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Closed Loop Static Control

of Multi-Magnet Soft Continuum Robots

Giovanni Pittiglio1, Member, IEEE, Andrew L. Orekhov2, Tomas da Veiga3, Simone Calò3,

James H. Chandler3, Member, IEEE, Nabil Simaan4, Fellow, IEEE, and Pietro Valdastri3, Fellow, IEEE

Abstract—This paper discusses a novel static control approach
applied to magnetic soft continuum robots (MSCRs). Our aim
is to demonstrate the control of a multi-magnet soft continuum
robot (SCR) in 3D. The proposed controller, based on a simplified
yet accurate model of the robot, has a high update rate and
is capable of real-time shape control. For the actuation of
the MSCR, we employ the dual external permanent magnet
(dEPM) platform and we sense the shape via fiber Bragg grating
(FBG). The employed actuation system and sensing technique
makes the proposed approach directly applicable to the medical
context. We demonstrate that the proposed controller, running at
approximately 300 Hz, is capable of shape tracking with a mean
error of 8.5% and maximum error of 35.2% . We experimentally
show that the static controller is 25.9% more accurate than a
standard PID controller in shape tracking and is able to reduce
the maximum error by 59.2%.

Index Terms—Medical Robots and Systems; Formal Methods
in Robotics and Automation; Modeling, Control, and Learning
for Soft Robots; Magnetic Actuation.

I. INTRODUCTION

Soft continuum robots (SCRs) are hyperflexible mechanical

structures [1] capable of shaping to convoluted paths. This

makes them good candidates for medical applications involv-

ing delicate interaction with the anatomy [2], [3]. Magnetically

actuated SCRs, or MSCRs, have been demonstrated in appli-

cations such as: neurosurgery [4–6], bronchoscopy [7], [8],

cardiovascular interventions [9–11] and insertion of cochlear
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implants [12]. Magnetic actuation gives the possibility to apply

forces and torques remotely [13], allowing MSCRs to have

simpler structures compared to standard SCRs, supporting

miniaturization and increased flexibility. Previous research

[4], [5], [9], [12], [14] has shown how embedding a single

internal permanent magnet (IPM) within a SCR allows for

remote actuation. However, the use of a single IPM limits the

maximum number of controllable degrees of freedom (DOFs)

[15–17] the MSCR can realize.

Edelmann et al. [18] and Richter et al. [19] used Cosserat

rod theory to model the behaviour of MSCRs, using camera

feedback for sensing. In both papers, only simulation is used

to demonstrated multi-magnet control in 3D. Although the

actuation and control of 2 IPMs has also been experimentally

demonstrated in [10], [20], [21], this was limited to a 2D plane.

In [8], we demonstrated that multi-IPM MSCRs have the

potential to shape form to suit convoluted anatomical struc-

tures, improving navigation when compared to equivalent tip-

and axially-magnetized MSCRs. In that study, we showed

successful navigation in a phantom of the bronchi, which has

a convoluted centerline. However, to improve the capabilities

of MSCRs, closed-loop control is needed. This could enable

full navigational autonomy and robust interaction with un-

predictable anatomical deformation or motion, as shown for

single-IPM robots [17].

This paper proposes a novel control approach which models

the statics of MSCRs assuming piece-wise constant curvature,

i.e. each segment of the robot can deform as an arc of a circle.

This approach reduces the computational complexity of the

model, compared to the Cosserat-rod approach employed in

[18], [19]. In fact, the latter is formulated in a differential form,

with respect to arc length, and requires iterative numerical

solution of the static equilibrium. This is required to find the

MSCR’s Jacobian and can become computational intensive.

Our model, in contrast, can be solved in closed form and

runs at around 300 Hz, compared to 1 Hz [19] and 20 Hz

[18] of previously proposed approaches. This is significant for

medical applications to enhance safety via improved control

bandwidth.

In the present work, we experimentally demonstrate the

control of a multi-IPM MSCR in 3D. For closed-loop control,

we use a Fiber Bragg Grating FBG sensor along the main axis

of the robot which is directly applicable to clinical scenarios

since it does not require visual access. We employ the dEPM

actuation method, presented in [22], [23]. This is based on

the collaborative actuation of two external permanent magnets

(EPMs) which can generally apply a stronger magnetic field
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Fig. 1: Schematic representation of SCR.

compared to systems of coils [18], [19]. This offers a more

direct application to the clinical context, as shown in [8].

We demonstrate that modelling the statics of the tentacle

and incorporating the model in the control of the MSCR can

improve the overall tracking, when compared to applying a

standard PID controller on the configuration variables. We note

that our model neglects dynamic inertial effects, since we en-

vision the MSCR operating at slow speeds in this application,

but believe a dynamics model could be incorporated in future

work.

Our experiments in Section VI also analyze the advantages

and limitations of using FBGs in this context. While they

are useful for tracking small catheters without visual access,

we had to limit the controlled DOFs to avoid axial twist,

which the FBGs cannot track. We also noticed errors related

to not tracking the twist, which are the outcome of applying a

magnetic field opposed to the IPMs magnetic dipole direction.

The paper is organized as follows. In Sections II and and

III, we present the constant-curvature kinematics used in the

model of the MSCR. In Section IV, we present the statics

model for the robot, including the effects of elasticity, gravity,

and magnetic forces, and describe the model-based controller.

Finally, in Sections V and VI we present the experimental

results, and conclude with discussion in Section VII.

II. DIRECT KINEMATICS

In this section, we describe the direct kinematics of a

continuum robot by assuming piece-wise constant curvature.

In particular, referring to Fig. 1, the manipulator is divided

into piece-wise constant curvature segments with the following

properties: (i) homogeneity in the mechanical parameters, such

as cross section, mass density and elasticity; (ii) constant

internal wrench per length unit (fi) along each segment; (iii)

only one external wrench (fei ) applied at the end of each

segment. Note that fei , fi ∈ R
6 and each segment is described

by the deflection in the 3 principal directions n̂i ∈ R
3 of the

angle θi ∈ R.

The above conditions allow us to assume the ith segment

deflects with constant curvature having a local bending angle

θi about a local axis of bending n̂i. These entities define the

local bending vector γi = θin̂i along its length, parameterized

by the length parameter si ∈ [0, li], where li ∈ R is the length

of the ith segment.

Moreover, we assume no elongation of the robot, i.e. only

angular deflection is modelled [24]. Specifically, we consider

only torque actuation related to the interaction of each IPM

with the externally applied magnetic field. We assume that

field gradients, and related forces, are negligible.

The direct kinematics describes the pose of each infinites-

imal section (pi(si),Ri(si)) ∈ R
3 × SO(3), with respect to

the augmented curvature vector1 γ = (γT
1 γT

2 · · · γT
n )

T ∈
R

3n, in global reference frame G0 ≡ {O0,x0,y0, z0}.

Specifically, pi(si) relates to the position in global reference

frame and Ri(si) is the rotation from local frame F (si) =
{O(si),x(si),y(si), z(si)} to G0.

First, we consider the evolution of the pose along the length

of the manipulator, as

∂pi(si)

∂si

def
= p′

i(si) = Ri(si)e3

∂Ri(si)

∂si

def
= R′

i(si) = Ri(si) [γi]
∧

(1)

where ei is the ith element of the canonical basis of R
3

(i.e. e3 is the tangent along the z axis) and [v]∧ denotes

the cross product matrix form of a vector v i.e., v∧ def
=

(v × e1, v × e2, v × e3) and its inverse is the vee (·∨)

operator (v∧)
∨
= v, for any vector v ∈ R

3.

When computing a local frame within a segment, we assume

a piecewise constant curvature model, which leads to:

Ri(si) = Ri−1(li−1)exp

(

[

n̂i

θisi
li

]∧
)

(2)

In the above equation, one could use Rodriguez’s formula or

an N th order Taylor series expansion leading to:

Ri(si) = Ri−1(li−1)

N
∑

k=0

1

k!

(

θisi
li

)k

([n̂i]
∧)

k
. (3)

The latter is convenient in computing the differential kine-

matics described in Section III, where iterative integration by

parts is employed; In the present work we use expansions up

to order N = 10.

By substituting (3) into (1) and integrating, we can then

obtain the position along the ith segment:

pi(si) = pi−1(li−1)+

Ri−1(li−1)

N
∑

k=0

sk+1

(k + 1)!

(

θi
li

)k

([n̂i]
∧)

k
e3

(4)

Using (3) and (4), we can define the pose of each (infinites-

imal) section of the continuum robot, which is equivalent to

inferring its shape. This is useful since, in the general case,

we aim to sense and control the shape of these manipulators.

1Note that, by assumption of piece-wise constant curvature,
∂γi

∂si
= 0.
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III. DIFFERENTIAL KINEMATICS

As in the previous section, our aim is not only to de-

scribe the behavior of the end effector (EE), i.e the. tip of

the MSCR, but also of the ends of each segment of the

continuum robot. We first define the augmented Jacobian

relating the temporal rate of the augmented curvature vector

γ̇ to a vector of linear and angular velocities of the frames

associated with points p1, . . . ,pn. This vector is defined

as ξ ≜
[

ṗT
1 ,ω

T
1 , . . . , ṗ

T
n ,ω

T
n

]T
∈ IR6n×1 and called the

augmented twist vector.

ξ = J(s)γ̇, J(s) ∈ IR6n×3n (5)

where ω =
[

ωT
1 , . . . ,ω

T
n

]T
∈ IR3n×1 is the vector of angular

velocities depicting the spatial angular velocities of the local

frames at points p1, . . . ,pn. With these definitions, we define

the block-partitioned form of J(s) as:

J(s) =











J1(s1)
J2(s2)

...

Jn(sn)











, Ji(si) ≜





Jpi
(si)
· · ·

Joi(si)



 , i ∈ [1, n] (6)

where s = [s1, s2, . . . , sn]
T, and Ji defines the configuration

space Jacobian for the ith segment. The linear velocity Jaco-

bian is given by:

Jpi
(si) ≜

∂pi

∂γ
∈ IR3×3n (7)

To define the angular velocity Jacobian, we differentiate the

rotation with respect to time to obtain:

Ṙi(si) = ω∧
i (si)Ri(si) (8)

where ωi(si) ∈ R
3 is the spatial angular velocity of the ith

section. Solving for ωi(si):

ωi(si) =
[

Ṙi(si)R
T
i (si)

]∨

=

n
∑

j=1

(

∂Ri(si)

∂γj
RT

i (si)

)∨

γ̇j
(9)

where γj is the jth element of γ ∈ IR3n. The ith row of the

angular velocity Jacobian is therefore given by:

Joi(si) =
[
[

∂Ri

∂γ1

RT
i

]∨

· · ·
[

∂Ri

∂γn
RT

i

]∨]

∈ IR3×3n (10)

The terms
∂Ri(si)

∂γj
can be analytically computed from (4).

IV. STATIC CONTROL

Modeling dominating components of the MSCR’s physical

behavior can improve a controller’s accuracy. In particular,

considering behaviors such as elasticity and response to grav-

ity, can reduce overshoots and lead to smoother motion, as

shown in Section VI. Since in most medical applications,

smooth and deliberate motion is preferred over high speed,

here we only consider the static equilibrium of the MSCR

and neglect higher-order dynamics, i.e. inertial, Coriolis and

centrifugal factors.

In order to describe the static equilibrium of the MSCR in

Fig. 1, we consider the Lagrangian approach and define the

Lagrangian

L = T − U (11)

where T is the kinetic energy and U is the potential energy.

In the present work, we focus on the statics of the MSCR and

only consider the static equilibrium (T = 0)

−

(

∂L

∂γ

)T

= τ (12)

with τ applied wrench.

The potential energy term is the sum of elastic and gravi-

tational energy and reads as

U=

n
∑

i=1

1

2

∫ li

0

−γT
i kiγi − 2mig

Tpi(si)dsi

=−
1

2
γTdiag (k1l1, k2l2, . . . , knln)γ −

n
∑

i=1

∫ li

0

mig
Tpi(si)dsi

=−
1

2
γTKγ −

n
∑

i=1

∫ li

0

mig
Tpi(si)dsi. (13)

Here, g ∈ R
3 is the gravitational acceleration in global frame,

mi is the ith segment’s mass density, and

ki = diag

(

1, 1,
1

2(ν + 1)

)

EiAi

li
(14)

with Ei Young’s modulus, Ai second moment of area and ν is

the Poisson’s ratio. The first two diagonal elements of ki are

related to the bending stiffness, while the last one is related to

the torsional stiffness, assuming that the body frame’s z-axis

is defined to be tangent to the backbone curve.

By developing (12), we obtain

−Kγ −G(γ) = τ (15)

with

G(γ) = M













∫ l1

0
JT
p1
(s1)ds1

∫ l2

0
JT
p2
(s2)ds2
...

∫ ln

0
JT
pn
(sn)dsn













g, (16)

M = diag (m1I3, m2I3, · · · , mnI3), and I3 ∈ R
3×3 being

the identity matrix.

The last step in defining the statics of the MSCR is to

define the wrench τ acting on the system. This is achieved

by applying the principle of virtual work on the sectioned

continuum manipulator in Fig. 1. On the ith segment, the

overall wrench can be computed as

τ i =

n
∑

j=i

∫ lj

0

JT
j (sj)

(

fj(s) + fejδ(sj − lj)
)

dsj

=

n
∑

j=i

(

∫ lj

0

JT
j (sj)fj(s)dsj

)

+ JT
j (lj)fej

(17)
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where fj(s) is a distributed external wrench on the jth

segment, fej is a concentrated external wrench applied to the

end of the jth segment, and δ(sj − lj) is the Dirac delta

function.

In the present work, we consider field-only actuation, thus

only magnetic torque is generated on the magnetized segments.

We assume that each segment owes a magnetization per unit

length with magnetic dipole ηi0
. This means each segment can

be magnetized in one specific direction. Thus, the magnetiza-

tion along the length of the ith segment is ηi(s) = Ri(si)ηi0

and the wrench is

τ i=
n
∑

j=i

(

∫ lj

0

JT
oj
(sj)η

∧(s)Bdsj

)

+ JT
j (lj)fej ,

=

n
∑

j=i

(

∫ lj

0

JT
oj
(sj)η

∧(s)dsj

)

B+ JT
j (lj)fej , (18)

with B ∈ IR3 defining the external actuating field. The above

equation can be put in matrix form as:

τ = H(γ)B+ JT(γ)fe (19)

Since Joj (sj) and η∧(s) are polynomials in s of order N
(where N is the order of approximation of the exponential

map), the integral in (17) is found by iteratively integrating

by parts. By combining (15) and (18), we obtain the static

equilibrium equation

−Kγ −G(γ) = H(γ)B+ JT(γ)fe. (20)

where fe = [fTe1 , · · · fTen ]
T. We consider the error γ̃ =

γd − γ and apply the control strategy

B = H+(γ)
(

−Kγ −G(γ)− JT(γ)fe +Kpγ̃ +Kd
˙̃γ
)

(21)

with ·+ denoting the matrix pseudo-inverse. By substitution

this expression into (20), we obtain

Kpγ̃ +Kd
˙̃γ = 0 (22)

which is asymptotically stable with the choice of the propor-

tional (Kp) and derivative (Kd) parameters of the controller

positive definite. Notice that the controller has an exact form

in the case where the curvature is fully sensed.

V. EXPERIMENTAL SETUP

We validate our control strategy by actuating a 4-segment

MSCR with the dEPM platform [8], [22]. The setup is

presented in Fig. 2a. The MSCR is a combination of 2

magnetically-doped segments alternated with magnetically-

inert ones, both 4 mm in diameter. The former were fabricated

by casting silicone prepolymer (Dragon Skin 30; Smooth-On,

Inc.) mixed with magnetic microparticles (NdFeB, MQFP-

B+; Magnequench GmnH, Germany) in a 3D-printed mold

(ToughPLA; Ultimaker S5). After demolding, they were mag-

netised in an impulse magnetizer (IM-10-30; ASCScientific),

then alingned in an overmold at a distance equal to their length

(10 mm). The overmold was injected with magnetically-inert

silicone (Ecoflex 00-30; Smooth-On, Inc.) for bonding.

While, most of the applications of the proposed MSCRs

would be in a confined space and not always with their main

axis along gravity, here we consider the case when the MSCR

is free of any motion. This can more generally help evaluating

the performance of the proposed control method and avoid that

gravity would dominate the dynamics, as in the case the MSCR

is orientated horizontally. In fact, we preferred analyzing the

behavior of a soft catheter, which is of better use for medical

applications, over a stiffer one.

As illustrated in Fig. 2b, the magnetic segments of the

MSCR are magnetised orthogonally. This way, as discussed in

[22], we obtain maximum independence between the segments

and we can actuate them independently by applying the

appropriate magnetic field. Specifically, a torque along the

y-axis on magnet 1 (m1) can be generated by applying a

magnetic field along x; magnet 2 (m2) can be actuated around

the y-axis by applying a field along z. Notice that a field

along y would generate a torque on magnet 1 around x and

on magnet 2 around z.

For shape sensing, we use an off-the-shelf FBG fiber (3

cores, 18 sensors spaced 1 cm apart, FBGS International,

Jena, Germany) and employ only the last 4 sensors. Since this

sensing technique is not able to sense torsion (torque around

the z-axis), we constrain the desired trajectories so that torsion

would not be generated or controlled. The fiber was placed in

a cavity made in the magnetic segments and non-magnetic

silicone, by using a 1 mm diameter NiTi wire along the main

axis of the MSCR central to its diameter. After removal of the

NiTi wire, the fiber was inserted in the longitudinal hole.

Before running the control experiments, we calibrated the

system so that the MSCR is localized within the magnetic

workspace. We used an optical tracker (OptiTrack, Natural-

Point, Inc., USA) to localize the base of the MSCR (frame

W) with respect to the robots’ EPMs (frame Ei, i = 1, 2), i.e.

the homogeneous transformation EiTW ∈ SE(3), i = 1, 2.

From the robots direct kinematics, we obtain BiTEi
∈ SE(3)

and eventually find the pose of the base of the MSCR with

respect to each robots base as BiTEi

EiTW ∈ SE(3).

For these experiments, we actuate the magnetic field ac-

cording to

B =
2
∑

i=1

µ0|µi|

4π|ri|3
(

3r̂ir̂
T
i − I3

)

µ̂i ∈ R
3, (23)

where ri ∈ R
3 is the position of the ith EPM and µi ∈ R

3 is

its magnetic dipole with respect to the center of the workspace;

µ0 is the air magnetic permeability, and | · | is the Euclidean

norm, ·̂ = ·
|·| .

Since the EPMs are far enough from the MSCR, we assume

their field can be accurately described by the dipole model

[25]. A magnetic field with minimal gradients can be gener-

ated, according to [22], by imposing r1 = r2 = r and µ1 =
µ2 = µ. Notice that for permanent magnets |µi| = const.

Without loss of generality, we can impose r̂i = e2, i = 1, 2;

in fact, being the matrix
(

3r̂r̂T − I3
)

=
(

3e2e
T
2 − I3

)

full

rank, we can actuate any desired field. This is applicable to

any direction of ri and we chose e2 to maximize the reach of

the robots and to avoid collision of the EPMs.
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(a) Experimental setup for validation of the closed-loop control strategy.

(b) Schematic representation of the MSCR
used in the experimental analysis. 1⃝ mag-
netic segment, 2⃝ non-magnetic segment;
l = 10 mm.

Fig. 2: Experimental setup and MSCR employed for the evaluation of the control strategies.

The expression in (23) simplifies to

B =
µ0|µ|

2π|r|3
(

3e2e
T
2 − I3

)

µ̂, (24)

For a required field B, computed by the controller described

in previous section, we find the pose of each EPM as discussed

in [8]:

|r| =

(

2π|B|

µ0|µ|

)
1

3

µ̂ =

(

3e2e
T
2 − I3

)−1

|3e2eT2 − I3|
B̂

(25)

From the calibration obtained from the optical tracker, we

transform r and µ̂ into an EE pose for each robot and

command them via their inverse kinematics.

VI. EXPERIMENTAL RESULTS

The MSCR was virtually divided in four constant-curvature

segments, one for each section (see Fig. 2b). The configuration

space of the robot can be described as

γ =
(

γT
1 γT

2 γT
3 γT

4

)T

γi = γi1
e1 + γi2

e2 + γi3
e3

(26)

We perform four repetitions in controlling the segments

deflection to obtain a figure-eight pattern motion for the

MSCR’s EE. This motion was chosen to evaluate the con-

troller’s ability to control the MSCR’s DOFs independently

along the length, while avoiding twisting along the axial

direction; this DOF is controllable but not observable with

the sensing technique employed (FBG shape sensing). In this

example, the FBG enables fine measurement of the shape, but

limits the DOFs which can be actuated. However, we show

that general tip motion can be obtained by controlling each

magnet independently.

In fact, the imposed figure-eight tip motion is obtained when

the top and bottom magnets move at different frequencies and

shows a general case for this example. While a circular shape

requires the IPMs to move in sync and in a square motion

only one at the time, the figure-eight trajectory requires this

more complex behavior.

The desired figure-eight deflection was

γ21 = γM sin(2πt/T )

γ42 = γM sin(4πt/T )
(27)

with γM = 7o and T = 120 s, and t time. The controller

frequency was 300 Hz.

We compared the proposed static controller with a PID

controller and report the tracking performance in Fig. 3.

Specifically, we compare the desired and measured angular

deflection of the actuated segments of the MSCR. A video of

the experiments can be found in the Supplementary Material.

The PID control considers no elastic behavior, gravity or

external forces and the applied field is computed as

B = H+(γ)
(

Kpγ̃ +Kd
˙̃γ
)

(28)

In Fig. 3, we notice that the static controller achieves a

generally smoother tracking of the desired shape; the PID

controller, with same proportional and derivative gains, shows

a more noisy behavior and is more reactive in case of high

deflections. This is particularly notable in the tracking of γ42 .

We believe that the behavioral difference between the two

controllers is caused by the fact that the PID controller does

not account for gravity and elasticity. In the resting configura-

tion, these factors are negligible, however they become more

prominent on the peaks. In these cases, the PID controller

shows less stability and more ripple compared to the static

controller, which can predict the increase in potential energy

using the proposed model.
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(a) PID controller.
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Fig. 3: Comparison of deflection tracking between PID and static controllers. Reported the desired deflection around the x-axis

for the top segment and the y-axis for the bottom one. On the rightmost column of (a) and (b), we show the error between

desired and measured deflection for the respective angles.
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(a) Planar motion of the EE showing the desired tip position against
the tip position measured using the FBG.

(b) Shape measured by the FBG in case of maximum deflection for
the last repetition; comparison with resting confiration (“Rest”).

Fig. 4: Desired and measured planar motion of the MSCR EE as measured by the FBG under PID control.

We computed the absolute error in tracking the curvature

(see Fig. 3) and EE position (see Figs. 4a and 5a) for both

static and PID controllers - over four repetitions. We found

the static controller to reduce the maximum error by 59.2%

and the mean error by 25.9%.

TABLE I: Summary of Tracking Errors

Static Control PID Control

Mean (Max) Tip Error (mm) 3.8 (36.9) 4.4 (42.2)

Mean (Max) Deflection Error (%) 8.5 (35.2) 10.7 (86.4)

In Fig. 4 and 5 we report the respective planar tracking

(on the x − y plane) for the EE tip for the PID and static

controller, along with the shape measured by the FBG. The

sensed shape was captured during the last repetition in which

the EE passed through the four points (A-D) where the MSCR

was at its maximum deflection.

A behavior which is important to analyze is the asymmetry

between the figure-eight’s lobes. We notice that, generally,

the left lobe is harder to track and the measured position

of the EE would generally have a worse tracking than the

right side. This is due to the marginally stable equilibrium

resultant from the actuation of the second magnet by an anti-

parallel magnetic field. More specifically, when B̂ = −m̂1,

the theoretical resultant is a torque around x (τ21 ); however,

in reality this may create instabilities due to the fact that a

slight misalignment can cause unexpected twist.

This is an important reason for having an effective and

reactive high-frequency controller, since open-loop control or
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(a) Planar motion of the EE. Reported the desired tip position against
the measured one, output of the FBG.

(b) Shape measured by the FBG in case of maximum deflection for
the last repetition; comparison with resting confiration (“Rest”).

Fig. 5: Desired and measured planar motion of the MSCR EE as measured by the FBG under static control.

failing to observe/sense the instability may result in loss of

the marginally stable DOFs. This is fundamental in MSCRs

with non-axial magnetization profiles [8], [19].

The difference in the tracking performance in each repetition

is caused by the actuation strategy, which requires transitions

of the EPMs between desired poses, given a desired magnetic

field. This transition is not consistent and depends on the

current configuration of the serial robot manipulating each

EPM. In the present paper, we considered a point-to-point

strategy for the motion of the EPMs; however, more appropri-

ate planning of the EPM motion could improve the precision

of the actuation platform.

VII. CONCLUSION

The presented paper discussed a novel controller for multi-

magnet MSCRs with shape feedback from FBG sensors. This

new class of continuum robots has gained interest given their

potential for miniaturization without direct loss of DOFs.

However, despite these advantages, their control is not trivial

due to the presence of unstable behaviors caused by the non-

ideal interaction of the robot with the actuating magnetic field.

In the present paper, we discussed a novel approach for

the control of this class of robots, based on the modelling of

their statics under a piece-wise constant curvature assumption.

Compared to the state-of-the-art, the proposed method can run

in real-time (300 Hz). This factor, related to the minimal com-

plexity of the model, is of primary importance in presence of

instabilities; in fact, a reactive sensing and control strategy can

minimize unexpected behaviors caused by non-ideal dynamics.

The applied method is based on FBG sensing, which gives

direct measurement of the MSCR’s shape without the need

for visual access, and thus can be more readily translated to

clinical applications. We report a demonstration of tracking

performance using the proposed control method by applying

the dEPMs actuation technique [8], [22], based on the collab-

orative control of two EPMs. We show how the desired field,

resulting from the wrench commanded by the controller, can

be generated with this control strategy.

Experimental evaluation of the controller was performed

using a figure-eight trajectory following task, with compar-

isons made to a standard PID control approach across four

repetitions. Given the inclusion of gravity and elasticity in the

model, the proposed controller presented a 20.8% reduction

of the mean error, compared to the PID control method. Dif-

ferences between repetitions were evident due to the irregular

motion of the EPMs and its dependence upon current state

of the serial robots. To improve the precision of the proposed

control method, in future work we will improve the actuation

strategy by adding a level of planning to the robots motion

and introducing dynamic modelling. We believe that this will

reduce ripple and provide improved precision.

Instabilities were noticed when the applied magnetic field

causes twist on the top IPM. In this case, since the FBG

sensors cannot sense these twist deformations, the controller

is not informed of the actual state of the MSCR and therefore

has higher error in controlling the desired tip position. Inves-

tigating sensing techniques which can track twist [26] would

help eliminate this problem and enable full control of both

bending angle and axial rotation.

We evaluated the behavior of the MSCR while its main

axis is along gravity and in unconstrained environment, to

simulate the case when it is free of moving in any direction and

gravity is not dominating. Together with the imposed figure-

eight tracking of the tip, this underlines a general case when

the IPMs’ motion is free of constraints and diverse over time.

Future studies will consider navigation in a closed anatomy

and the case when the MSCRs can move horizontally. We

envision that the former may stabilize the dynamics, while

the latter would require analyzing solutions such as a constant

EPM-IPM attraction or levitation [16], [17].
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