graphs to string se-
quences, to use probabilistic methods to measure the
similarity of the sequences, and, hence, to compute graph
edit distance. We have already performed an initial study of
this problem [29]. Here, we made use of the relationship
between the leading eigenvector of the row-normalized
adjacency matrix and the steady state random walk on the
associated graph. The string sequence is defined by the state
probabilities of the random walk after an infinite number of
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time steps. Edit distance computation is based on a set of
heuristic elementary costs. However, the string sequence
delivered by the steady state site probabilities is not
guaranteed to be edge connected and, hence, in comparing
the strings, information concerning the structure of the
graph is discarded. This paper takes this work further by
casting the problem of recovering an edge connected path
sequence in a more explicit energy minimization setting
and, by casting the problems of computing, edits costs and
string matching in a probabilistic setting.

To meet the goals listed above, in this paper, we aim to
recover a string in which the node sequence order
maximally preserves edge connectivity constraints. More
specifically, we are interested in the task of ordering the
set of nodes in a graph in a sequence such that strongly
correlated nodes are placed next to one another. This
problem is known as seriation and is important in a
number of areas, including data visualization and bioinfor-
matics, where it is used for DNA sequencing. The seriation
problem can be approached in a number of ways. Clearly,
the problem of searching for a serial ordering of the nodes,
which maximally preserves the edge ordering, is one of
exponential complexity. As a result, approximate solution
methods have been employed. These involve casting the
problem in an optimization setting. Hence, techniques
such as simulated annealing and mean field annealing
have been applied to the problem [33], [37]. It may also be
formulated using semidefinite programming [17], which is
a technique closely akin to spectral graph theory since it
relies on eigenvector methods. However, recently, Atkins
et al. [1] have shown how to use an eigenvector of the
Laplacian matrix to sequence relational data. There is an
obvious parallel between this method and the use of
eigenvector methods to locate steady state random walks
on graphs [20], [25].

Hence, we aim to exploit this seriation technique to
develop a spectral method for computing graph edit
distance. The task of posing the inexact graph matching
problem in a matrix setting has proven to be an elusive one.
This is disappointing since a rich set of potential tools are
available from the field of mathematics, referred to as
spectral graph theory. This is the term given to a family of
techniques that aim to characterize the global structural
properties of graphs using the eigenvalues and eigenvectors
of the adjacency matrix [7]. In the computer vision literature,
there have been a number of attempts to use spectral
properties for graph-matching, object recognition, and image
segmentation. Umeyama has an eigendecomposition meth-
od thatmatches graphs of the same size [40]. Borrowing ideas
from structural chemistry, Scott and Longuet-Higgins were
among the first to use spectral methods for correspondence
analysis [32]. They showed how to recover correspondences
via singular value decomposition on the point association
matrix between different images. In keeping more closely
with the spirit of spectral graph theory, Shapiro and Brady
[35] developed an extension of the Scott and Longuet-
Higgins method, in which point sets are matched by
comparing the eigenvectors of the point proximity matrix.
Horaud and Sossa [15] have adopted a purely structural
approach to the recognition of line-drawings. Their repre-
sentation is based on the immanental polynomials for the

Laplacian matrix of the line-connectivity graph. Shokoufan-
deh et al. [36] have shown how graphs can be encoded using
local topological spectra for shape recognition from large
databases. In a recent paper, Luo and Hancock [22] returned
to the method of Umeyama [40] and have shown how it
can be rendered robust to differences in graph-size and
structural errors. Commencing from a Bernoulli distribution
for the correspondence errors, they develop an expectation
maximization algorithm for graph-matching. Correspon-
dences are recovered in the M or maximization step of the
algorithm by performing singular value decomposition on
the weighted product of the adjacency matrices for the
graphs being matched. The correspondence weight matrix is
updated in the E or expectation step. However, since it is
iterative, the method is relatively slow and is sensitive to
initialization.

1.2 Contribution

We pose the recovery of the seriation path as that of finding
an optimal permutation order subject to edge connectivity
constraints. By using the Perron-Frobenius theorem [41], we
show that the optimal permutation order is given by the
leading eigenvector of the adjacency matrix. The seriation
path may be obtained from this eigenvector using a simple
edge-filtering technique. By using the spectral seriation
method, we are able to convert the graph into a string. This
opens up the possibility of performing graph matching by
performing string alignment. We pose the problem as a
maximum a posteriori probability estimation of an optimal
alignment sequence on an edit lattice by minimizing the
Levenshtein or edit distance [19], [42]. The edit distance is
the negative log-likelihood of the a posteriori alignment
probability. To compute the alignment probability, we
require two model ingredients. The first of these is an edge
compatibility measure for the edit sequence. We use a
simple error model to show how these compatibilities may
be computed using the edge densities for the graphs under
match. The second model ingredient is a set of node
correspondence probabilities. We model these using a
Gaussian distribution on the components of the leading
eigenvectors of the adjacency matrices. We can follow
Wagner and Fisher [42] and use dynamic programming to
evaluate the edit distance between strings and, hence,
recover corr-espondences. It is worth stressing that,
although there have been attempts to extend the string edit
idea to trees and graphs [31], [34], there is considerable
current effort aimed at putting the underlying methodology
on a rigorous footing.

2 GRAPH SERIATION

Consider the undirected graph G ¼ ðV ;EÞwith node index-
set V and edge-set E � V � V . Associated with the graph is
a symmetric adjacency matrix A whose elements are
defined as follows:

Aðj; kÞ ¼ 1 if ðj; kÞ 2 E
0 otherwise:

�

ð1Þ

Our aim is to assign the nodes of the graph to a sequence
order which preserves the edge ordering of the nodes. This
sequence can be viewed as an edge connected path on the
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graph. Let the path commence at the node j1 and proceed via
the sequence of edge-connected nodes X ¼ fj1; j2; j3; . . .g,
where ðji; jiþ1Þ 2 E. With these ingredients, the problem of
finding the path can be viewed as one of seriation, subject to
edge connectivity constraints.

The seriation problem, as stated by Atkins et al. [1] is as
follows: The aim is to find a path sequence for the nodes in
the graph using a permutation �. The required permutation
is sought so as to minimize the penalty function

gð�Þ ¼
X

jV j

i¼1

X

jV j

j¼1

Aði; jÞð�ðiÞ � �ðjÞÞ2:

Unfortunately, minimizing gð�Þ is potentially NP complete

due to the combinatorial nature of the discrete permutation

�. To overcome this problem, a relaxed solution is sought

that approximates the structure of gð�Þ using a vector ~xx ¼
ðx1; x2; . . . :Þ of continuous variables xi. Hence, the penalty

function considered is

ĝgð~xxÞ ¼
X

jV j

i¼1

X

jV j

j¼1

Aði; jÞðxi � xjÞ2:

The value of ĝgð~xxÞ does not change if a constant amount is

added to each of the components xi. Hence, the minimiza-

tion problem must be subject to constraints on the

components of the vector ~xx. The constraints are that

X

jV j

i¼1

x2i ¼ 1 and
X

jV j

i¼1

x2i 6¼ 0: ð2Þ

Atkins et al. show that the solution to this relaxed problem

may be obtained from the Fiedler vector of the Laplacian

matrix L ¼ D�A, where D is the diagonal degree matrix

with elementsDði; iÞ ¼ PjV j
j¼1Aði; jÞ equal to the total weight

of the edges connected to the node i.
Unfortunately, the procedure described above does not

meet our requirements since the penalty function ĝgð~xxÞ does
not impose edge connectivity constraints on the ordering

computed during the minimization process. To overcome

this shortcoming, we turn our attention instead to max-

imizing the cost function

ĝgEð~xxÞ ¼
X

jV j�1

i¼1

X

jV j

k¼1

ðAði; kÞ þAðiþ 1; kÞÞx2k: ð3Þ

When we combine the modified cost function with the

constraints, we have that

X

jV j�1

i¼1

X

jV j

k¼1

ðAði; kÞ þAðiþ 1; kÞÞx2k ¼ �
X

jV j�1

i¼1

ðx2i þ x2iþ1Þ: ð4Þ

By introducing the matrix

� ¼

1 0 0 0 . . . 0

0 2 0 0 . . . 0

0 0 2 0 . . . 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 . . . 0 2 0

0 0 . . . 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; ð5Þ

we can make the path connectivity requirement more
explicit and the maximizer of gEð~xxÞ satisfies the condition

� ¼ argmax
x�

~xxT��A~xx�
~xxT��~xx�

: ð6Þ

As a result, the leading eigenvalue �� of the adjacency
matrix A is the maximizer of the cost function ĝgEð~xxÞ. From
the Perron-Frobenius theorem [41], it is known that the
maximizer of this utility function is the leading (left)
eigenvector of the matrix A . Moreover, since A is a real
positive definite symmetric matrix, the associated eigen-
vector �� is unique. The Perron-Frobenius theorem ensures
that the maximum eigenvalue �� > 0 of A has multiplicity
one and, moreover, the coefficients of the corresponding
eigenvector �� are all positive. As a result, the remaining
eigenvectors of A have at least one negative coefficient and
one positive coefficient. If A is substochastic, �� is also
known to be linearly independent of the all-ones vector e.

The elements of the leading eigenvector �� can be used to
construct a serial ordering of the nodes in the graph. We
commence from the node associated with the largest
component of ��. We then sort the elements of the leading
eigenvector such that they are both in the decreasing
magnitude order of the coefficients of the eigenvector and
so that they satisfy edge connectivity constraints on the
graph. The procedure is a recursive one that proceeds as
follows: At each iteration, wemaintain a list of nodes visited.
At iteration k, let the list of nodes be denoted by Lk. Initially,
L1 ¼ j1, where j1 ¼ argmaxj �

�ðjÞ, i.e., j1 is the component of
�� with the largest magnitude. Next, we search through the
set of first neighbors N j1 ¼ fkjðj1; kÞ 2 Eg of j1 to find the
node associated with the largest remaining component of ��.
The second element in the list is j2 ¼ argmaxl2N j1

��ðlÞ. The
node index j2 is appended to the list of nodes visited and
the result is L2. In the kth (general) step of the algorithm, we
are at the node indexed jk and the list of nodes visited by
the path so far is Lk. We search through those first-
neighbors of jk that have not already been traversed by the
path. The set of nodes is Ck ¼ fljl 2 N jk ^ l =2Lkg. The next
site to be appended to the path list is, therefore,
jkþ1 ¼ argmaxl2Ck �

�ðlÞ. This process is repeated until no
further moves can be made. This occurs when Ck ¼ ; and
we denote the index of the termination of the path by T . The
serial ordering of the nodes of the graph X is given by the
ordered list or string of node indices LT . Hence, the path
commences at the node with the highest ranked eigenvector
component and then proceeds in an edge-connected
manner through the sequence of nodes that minimize the
difference in the components of the eigenvector.

Fig. 1 illustrates the seriation method on a simple graph.
Fig. 1a shows the original graph with numeric labels
assigned to the nodes. In Fig. 1b, we show the components
of the leading eigenvector of the adjacency matrix ordered
according the numeric order of the node-labels. In Fig. 1c,
we show the seriation path. This commences at the center of
the graph and then moves around the perimeter.

There are similarities between the use of the leading
eigenvector for seriation and the use of spectral methods to
find the steady state random walk on a graph. There are
more detailed discussions of the problem of locating the
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steady state random walk on a graph in the reviews by
Lovász [20] and Mohar [25]. An important result described
in these papers is that, if we visit the nodes of the graph in
the order defined by the magnitudes of the coefficients of
the leading eigenvector of the transition probability matrix,
then the path is the steady state Markov chain. In a recent
paper [29], which represents the starting point which led us
to the research reported here, we have used the rank order
of the steady state node visitation probabilities to define a
string order. However, this path is not guaranteed to be
edge-connected. Hence, it cannot be used to impose a string
ordering on the nodes of a graph that encompass edge
constraints. The seriation approach adopted in this paper
does, on the other hand, impose edge connectivity con-
straints and can, hence, be used to convert graphs to strings
in a manner which is suitable for computing edit distance.

3 PROBABILISTIC FRAMEWORK

We are interested in computing the edit distance between
the graph GM ¼ ðVM ; EMÞ, referred to as the model graph,
and the graph GD ¼ ðVD; EDÞ, referred to as the data-graph.
The leading eigenvectors of the adjacency matrices AM for
the graph GM and AD for the graph GD are, respectively, ��

M

and ��D. The seriations of the two graphs generated from the
leading eigenvectors are denoted byX ¼ fx1; x2; . . . : : ; xjVM jg
for the model graph and Y ¼ fy1; y2; . . . : : ; yjVDjg for the data-
graph. These two strings are used to index the rows and
columns of an edit lattice. The rows of the lattice are indexed
using the data-graph string, while the columns are indexed
using the model graph string. To allow for differences in the
sizes of the graphs, we introduce a null symbol � which can
be used to pad the strings. We pose the problem of
computing the edit distance as that of finding a path � ¼
< �1; �2; . . . �k; . . . : : ; �L > through the lattice. Each element
�k 2 ðVD [ �Þ � ðVM [ �Þ of the edit path is a Cartesian pair.
We constrain the path to be connected on the edit lattice. In
particular, the transition on the edit lattice from the state �k
to the state �kþ1 is constrained to move in a direction that is
increasing and connected in the horizontal, vertical, or
diagonal direction on the lattice. The diagonal transition
corresponds to the match of an edge of the data-graph to an
edge of the model graph. A horizontal transition means that
the data-graph index is not incremented and this corre-
sponds to the case where the traversed nodes of the
model graph are null-matched. Similarly, when a vertical

transition is made, then the traversed nodes of the data-
graph are null-matched.

Suppose that �k ¼ ða; bÞ and �kþ1 ¼ ðc; dÞ represent adja-
cent states in the edit path between the seriations X and Y .
According to the classical approach [42], the cost of the edit
path is given by the sum of the costs of the elementary edit
operations

dðX;Y Þ ¼ Cð�Þ ¼
X

�k2�
�ð�k ! �kþ1Þ; ð7Þ

where �ð�k ! �kþ1Þ is the cost of the transition between the
states �k ¼ ða; bÞ and �kþ1 ¼ ðc; dÞ. The optimal edit path is
the one that minimizes the edit distance between the strings
and satisfies the condition �� ¼ argmin� Cð�Þ and the edit
distance is dðX;Y Þ ¼ Cð��Þ. Classically, the optimal edit
sequence may be found using Dijkstra’s algorithm [8] or by
using the quadratic programming method of Wagner and
Fisher [42]. However, there are two reasons why the
classical string edit distance does not meet our needs in
this paper. First, the edit costs need to reflect the string
encoding of graph structure. In other words, the transitions
on the edit lattice must take into account whether edge
structure is being matched in a consistent manner. Second,
we would like to cast the problem of minimum edit distance
matching in a probabilistic setting so that we can develop
statistical models for the costs on the edit lattice. In
particular, we would like to do this in a manner which
separates the costs of visiting individual sites on the lattice
and of making transitions between sites. In this way, we can
separate the role of evidence, i.e., the components of the
leading eigenvectors, and constraints, i.e., whether the
edges are matched consistently.

Rather than commencing from an expression for the edit-
cost, in this paper, we pose the problem of recovering the
optimal edit sequence as one of maximum a posteriori
probability estimation. We aim to find the edit path that has
maximum probability given the available leading eigenvec-
tors of the data-graph and model graph adjacency matrices.
Hence, the optimal path is the one that satisfies the
condition �� ¼ argmax� P ð�j��X; ��Y Þ.

To develop this decision criterion into a practical edit
distance computation scheme, we need to develop the
a posteriori probability appearing above. We commence by
using the definition of conditional probability to rewrite the
a posteriori path probability in terms of the joint probability
density P ð��X; ��Y Þ for the leading eigenvectors and the joint
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density function P ð��X; ��Y ;�Þ for the leading eigenvectors
and the edit path. The result is

P ð�j��X; ��Y Þ ¼
P ð��X; ��Y ;�Þ
P ð��X; ��Y Þ

: ð8Þ

We can rewrite the joint density appearing in the
numerator to emphasize and make explicit both the role of
the components of the adjacency matrix leading eigenvec-
tors and the component edit transitions. In this form,

P ð�j��X; ��YÞ¼
P ð��Xð1Þ; ��Xð2Þ; . . . : ; ��Y ð1Þ; ��Y ð2Þ. . . ;�1;�2; . . .Þ

P ð��X; ��Y Þ
:

ð9Þ
To simplify the numerator, we make a conditional

independence assumption. Specifically, we assume that
the components ��XðaÞ and ��Y ðbÞ of the leading eigenvectors
of the model and data-graph adjacency matrices depend
only on the edit transition �k ¼ ða; bÞ associated with their
node-indices. Using the chain-rule for conditional prob-
ability, we can perform the factorization

P ð��Xð1Þ; ��Xð2Þ; . . . : ; ��Y ð1Þ; ��Y ð2Þ . . . ; �1; �2; . . .Þ
P ð��X; ��Y Þ

¼
�

Y

L

k¼1

P ð��XðaÞ; ��Y ðbÞj�kÞ
�

P ð�1; �2; . . . ; �LÞ

and, as a result,

P ð�j��X; ��Y Þ ¼

�

QL
k¼1 P ð��XðaÞ; ��Y ðbÞj�kÞ

�

P ð�1; �2; . . . ; �LÞ

P ð��
X; �

�
Y Þ

;

ð10Þ
where P ð�1; �2; . . . ; �LÞ is the joint prior for the sequence of
edit transitions. To simplify the joint prior, we commence
by applying the chain-rule of conditional probability:

P ð�1; �2; . . . ; �LÞ ¼ P ð�1j�2; . . . ; �LÞP ð�2j�3; . . . ; �LÞ . . .
P ð�kj�kþ1; . . . ; �LÞ . . .P ð�L�1j�LÞP ð�LÞ:

ð11Þ
To simplify this factorization, we assume that the sites on the
edit lattice are conditionally dependent only on those that
are immediate neighbors. As a result, P ð�kj�kþ1; . . . ; �LÞ ¼
P ð�kj�kþ1Þ. Hence, we can write

P ð�1; �2; . . . ; �LÞ ¼ P ð�LÞ
Y

L�1

k¼1

P ð�kj�kþ1Þ: ð12Þ

This takes the form of a factorization of conditional
probabilities for transitions between sites on the edit lattice
P ð�kj�kþ1Þ, except for the term P ð�LÞ, which results from the
final site visited on the lattice. To arrive at a more
homogeneous expression, we use the definition of condi-
tional probability to reexpress the joint conditional mea-
surement density for the adjacency matrix leading
eigenvectors in the following form:

P ð��XðaÞ; ��Y ðbÞj�kÞ ¼
P ð�kj��XðaÞ; ��Y ðbÞÞP ð��XðaÞ; ��Y ðbÞÞ

P ð�kÞ
:

ð13Þ

Substituting (12) and (13) into (10), we find

P ð�j��X; ��Y Þ ¼
�

Y

L

k¼1

P ð�kj��XðaÞ;��Y ðbÞÞ
P ð�k;�kþ1Þ
P ð�kÞP ð�kþ1Þ

�QL
k¼1 P ð��XðaÞ;��Y ðbÞÞ

P ð��X;��Y Þ
:

Since the joint measurement density P ð��X; ��Y Þ does not
depend on the edit path, it does not influence the decision
process and we remove it from further consideration.
Hence, the optimal path across the edit lattice is

�� ¼ arg max
�1;�2...;�L

�

Y

L

k¼1

P ð�kj��
XðaÞ; ��Y ðbÞÞ

P ð�k; �kþ1Þ
P ð�kÞP ð�kþ1Þ

�

:

ð14Þ
The information concerning the structure of the edit path

on the lattice is captured by the quantity

Rk;kþ1 ¼
P ð�k; �kþ1Þ
P ð�kÞP ð�kþ1Þ

: ð15Þ

We refer to this quantity as the edge-compatibility

coefficient.
To establish a link with the classical edit distance picture

presented earlier, we can reexpress the location of the
optimal edit path as a minimization problem involving the
negative logarithm of the a posteriori path probability. The
optimal path is the one that satisfies the condition

�� ¼ arg min
�1;�2...;�L

�

X

L

k¼1

�

� lnP ð�kj��XðaÞ; ��Y ðbÞÞ � lnRk;kþ1

��

:

ð16Þ
As a result, the elementary edit cost �ð�k ! �kþ1Þ associated
with the transition from the site �k ¼ ða; bÞ to the site �kþ1 ¼
ðc; dÞ is

�ð�k ! �kþ1Þ ¼ �
�

lnP ð�kj��XðaÞ; ��Y ðbÞÞþ
lnP ð�kþ1j��XðcÞ; ��Y ðdÞÞ þ lnRk;kþ1

�

:
ð17Þ

The expression hence contains separate terms associated
with the cost of visiting individual sites on the lattice and
for making transitions between sites. The cost of visiting
the sites depends only on the components of the
eigenvectors and reflects the raw measurement data
available to the graph matching method. The transition
between sites, on the other hand, depends on whether
there is a consistent connecting edge structure between the
sites on the edit lattice.

4 MODEL INGREDIENTS

To compute the edit costs, we require models of the

a posteriori probabilities of visiting the sites of the edit

lattice, i.e., P ð�kj��XðaÞ; ��Y ðbÞÞ and of Rk;kþ1.

4.1 Lattice Transition Probabilities

The edge compatibility coefficient Rk;kþ1 can be modeled

using a simple model of node attendance [43]. We assume

that there is a uniform probability p that individual nodes,

in either of the graphs being matched, are missing due to

the action of detection errors. These errors may be due to a
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number of processes, including imperfections in the image
segmentation process or occlusions. We assume that the
detection errors operate independently on the nodes of the
graphs. As a result, uncorrupted edges occur with total
probability mass ð1� pÞ2. This probability mass is distrib-
uted between the jEj edges of the graph. Edges with one
node present and one node missing have total probability
mass 2pð1� pÞ. This probability mass is distributed among
the 2jV j configurations involving a node and a null symbol
�. Edges in which both nodes are missed take the remaining
probability mass, i.e., p2. There is one such configuration,
i.e., ð�; �Þ to which this mass of probability may be assigned.

When the two graphs to be matched are considered
together, there are nine cases in which the assigned prob-
ability is nonzero. We assume that joint errors in the
two graphs under consideration are independent. Hence,
the probabilities are taken in product. If pM and pD are
the node detection error probabilities for the model and
data-graphs, then the distribution of joint probability for
the transitions on the edit lattice is specified by the
following rule:

P ð�k; �kþ1Þ ¼
ð1�pDÞ2
jEDj

ð1�pM Þ2
jEM j if ða; cÞ 2 ED and ðb; dÞ 2 EM

ð1�pDÞ2
jEDj

pM ð1�pM Þ
jVM j

if ða; cÞ 2 ED and

ðb; dÞ 2 ðVM � �Þ [ ð�� VMÞ
ð1�pDÞ2
jEDj p2M if ða; cÞ 2 ED and ðb; dÞ ¼ ð�; �Þ

pDð1�pDÞ
jVDj

ð1�pM Þ2
jEM j

if ða; cÞ 2 ðVD � �Þ [ ð�� VDÞ and
ðb; dÞ 2 EM

pDð1�pDÞ
jVDj

pM ð1�pM Þ
jVM j

if ða; cÞ 2 ðVD � �Þ [ ð�� VDÞ and
ðb; dÞ 2 ðVM � �Þ [ ð�� VDÞ

pDð1�pDÞ
jVDj p2M

if ða; cÞ 2 ðVD � �Þ [ ð�� VDÞ and
ðb; dÞ ¼ ð�; �Þ

p2D
ð1�pM Þ2
jVM j if ða; cÞ ¼ ð�; �Þ and ðb; dÞ 2 EM

p2D
pM ð1�pM Þ

jVM j
if ða; cÞ ¼ ð�; �Þ and
ðb; dÞ 2 ðVM � �Þ [ ð�� VMÞ

p2Dp
2
M if ða; cÞ ¼ ð�; �Þ and ðb; dÞ ¼ ð�; �Þ

0 otherwise:
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:

ð18Þ

The single-site priors are found by summing the joint

priors, i.e., P ð�kÞ ¼
P

�kþ1
P ð�k; �kþ1Þ, and are given by

P ð�kÞ ¼

ð1�pDÞ
jVDj

ð1�pM Þ
jVM j if a 2 VD and b 2 VM

ð1�pDÞ
jVDj pM if a 2 VD and b ¼ �

pD
ð1�pM Þ
jVM j if a ¼ � and b 2 VM

pDpM if a ¼ � and b ¼ �:

8

>

>

>

>

<

>

>

>

>

:

ð19Þ

As a result of these distribution rules and under the
assumption that the error process acts independently in the
two graphs being matched, it can be shown that the

quantity Rk;kþ1 depends only of the edge densities �D ¼ jVDj2
ED

and �M ¼ jVM j2
EM

for the two graphs under study. The
contingency table given can be expressed in terms of the
transitions on the edit lattice. The move contingency table is

Rk;kþ1 ¼

�M�D
if �k ! �kþ1 is a diagonal transition on the

edit lattice; i:e:; ða; cÞ 2 ED and ðb; dÞ 2 EM

�M
if �k ! �kþ1 is a horizontal transition on the

edit lattice; i:e:; ða; cÞ 2 ED and b ¼ �ord ¼ �

�D
if �k ! �kþ1 is a vertical transition on the

edit lattice; i:e:; a ¼ �orc ¼ � and ðb; dÞ 2 EM

1 if a ¼ �orc ¼ � and b ¼ �ord ¼ �:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð20Þ
The node detection probabilities are canceled out between

the numerator and denominator and, as a result, the edge-

compatibility coefficients are determined only by the edge

densities in the two graphs being matched.

4.2 A Posteriori Correspondence Probabilities

The second model ingredient is the a posteriori probability

of visiting a site on the lattice. To motivate our model, we

draw on the matrix perturbation theory [38]. It can be

shown that the change in the leading eigenvector depends

in a linear manner on the perturbations in the elements of

the adjacency matrix [30]. Moreover, in prior work, we have

shown that a Bernoulli distribution can be successfully used

to model noise in the elements of the adjacency matrix [28].

As a result, if the matrix is large (i.e., the change in the

leading eigenvector is the result of the sum of a large

number of adjacency matrix element perturbations), then,

as a consequence of the central limit theorem, the distribu-

tion of errors in the leading eigenvector due to perturba-

tions in the elements of the adjacency matrix will be

Gaussian. In other words, we can write

P ð�kj��XðaÞ; ��Y ðbÞÞ ¼
1
ffiffiffiffi

2�
p

�
exp

n

� 1
2�2 ð��

XðaÞ � ��Y ðbÞÞ2
o

if a 6¼ � and b 6¼ �

	 if a ¼ � or b ¼ �;

(

ð21Þ
where �2 is the noise variance for the components of the

leading eigenvectors. The perturbation argument does not

deal with the more intractable problem of modeling

changes in the size of the matrix (i.e., possible node

insertions and deletions). In addition, it is worth mention-

ing that there are alternatives to measuring the difference in

the eigenvectors using the L2 norm between eigenvectors in

the probability distribution function. For instance, error

could be measured by the angle between eigenvectors

making use of a Von Mises distribution [24].

4.3 Minimum Cost Path

Once the edit costs are computed, we proceed to find the

path that yields the minimum edit distance. Our adopted

algorithm makes use of the fact that the minimum cost path

along the edit lattice is composed of subpaths that are also

always of minimum cost. Hence, following Levenshtein

[19], we compute a jVDj � jVM j transition-cost matrix  . The

elements of the matrix are computed recursively using the

formula
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 ði; jÞ ¼
�ð�i ! �jÞ if j ¼ 1 and i ¼ 1

�ð�i ! �jÞ þ  i;j�1 if i ¼ 1 and j � 2

�ð�i ! �jÞ þ  i�1;j if j ¼ 1 and i � 2

�ð�i ! �jÞ þminð i�1;j;  i;j�1;  i�1;j�1Þ if i � 2 and j � 2:

8

>

>

>

<

>

>

>

:

ð22Þ
The matrix  is a representation of the accumulated

minimal costs of the path along the edit lattice constrained
to horizontal, vertical, and diagonal transitions between
adjacent coordinates. The minimum cost path can be proven
to be that of the path closest to the diagonal of the matrix
[19]. As a result, the edit distance is given by the bottom
rightmost element of the transition-cost matrix. Hence,
dðX;Y Þ ¼  ðjVDj; jVM jÞ.

At this point, it is worth commenting on the complex-
ity of the seriation method. First, the leading eigenvector
of the adjacency matrix needs to be computed. For an
N �N adjacency matrix, there are numerical methods
that can recover the eigenvalues and eigenvectors with
complexity OðN3Þ. However, the leading eigenvector can
be computed with complexity OðN2Þ using the power
method [13]. Second, we need to search for the seriation
path of the average degree of the graph is D, then the
cost of this step is OðNðD� 1ÞÞ. Finally, the minimum
cost edit path needs to recovered. If the longer string
being matched is of length N and the shorter one of
length M, then the complexity of this step is OðNM2Þ.

5 EXPERIMENTS

Our experimental study is concerned with demonstrating
the utility of the distances computed using our new method
for the problem of graph-clustering. We explore three real-
world problems. The first of these involves a database
containing different views of a number of 3D objects. The
second application involves view-based object recognition
from 2D views of 3D objects using topographic information
furnished using shape-from-shading. The third problem
involves finding sets of similar shapes in a database of
trademarks and logos.1

5.1 View-Based Object Recognition

We have experimented with our new matching method on
an application involving a database containing different
perspective views of a number of 3D objects. The objects
used in our study are model houses. The different views are
obtained as the camera circumscribes the object. The
three object sequences used in our experiments are the
CMU-VASC sequence, the INRIA MOVI sequence, and a
sequence of views of a model Swiss chalet. In our
experiments, we use 10 images from each of the sequences.
To construct graphs for the purposes of matching, we have
first extracted corners from the images using the corner
detector of Luo, et al. [21]. The graphs used in our
experiments are the Delaunay triangulations of these corner

points. Our reason for using the Delaunay graph is that, of
the point neighborhood graphs (k-nearest neighbor graph,
Gabriel graph, relative neighborhood graph), it is the one
that is least sensitive to node deletion errors [39]. Example
images from the sequences and their associated Delaunay
are shown in Fig. 2. In Table 1, we list the numbers of nodes
in the graphs and their edge densities. The table is divided
into three blocks. Each block is for a different image
sequence. The top row in each block shows the sequence
number for the images.

5.1.1 Clustering

For the 30 graphs contained in the database, we have
computed the complete set of 30� 29 ¼ 870 distances
between each of the distinct pairs of graphs. We compare
our results with those obtained when using the distances
computed using two alternative methods. The first of these
is the negative log-likelihood function computed using the
EM algorithm reported by Luo and Hancock [22]. In this
work, the similarity of the graphs is gauged by the quantity
Tr½AT

DQMQT �, where AD is the jVDj � jVDj data-graph
adjacency matrix, AM is the jVM j � jVM j model graph
adjacency matrix, and Q is a jVDj � jVDj matrix of
correspondence probabilities between the nodes of the
data-graph and the model graph. Maximum likelihood
matches are found by performing singular value decom-
position on the weighted correlation matrix AT

DQAM

between the data-graph adjacency matrix and the model
graph adjacency matrix. This similarity measure uses purely
structural information. Hence, the method shares with our
edit distance framework the use of a statistical method to
compare the eigenvector structure of two adjacency ma-
trices. However, unlike our method, which uses only the
leading eigenvector of the adjacency matrix, this method
uses the full pattern of singular vectors. In addition, the
method is an iterative one which alternates between
computing singular vectors in the M or maximization step
and recomputing the correspondence probability matrix Q
in the E or expectation step. The second of the distance
measures is computed using a spectral embedding of the
graphs [23]. The method involves embedding the graphs in
a pattern space spanned by the leading eigenvalues of the
adjacency matrix. According to this method, the distance
between graphs is simply the L2 norm between points in
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Fig. 2. Example images and associated Delaunay triangulations.

1. All trademarks and logotypes remain the property of their respective
owners. All trademarks and registered trademarks are used strictly for
educational and academic purposes and without intent to infringe on the
mark owners.



this pattern space [23]. This pairwise graph similarity
measure again shares the feature of using spectral proper-
ties of the adjacency matrix with our new method.

In Fig. 3a, we show the distance matrix computed using
our algorithm. The similarity matrix obtained using the
method of Luo et al. [23] is shown in Fig. 3b, while the
distance matrix computed from the spectral embedding is
shown in Fig. 3c. In each distance-matrix, the element with
row column indices i; j corresponds to the pairwise
similarity between the graph indexed i and the graph
indexed j in the database. In each matrix, the graphs are
arranged so that the row and column index increase
monotonically with viewing angle. The blocks of views for
the different objects follow one another. The darker the
entry, the smaller the distance. From the matrices in Fig. 3,
it is clear that the different objects appear as distinct blocks.
Within each block, there is substructure (subblocks) which
corresponds to different characteristic views of the object.
The main feature to note from the three matrices is that
there is less confusion between the third block (Chalet
sequence) and the first two blocks (CMU and MOVI
sequences) when our edit distance method is used.

For visualization purposes, we have performed multi-
dimensional scaling (MDS) on the pairwise distance
matrices to embed the graphs in an eigenspace. Broadly
speaking, this is a method for visualizing objects character-
ized by pairwise distance rather than by ordinal values. It
hinges around computing the eigenvectors of a similarity

matrix. The leading components of the eigenvectors are the
coordinates associated with the graphs. The method can be
viewed as embedding the graphs in a pattern space using a
measure of their pairwise similarity to one another. It is
interesting to note that, when the distance measure used is
the L2 norm, MDS is equivalent to the principal compo-
nents analysis. However, with graph edit distance, this is
not the case. We plot the positions of the graphs on the
plane corresponding to the two leading dimensions of the
resulting eigenspace. We construct the embeddings using
the entire similarity matrix for the three different objects,
with the aim of determining whether the eigenspace
captures the structural differences between the sets of
graphs for the distinct objects in our experimental data set.
In Fig. 4a, we show the embeddings corresponding to the
distance matrices computed using our algorithm. In Fig. 4b,
the negative log-likelihood computed using the algorithm
of Luo et al. [23] is shown. In Fig. 4c, we show the spectral
feature-vectors extracted from the adjacency matrix [23]. Of
the three distance measures, the clusters resulting from the
use of the edit distance described in this paper produce the
clearest cluster structure. Hence, our new distance measure
appears to be effective at distinguishing between different
classes of object.

Based on the visualization provided by MDS, it appears
that the distances furnished by our edit distance method
may be suitable for the purposes of graph-clustering. We
have therefore applied a pairwise clustering algorithm to
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the similarity data for the graphs. The process of pairwise
clustering is somewhat different to the more familiar one of
central clustering. Whereas central clustering aims to
characterize cluster-membership using the cluster mean
and variance, in pairwise clustering it is the relational
similarity of pairs of objects which are used to establish
cluster membership. Although less well-studied than
central clustering, there has recently been renewed interest
in pairwise clustering aimed at placing the method on a
more principled footing using techniques such as mean-
field annealing [14]. In this paper, we apply the pairwise
clustering algorithm of Robles-Kelly and Hancock [28] to
the similarity data for the complete database of graphs. Our
aim is to determine which distance measure results in a
cluster assignment which best corresponds to the
three image sequences. The pairwise clustering algorithm
requires distances to be represented by a matrix of pairwise
affinity weights. Ideally, the smaller the distance, the
stronger the weight and, hence, the mutual affinity to a
cluster. The affinity weights are required to be in the
interval ½0; 1�. For the pair of graphs indexed i1 and i2, the
affinity weight is taken to be

W
ð0Þ
i1;i2 ¼ exp �k dði1; i2Þ

maxi1;iqðdðil; iqÞÞ

� 	

; ð23Þ

where k is a constant and dði1; i2Þ is the edit distance
between the graph indexed i1 and the graph indexed i2.
The clustering algorithm is described in detail in [28] and is
summarized in the supplementary electronic material. It is
an iterative process. The process maintains two sets of
variables. The first of these is a set of cluster membership

indicators, s
ðnÞ
i! , which measures the affinity of the graph

indexed i to the cluster indexed ! at iteration n of the
algorithm. The second is an estimate of the affinity matrix
based on the current cluster-membership indicators W ðnÞ.
These two sets of variables are estimated using interleaved
update steps, which are formulated to maximize a like-
lihood function for the pairwise cluster configuration.

The final similarity matrices generated by the clustering
process for each of the distance measures studied are shown
in Fig. 5. From left-to-right, the panels show the similarity
matrices obtained using our edit distance, the Luo and
Hancock structural graph matching algorithm (SGM), and
the spectral feature vectors. The lighter the entries, the more
similar the corresponding pairs of graphs. Ideally, the
clusters should appear as square blocks centered along the
diagonal of the matrices. The misassignment of graphs to
clusters is characterized by a strong response outside these
blocks. In the case of our edit distance, the first and seventh
graphs in the third block (i.e., the Chalet sequence) are,
respectively, misassigned to the first block (the CMU
sequence) and the second block (the MOVI sequence). In
the case of the spectral feature vectors, four of the Chalet
sequence graphs are misassigned to the MOVI sequence. In
the case of the Luo and Hancock method, only the seventh
Chalet graph is misassigned to the MOVI cluster. The errors
are due to the fact that the graphs in question are
morphologically more similar to the graphs in the CMU
and MOVI sequences than to those in the Chalet sequence.
Ourmethod compares favorably when computational cost is
taken into account. This is because our method only requires
the computation of the leading eigenvector, while the
spectral feature vectors require the complete eigenstructure

ROBLES-KELLY AND HANCOCK : GRAPH EDIT DISTANCE FROM SPECTRAL SERIATION 373

Fig. 4. Eigenspace projections for each of the distance matrices used.
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to be computed. As a consequence, the edit distance takes, on

average, a factor of 2.6 times less time to compute than the

spectral feature vectors. Since the complexity of the

eigenvector component of the method presented in this
paper is OðN2Þ, while that for the Luo and Hancock method

is OðN3Þ, this difference can be expected to grow with

increasing graph size.

5.1.2 Structural Sensitivity to Node Deletion Error

We have conducted some experiments to measure the

sensitivity of our matching method to structural differences

in the graphs and to provide comparison with alternatives.
Here, we have taken the first graph from each of the three

sequences described above. We have simulated the effects

of structural errors by randomly deleting nodes and

retriangulating the remaining point-set. To demonstrate

the effect of these structural errors, in Fig. 6a, we show the

edit distance as a function of the number of deleted nodes.

We have averaged the edit distance over 10 different sets of

random node deletions. The different curves in the plot are

for the different seed graphs. In each case, the edit distance

varies almost linearly with the number of deleted nodes.

The deviations from the linear dependence occur when

large fractions of the graph are deleted.
To investigate the effect of node detection errors, in

Fig. 6b, we show the fraction of correspondence errors as a

function of the fraction of nodes deleted from the graphs.

Here, we consider the model graph to be the initial graph,

i.e., the deletion-free Delaunay triangulation. The main
features to note from this plot are as follows: First, the

fraction of correspondence errors is always lower than the

fraction of deleted nodes. Second, there appears to be no

systematic effect of varying the graph size.
Finally, we investigated the effect of the node deletion

errors on the results of MDS. In Fig. 7a, we show the

distance matrix and, in Fig. 7b, the MDS embedding for the

graphs. The graphs belonging to the different noise

perturbed sets are denoted by different characters and

form well-defined clusters. Hence, structural (node deletion

errors) do not appear to affect adversely the clustering

process.

5.2 Constant Shape Index Maximal Patches

Our second real-world example is also concerned with
view-based object recognition. Here, we have used the
COIL database, which consists of a series of 2D views of
3D objects collected at 72 equally spaced viewing directions
on a great circle of the object view-sphere. To extract graphs
from the object-views, we have proceeded as follows: We
first apply shape-from-shading [45] to the object views to
extract fields of surface normals. From the fields of surface
normals, we follow Dorai and Jain [9] and compute the
Koenderink and Van Doorn shape-index [18]. The shape-
index is a curvature invariant measure of local surface
topography that distinguishes smoothly between ridges,
ravines, saddles, domes, and cups using an angular
descriptor. The object views are segmented into regions of
uniform shape-index (constant shape-index maximal
patches or CSMPs). For the arrangement of CSMPs, we
compute the region adjacency graph. We have computed
edit distances between the graphs and have subjected the
distances to multidimensional scaling.

In our experiments, we have used three objects and
10 views for each object. Fig. 8 shows some example views
and the corresponding graphs. In Fig. 9, we show the result
of applying MDS to the graph edit distances. The left-most
panel shows the three object clusters, which are well-
separated. The remaining panels show magnified views of
the clusters for the individual objects. The different views of
the three objects are well-separated and form distinct
clusters. This feature of the data is supported in Fig. 10,
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Fig. 6. Structural sensitivity plots. (a) Edit distance versus nodes detected. (b) Correspondence error versus nodes deleted.

Fig. 7. (a) Distance matrix and (b) MDS plot for our set of random
graphs.



where, from left-to-right, the panels show the raw edit
distance matrix, the matrix of initial graph similarities, and
the matrix of final graph similarities. Despite the fact that
there is overlap in the block of the initial similarity matrix,
in the final similarity matrix, the cluster blocks are cleanly
separated and none of the object-views is misassigned.

5.3 Database of Logos

The third application involves using the clustering methods
outlined in the previous section for image database
indexing and retrieval. As proof of concept, we have
performed experiments on a relatively small database
containing 245 binary images of trademark-logos used
previously in the study of Huet and Hancock [16]. Here, the
graphs are constructed as follows: First, we apply the
Canny edge detector [5] to the images to extract connected
edge-chains. A polygonalization procedure [27] is applied
to the edge-chains to locate straight line segments. For each

line-segment, we compute the centerpoint. The graphs used
in our experiments are the Delaunay triangulations of the
line-centers. In the top left-hand panel in Fig. 11, we show
an example of the images used in our experiments. The
middle panel shows the results of the line-segment
extraction step. The corresponding Delaunay graph is
displayed in the right-hand panel. For each pair of
Delaunay graphs, we compute the edit distance. We have
again applied both multidimensional scaling and pairwise
clustering to the distance matrix.

Turning our attention first to the results of multi-
dimensional scaling, Fig. 12 shows the distribution of
graphs in the space spanned by the leading two eigenvec-
tors of the similarity matrix. The graphs are distributed
along an annulus. Analysis of the data shows that the
position along the length of the annulus corresponds to the
size (i.e., number of nodes) of the graphs, while the position
away from it depends on the variation in structure for
graphs of the same size.

Next, we turn our attention to the results of applying

pairwise clustering to the set of edit distances for the logos.

We obtained 34 clusters with an average of seven images per

cluster. To display the results, we find the modal graph for

each cluster. For the cluster indexed !, the modal graph has

the largest cluster-membership indicator s
ð1Þ
i! at the conver-

gence of the clustering process. In otherwords, it is the graph

with index i�! ¼ argmaxi s
ð1Þ
i! . We then rank the remaining

graphs in the order of their increasing distance from the

modal graph for the cluster !. The significance of the cluster

indexed ! is gauged by the total mass of membership

indicatorm! ¼ P

i2� s
ð1Þ
i! . In Fig. 13, the different rows show

the images belonging to the eight most significant clusters.

The leftmost image in each row is the image corresponding to

the modal graph for the cluster. The subsequent images in

each row correspond to the most similar graphs in order of

increasing edit distance. It is interesting to note that similar
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Fig. 8. Example views and graphs for the three COIL objects used in our

experiments.

Fig. 9. MDS results for the COIL objects used in our experiments.

Fig. 10. Distance matrix and initial and final affinity matrices for the objects in the COIL database used in our experiments.



logos appear in the same cluster. For instance, the two

“Crush” logos (one with a palm-tree and one with a fruit-

segment) appear in the top row, the “Hotel Days,” “Auberge

Daystop,” and “Les Suites Days” appear in the second row,

and the two “Incognito” logos in the third row. However, the

clusters do not seem to correspond to obvious shape

categories. Hence, it would appear that we need to exploit

the distances in a more sophisticated shape indexation

procedure.
To this end, we note that, once the database has been

clustered, we can use the cluster structure in the search for
the most similar object. The idea is to find the cluster whose
modal graph is most similar to the query. The graph within
the cluster that is most similar to the query is the one that is
retrieved. The search process is as follows: Suppose the
query graph is denoted by Gq. First, we compute the set of
graph edit distances between the graph Gq and the modal
graphs for each cluster. The distance between the graph Gq

and the modal graph for the cluster ! is denoted by d�q!. The
cluster with the most similar modal graph is !q ¼
argmin! d

�
q!. We search the graphs in this cluster to find

the one that is most similar to the query graph. The set of

graphs belonging to the cluster !q is Cq ¼ fijsð1Þ
i!q

¼
argmax! s

ð1Þ
i! g. The retrieved graph is the member of the

set Cq which has the minimum edit distance to the query
graph Gq, i.e., the one for which iq ¼ argmini2Cq dqi. It must

be stressed that this simple recall strategy is presented here
just to illustrate that the edit distances can be used to cluster
images and organize the database. The information retrieval
literature contains more principled and more efficient
alternatives, which should be used if the example given
here is scaled to very large databases of thousands or tens of
thousands of images.

In Fig. 14, we show the results of three query operations.
The top image in each column shows the query image and
the subsequent images correspond to the retrieved images
in order of increasing graph edit distance. In the left-hand
column, we show the result of querying with the “Auberge
Daystop” logo. The two most similar images have the same
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Fig. 12. Multidimensional scaling applied to the matrix of edit distances
for the logos.

Fig. 11. Example image, polygonalization results, and Delaunay triangulation.

Fig. 13. Left-hand column: cluster-centers; right-hand columns: mem-
bers of the cluster arranged according to their rank.



shape, but carry the legends “Hotel Days” and “Les Suites
Days.” The middle row shows the result of querying with
the “Incognito Plus” logo, which returns the “Incognito-
Cotton” logo as the most similar graph. In the right-hand
column, we show the result of querying with the “Crush”
logo. Here, the most similar graph again contains the
“Crush” legend, but the orange segment is replaced by a
palm-tree. It is worth noting that the database contains
only two logos of the “Days Inn” type and a single “Crush”
and “Incognito” type image. Hence, from our results, we
can conclude that the algorithm is able to cope with
structural variations and differences in graph-size. Of
course, this cluster-based retrieval method has its potential
drawbacks. First, if logos are assigned to the wrong cluster,
the retrieval process will fail. This problem can be over-
come if the search proceeds beyond the cluster with the
best-match modal graph to the N best matched clusters.
The second problem is that of cluster merging or cluster
fragmentation, which again means that a more sophisti-
cated search strategy is needed.

We have placed this study on a more quantitative basis
by computing precision-recall curves for the retrieval
method. Fig. 15 shows the precision-recall curves for the
three queries described above. It is the “Days-Inn” query
that shows the fastest fall-off of precision with recall. In the
case of the remaining two queries, the fall-off does not take
place until the value of the recall is greater than 0.8.

6 CONCLUSIONS

The work reported in this paper provides a synthesis of
ideas from spectral graph-theory and structural pattern
recognition. We use a graph spectral seriation method
based on the leading eigenvector of the adjacency matrix to

convert graphs to strings. We match the resulting string
representations by minimizing edit distance. The edit costs
needed are computed using a simple probabilistic model of
the edit transitions, which is designed to preserve the edge
order on the correspondences. The minimum cost edit
sequence may be used to locate correspondences between
nodes in the graphs under study. We have also demon-
strated that the edit distances can be used to cluster graphs
into meaningful classes.

There are a number of ways in which the work
described in this paper may be extended. First, although
we have concentrated on unweighted graphs, it would be
interesting to extend it to weighted graphs. Second, there
are alternative ways of computing the minimum cost edit
sequence and these may improve both the efficiency and
accuracy of the method. One recently developed method
that would be interesting to explore in this context is
string-kernels.
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