
This is a repository copy of Regression analysis of predictions and forecasts of cloud data 
center KPIs using the boosted decision tree algorithm.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199293/

Version: Accepted Version

Article:

Gyeera, T.W. orcid.org/0000-0002-2567-4197, Simons, A.J.H. orcid.org/0000-0002-5925-
7148 and Stannett, M. orcid.org/0000-0002-2794-8614 (2023) Regression analysis of 
predictions and forecasts of cloud data center KPIs using the boosted decision tree 
algorithm. IEEE Transactions on Big Data, 9 (4). pp. 1071-1085. ISSN 2332-7790 

https://doi.org/10.1109/tbdata.2022.3230649

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



TRANSACTIONS ON BIG DATA 1

Regression Analysis of Predictions and
Forecasts of Cloud Data Center KPIs Using the

Boosted Decision Tree Algorithm
Thomas Weripuo Gyeera IEEE member, Anthony J.H. Simons, and Mike Stannett

Department of Computer Science, University of Sheffield, United Kingdom

Abstract—Cloud data centers seek to optimize their provision of pooled CPU, bandwidth and storage resources. While over-provision

is wasteful, under-provision may lead to violating Service Level Agreements (SLAs) with their consumers; yet the relationship between

low-level Key Performance Indicators (KPIs) and SLA violations is not well understood. State-of-the art monitoring systems typically

react to service failures after the fact, partly due to unexpected nonlinearities in the aggregated performance data. We seek to provide

better modelling of KPIs using predictive algorithms that could be used for the proactive monitoring and adaptation of cloud services. In

this paper, we investigate the Boosted Decision Tree (BDT) regression algorithm. We tested the BDT algorithm in a real monitoring

framework deployed on a novel Azure cloud test-bed distributed over multiple geolocations, using thousands of robot-user requests to

produce huge volumes of KPI data. The BDT algorithm achieved an R-Squared score of 0.9991 at the 0.2 learning rate. This closely

predicted the KPI data and outperformed other approaches, such as Ordinary Least Squares and Stochastic Gradient Descent; and is

a promising candidate for making short- and long-term predictions for cloud resource allocation.

Index Terms—Boosted decision tree, machine learning, deep learning, algorithms, computational modelling, virtual infrastructure

network, and cloud computing

✦

1 INTRODUCTION

C LOUD service providers seek to offer timely and ad-
equate services to their consumers. The burden falls

on cloud data centers to optimize their provision of pooled
CPU, bandwidth and data storage resources across all ten-
ants of the cloud. Over-provision is wasteful, since resources
lie idle; but under-provision leads to service degradation
and failure. In order to attempt the right balance, cloud
data centers employ monitoring mechanisms to measure
CPU performance, bandwidth and storage consumption
and to detect anomalies [1]. Mostly, this is at the level
of Infrastructure-as-a-Service [2], and the Key Performance
Indicator (KPI) statistics are used privately by the provider
to understand the health of their system.

Cloud consumers are interested in different aspects, such
as latency and response times, which are also affected by
multi-tenant occupancy on the platform [3], [4]. However,
the relationship between low-level resource management
and high-level customer experience is poorly understood;
and Service Level Agreements (SLAs) may frequently be
violated without the consumer knowing. State-of-the-art
monitoring often reacts to failures only after the fact. This
is partly due to unexpected nonlinearities in the aggregated
KPI data and weak predictive models. Understanding the
different contributions to service degradation and failure
is hard, due to the sheer volume of monitored KPI data
(characterized by the ’4Vs’ of volume, velocity, variety and
veracity [5], [6]). This is a kind of Big Data analysis problem,
to be solved in real-time [7].

This motivated us to develop a real cloud test-bed that
would allow us to read from a variety of push- and pull-
notification systems, which at the limit can flood a network
with data. It also allowed us to study different predictive

models, such as the Boosted Decision Tree algorithm, and
test its accuracy in modeling the collected KPI data.

Our goal is to move from reactive responses to proactive
adaptation of services to prevent failure. The contributions
of this paper include:

• A novel framework for measuring cloud resource
consumption, via a set of monitored KPIs, imple-
mented using a realistic cloud test-bed, driven by
massively parallel robot users sending requests to a
target web service.

• A set of supervised machine learning experiments,
applying the Boosted Decision Tree algorithm to dif-
ferent KPIs, achieving an R-squared value of 0.9991
at a learning rate of 0.2, which compares favourably
with state-of-the-art benchmark algorithms.

• An evaluation of the BDT’s KPI predictions for short-
and long-term planning, in particular, the ability to
detect SLA violations in application response times
and throughput.

The rest of the paper is organized as follows. We dis-
cuss previous work related to this investigation in section
2. Section 3.1 presents the conceptual framework and the
relevant mathematical constructs and re-expresses the un-
derlying problem in terms of the boosted decision tree (BDT)
supervised machine learning algorithm. Section 4 covers the
experimental test bed and describes the procedure and tools
used in data sampling for building and evaluating the mod-
els for the predictive analytic framework. In section 5 we
provide a critical review of the experimental results based
on the boosted decision tree regression method used in
predicting and forecasting cloud server KPIs for adaptation



TRANSACTIONS ON BIG DATA 2

purposes. In section 6 we evaluate and interpret the trained
and tested models and compare our results with the state-of-
the-art techniques in previous works. Potential applications,
benefits and threats to the validity of our work are discussed
in section 7. We summarize our main conclusions in section
8, where we also include a number of topics for further
investigation.

2 RELATED WORK

We extend our discussions on the related work to cover
critical analysis of some key machine learning algorithms
that have been employed in solving the problem of work-
load prediction in cloud data centers in the literature. The
boosted decision tree algorithm can be used in both clas-
sification and regression problem settings. The BDT algo-
rithm can be employed in linear and nonlinear training set
examples and for a training set with nonlinear properties,
the algorithm does not require any additional steps in
transforming the features. One key advantage of the BDT
algorithm compared to other non-parametric (e.g. KNN)
and classification algorithms is that it is fast, efficient and
provides easy interpretation, understanding and visualiza-
tion of a model.

Ardagna et al. [8] proposed the VM capacity allocation
(CA) and load redirection (LR) reactive predictive mod-
els that dynamically adapt the resources of cloud infras-
tructure with the goal of optimizing the mean response
times of clients’ requests without violating consumer SLA
parameters. In this two-phase framework, the CA model
characterizes the complete number and properties of VMs
that are required to handle the arrival of clients’ requests
per second without violating the average response time
in the SLA document. The LR model on the other hand
determines at every time the total execution rate of web
service requests at a particular site and attempts to redirect
workload from overburdened VMs which seem to violate
the mean response time. The LR dual reactive scheme ad-
dresses an aggregated way of balancing workload in which
detailed information about the mean response time of the
incoming load is determined in order to project the optimal
workload. The main drawback with this approach is that
for highly distributed cloud systems, the response time
predicted comes with a noticeable network communication
overhead. This also leads to a noisier prediction model on
the response time with the VM capacity allocation.

Aslanpour et al. [9] proposed an autonomic 3-D mech-
anism for provisioning cloud resource-aware, SLA-aware
and user-behaviour-aware features. They applied the radial
basis function (RBF) neural network to predict workload
arrival rates projected for future demands. In the RBF im-
plementation, only one hidden layer is used to approximate
continuous function to a high degree of accuracy. The func-
tion takes the behavioral patterns of users as its input and
determines the future load from it. In the resource behaviour
analysis, the CPU utilization is sampled every minute from
past observations. The weighted moving average (WMA) is
then applied in order to increase the measurement accuracy.
Experimental results indicate that the proposed mechanism
is able to reduce resource provisioning costs by 50%, avoid

rushed decisions, and stay resilient against extreme work-
load and that it is able to efficiently select surplus virtual
machines.

Menascé et al. [10], [11] presented a model framework
for predicting and comparing performance metrics on re-
sources. Their work focused on the application of queuing
theory formulae in building relations between the mean
values of response times, throughput or resource utilization
and the mean demand placed on the type of requests
on the resource. Specifically, they designed experimental
techniques in a controlled environment to measure these
performance metrics (response time, throughput or resource
utilization) in order to estimate the mean demand on the
CPU utilization. A similar queuing network built by [12]
outperforms the regression-based approximations charac-
terizing the CPU utilization from consumer demands. Both
frameworks can be used in estimating and profiling work-
load characteristics of individual virtual machines that have
been provisioned in the cloud.

Kumar et al. [13] applied an artificial neural network and
the adaptive differential evolution algorithm in predicting
cloud data centers’ workload. They performed experiments
on some HTTP server benchmark datasets from NASA
and the predictive models are seen to present an optimal
mutation. For a given time series obtained from a histor-
ical dataset, the techniques of Autoregresssion Integrated
Moving Average (ARIMA), Moving Average (MA), Autore-
gression (AR), Exponential Smoothing (ES), and Hidden
Markov (HMM) models are known to perform quite well
on historical sampled datasets with a uniform time interval.

Ban et al. [14] proposed the k–nearest neighbor (kNN)
approach for making predictions on financial time series
datasets. This algorithm was again applied by Eddahech
et al. [15] to model predictions on multi–media workload
fluctuations. kNN learners are generally considered lazy
trainers and may give rise to high computational cost in the
training phase. The combined techniques of neural network
and linear regression were presented by Islam et al. [16] in
predicting workload variations in data centers. The frame-
work also described the sliding window concept and was
tested on historical CPU demand data. Experimental results
reveal that the sliding window performs better than the non-
sliding window framework.

Tofighy et al. [17] proposed the Bayesian information cri-
terion (BIC) ensemble algorithm for predicting CPU work-
loads. The proposed algorithm takes, as its inputs, traces
from a smooth filter, smooth window and history window
and maps these to the predicted resource usage in the
output. In each time slot the algorithm selects the best
model based on the usage history of the cloud resources.
The resources are then monitored for a designated time
period to generate a time series from the history of resource
consumption which is fed into the prediction model. Both
smoothing and fitting functions are applied for smoothing
the data points for fitting the model. The proposed scheme
outperformed the genetic algorithm (GA) and other state-of-
the-art ensemble algorithms when evaluated using several
statistical metrics such as the mean absolute error, root
means square error etc.

Chauhan and Agrawal [18] proposed the optimized ker-
nel naive Bayes approach, based on the concept of maxi-



TRANSACTIONS ON BIG DATA 3

TABLE I. Survey of studies related work in terms of evaluation tools, performance metrics, datasets, advantages, and
disadvantages.

Evaluation
Tools

Performance
Metric

Datasets Advantages Disadvantages

Bayesian information criterion +
smooth filters

[17] MAE, RMSE, MAPE,MASE PlanetLab
Higher accuracy compared with the

other ensemble prediction algorithms
The choice of priors can be a challenge.

Deep belief networks (DBN) [26] MSE Google cluster traces
Can solve supervised and unsupervised learning problems.

It is a generative model.
Requires a large training set
to flawlessly build a model.

AdaBoost algorithm [29] MAE, MRE Four real-world production servers
Fast and easy to program.

Expandible to more complicated learning tasks.
Can be combined with other machine learning algorithms

It is a weak classifier.
Can lead to poor results and retraining.
Vulnerable to evenly distributed noise.

Bayesian network [30] MSE Amazon EC2 and Google CE
Real world problems can be interpolated.

Involves specifying a prior and integration.

Computationally infeasible.
It turns out that specifying a prior is extremely difficult.

For real-life inference problems it is often
impossible to elicit the actual prior

Time series [31] MSE Axp0, Axp7, Sahara, and Themis load traces
Analysis helps in comparing present and future performance of the series.

Insight into past behaviour can be gained to make future predictions

Trends within the series may be difficult to understand.
Can lead to imperfect conclusions arising from
differences in factors that influence the series.

Kalman Filtering Technique (KFT) [32] MSE, MAE Amazon EC2 and Google CE
Robust and works well in

non-stationary environment
They are strictly Gaussian processes.

Long short-term memory (LSTM) [33] MSE, MSSE Axp0, Axp7, Sahara, and Themis load traces
Able to solve the vanishing gradient

effects of backpropagation.
LSTM units allow gradients to also flow unchanged.

They can still suffer from
the gradient explosion problems problems.

mum probability for selecting cloud services. The model is
able to predict cloud resources with maximum probability.
A beta distribution of the model implements a data normal-
ization model in order to handle inherent difficulties from
the raw data set. It is suitable for handling bounded and
asymmetric data and can be used to design recommended
systems. Experimental results from predicting the response
time, CPU and memory utilization achieve 88.76%, 88.445%
and 93.65% accuracy, respectively.

Ghobaei-Arani and Shahidinejad [19] presented the
GFA meta-heuristic-based algorithm for efficiently analyz-
ing cloud workloads. They applied a combination of genetic
algorithm (GA) and fuzzy C-means techniques for heteroge-
neous cloud workload clustering using the QoS metrics. In
the initial phase, workload models are created by clustering
incoming user requests, after filtering out abnormal requests
deemed unsuitable for training. Similar clusters compared
to the current user request can then be determined by
comparing both the training and test workloads. In order to
identify optimal scaling decisions for efficient resource pro-
visioning, the gray wolf optimizer (GWO) metaheuristics
technique is employed. Simulation results obtained under
real workloads indicate that their proposed approach is
efficient in terms of CPU utilization, elasticity, and response
time predictions, as compared with other approaches.

Belgacem [20] presented an analysis for the problem of
dynamic resource allocation in the cloud environment in
which he extracted key research challenges in this area. The
work offered several taxonomies for classifying dynamic
resource allocation, scheduling approaches, and optimiza-
tion metrics. The study revealed that metaheuristic methods
provide efficient solutions in this problem domain.

Pahlevan et al. [21] integrated a novel hyper-heuristic
and the K-means machine learning algorithm that dynami-
cally and optimally allocates VMs to servers in cloud data
centres. The sampled CPU utilization as well as the memory
traces of the VMs are classified with the K-means machine
learning algorithm in addition to a set of heuristics used
to determine the VM classes. In the last step of the ML
algorithm the VMs’ patterns and features are extracted with
the last-value predictor method and the reinforced learning
technique determines which VM should be assigned to a
particular class in the form of a finite set of actions and
states of the virtual machines.

The K-means classification-based approach demon-
strates an improvement of up to 24% in server-to-server
network traffic. For large scale data centers, their approach

is able to reduce workload execution time by 480 times
compared to the state-of-the-art. In particular, when their
approach is compared to correlation and network-aware [22]
state-of-the-art schemes, the ML and Heuristic methods sig-
nificantly improve the network communication overheads
as the number of VMs provisioned increases. In comparison
with the state-of-the-art, the application of the K-means
technique helps achieve a reduction in violations in terms
of server overutilization and network traffic overhead espe-
cially in VMs’ off-peak loads management.

Our approach applies the boosted decision tree regres-
sion algorithm in building predictive models that can be
used for analyzing and forecasting cloud resource alloca-
tion and consumption. We benchmarked and compared
this approach with state-of-the-art shallow machine learn-
ing algorithms such as the ordinary least squares (OLS),
Kalman filtering technique (KFT) and stochastic gradient
descent (SGD) algorithms. In section 6 below, in order to
demonstrate the benefits of our approach, we will compare
it against state-of-the art methods that use reactive methods
for planning capacity by distributed allocation and redi-
rection [8], ensemble methods [17], genetic algorithm (GA)
methods [18], and stochastic gradient descent [23], [24].

Deep learning algorithms are known to deliver top-
quality results and come with their own preprocessing
layers that allow application directly to unstructured data.
The main drawback is that deep learning approaches re-
quire massive sets of data to flawlessly train a model. We
compare our approach of using the BDT algorithm with
deep learning approaches such as diffusion convolutional
recurrent neural networks (DCRNN) [25], deep belief net-
works (DBN) [26], traditional neural networks (TNN) [27]
and apolyadic canonical decomposition autoencoder mod-
els (CP-SAE) [28] in section 6. Table I provides a summary
of key previous work related to our study in terms of
the evaluation techniques, performance metrics, datasets,
advantages and disadvantages.

3 PROBLEM DEFINITION

This section describes the boosted decision tree (BDT) linear
regression algorithm as it is applied in making predictions
on the server KPIs by building sub-functions within the
hypothesis space of an inductive ensemble learning system.
The problem of cloud resource provisioning and consump-
tion prediction can be formulated in the language of least
squares regression as having the overall aim of building



TRANSACTIONS ON BIG DATA 4

models that can make predictions on z-manifold observa-
tions. The goal of teaching the model to predict a server
application KPIs like bandwidth fluctuations, latencies or
%CPU utilization using a functional hypothesis space can
be achieved through the minimization of the mean squared
error.

3.1 Conceptual framework

Our monitoring and adaptation framework has four main
building stacks as depicted in Fig. 1.

1: The monitor stack consists of a dashboard that show-
cases the different purposes for conducting monitoring: The
pay-per-use monitor depicts metrics that may be relevant to
how resources are consumed and how much the consumer
may be required to pay for them. For example, the amount
of memory, bandwidth or %CPU utilization can be used
here as metrics for evaluating resource consumption, used
for billing the client. For the purpose of enforcing an SLA
contractual agreement, the SLA monitor here can display
metrics such as the availability of resources provisioned
within the cloud. The fail-over/infrastructure monitoring
stack is used to charaterize transient and general network is-
sues. This component is generally required to detect failures
and anomalous behaviors, so they can be mitigated before
the virtual network and the application server become un-
available. The interactions between the components of the
conceptual framework are shown in the sequence diagram
in Fig. 2.

2: The adaptation stack contains the filtering or machine
learning algorithm that is implemented to learn from be-
havioral patterns displayed by the virtual infrastructure net-
work and the KPIs of the application server. For instance, the
implementation of an ensemble learning algorithm (BDT)
helps predict future resource consumption patterns. In this
case an adaptation strategy such as elastic load balancing,
auto-scaling of pooled resources or the migration of a DB
workflow can be enforced.

3: The third block of components consists of our applica-
tion server and the virtual infrastructure network nodes to
be monitored. We implemented a webservice platform that
mimics eBay or Amazon, in the sense that it can allow a
huge number of robot users to browse and make purchases
from the application. The content management and the
metrics polling techniques (push or pull) all constitute our
application stack as shown in Fig. 1.

4: The fourth stack is the admin user console that is
interfaced with the application in observing the different
metrics of the framework. The admin terminal administers
all the databases and storage required for the operation of
the system as shown in Fig. 1.

3.2 The BDT algorithm

The boosted decision tree learning methods first derived by
Friedman belong to an ensemble group of inductive learn-
ing methods [34], [35]. In these algorithms, the idea is to
teach a model how to make predictions on a training set
example by sequentially constructing a set of hypotheses
in each iterative step. The individual hypotheses in the
final set of functions or hypothesis space are combined in
determining the predicted output [36], [37]. Compared to

Figure 1. Block diagram of of the conceptual framework.

Figure 2. Sequence diagram showing the interactions of the
components in the conceptual framework.

other training algorithms, BDT is fast, efficient and requires
less effort in training unstructured data; it is seen here as a
good choice for our problem definition.

Consider a finite hypothesis space M . For each iteration,
a newly constructed function at the time interval is weighted
to determine its contribution to the output value of the final
hypothesis. Assigning weights to each hypothesis added to
the predictive model is called boosting [35], [38] (e.g. boost-
ing is normally initialized with a constant value greater
than 0). In the next iteration, these weights are increased
for results with weaker predictions while the hypotheses
with the correct results have their weights decreased. These
iterations continue until the final number of functions are
generated.

Assuming a training set {xi, zi}
N
i=1 is obtained by mea-

suring the server KPIs of a virtual infrastructure network
or an application server provisioned in the cloud, the goal
here is to teach a model with the boosted decision tree
base-learner to make predictions on the input variable.
For instance, if the variable of interest is the bandwidth
fluctuation, or the percentage CPU utilisation, then data sets
of these kinds can be used to train the decision tree model
objective function, to make predictions on these KPIs. The



TRANSACTIONS ON BIG DATA 5

rest of this section presents the mathematical background
behind the construction of the boosted decision tree as a
predictive model according to [34], [38].

Let the hypothesis space be defined as one comprising
the functions generated at each iteration on the training
set example {xi, zi}

N
i=1: the parameters for building the

functional space include the tree structure, score labels for
each leaf and the total number of trees to be generated. Since
each step generates its own subtree (also referred to as a sub-
hypothesis), the objective function constitutes the sum of all
the different hypotheses as defined in equation (1):

H = {h1, h2, h3, ...hT } (1)

where T is the total number of trees and h1, h2, ...hT are
the sub-hypotheses added to the hypothesis space during
each running of the training experiment. The boosted de-
cision tree can be constructed from a logical expression by
forming the disjunction of all the sub-hypotheses as shown
in equation (2) (see, e.g., [35]).

H ⇔ (h1 ∨ h2 ∨ h3 ∨ · · · ∨ hT ) (2)

If the decision tree can be constructed through the combi-
nation of the sub-hypotheses in (2), the next steps illustrate
how each of these sub-functions can be constructed to fill
the defined hypothesis space H .

In building the regression tree from sampled observa-
tions on a server’s KPI at different time intervals, one im-
mediate step is to construct the loss function that minimizes
the least-squares error. Thus the loss on making inaccurate
predictions on the training set data is the sum of the residu-
als between the predicted and the actual observations, given
as follows:

Loss(m) =
m∑

j=1

Loss(zj , ẑj) (3)

This error function measures how well the model fits on
the training set. According to the formulation of the least
square error, if we take this to be the minimization objective
function, then the squared loss is given as follows:

Loss = (zj − ẑj)
2 (4)

In order to characterize the complexity of the new model,
we define an additive L2 regularization hyperparameter
(see [38], [39] for the definition of the L2 regression) as a
component of our objective function. This component in-
cludes a learning rate factor, λ, which ranges from 0 < λ ≤ 1
and can be used to tune the model. As a rule of thumb,
the model learns faster, the closer the learning rate is
to unity, but according to [37], this parameter should be
tweaked carefully to avoid overfitting. For the jth training
set {xj , zj}, the estimate of ẑj at sample interval j is the sum
of all the hypotheses generated from the previous estimates.
These estimates in the hypothesis space form the decision
trees base stumps which are evaluated on if-then clauses in
building the tree.

If a total of T regression trees is desired, then the model
function can be summarized (equation (5)) as the complete
objective function. The model characterized by the sum of
the heuristic hypotheses can be split from the base-learner
into sub-trees consisting of the sub-functions within the

ensemble defined in (1) by applying the information gain
(see definition in [34], [38], [39]). The complete objective
function can be stated as follows:

Loss =
m∑

j=1

Loss(zj , ẑj) +
∑

T

Ψ(hT ) (5)

where
∑

T Ψ(hT ) defines how complex the tree can be
(hT ∈ H) summing all sub-hypotheses at the different itera-
tions to generate the ensemble, and T is the total number
of trees to be grown from the sub-hypotheses. Once the
objective function has been completely stated, a prediction
at a defined period is simply the sum of the estimation at
the previous and current iterations. This can be expressed
mathematically as

ẑm = ẑj(m−1) + hm(xj) (6)

where hm(xj) is the new function added to the growing
tree at the mth round of running the training experiment on
the model in predicting the values of z. It is this addition
of hm(xj) to the training loss function that is referred to as
boosting [34], [38]. Applying the steep gradient approach,
the sum of squares loss can be reconstructed from (4). If the
first and second partial derivatives are applied to equation
(4), then this leads to the following equation. If we consider
the total loss by taking the difference between the actual
and the predicted estimate as shown in (4), then the new
loss error square function can be rewritten as in (7):

Loss = (zj − (ẑj(m−1) + hm(xj)))
2 + Ψ(hm(xj)) + C (7)

where C is a constant. The goal of combining equation (4),
(5), and (6) to form equation (7) is to allow the objective
function to be derived by applying the gradient descent
method. To this end, applying the first and second partial
derivatives to equation (7) and using the Taylor expansion
series for linearizing polynomials, the error square objective
function can be rewritten as:

Loss =
m∑

j=1

[∆hm(xj) +
1

2
∆2h2

m(xj)] + Ψ(hm) (8)

where ∆ is partial derivative taken on the loss square error
function with respect to the previous estimates ẑ(m−1).

∆ = ∂ẑ(m−1)Loss(zj , ẑj) (9)

∆2 = ∂2
ẑ(m−1)Loss(zj , ẑj) (10)

The component Ψ(hm), called the regularization parameter,
characterizes the complexity of the model. There are several
regularization methods in the literature (see [34], [38], [39]
for further reading) that can be employed for measuring
the complexity of a decision tree model. For this article,
the L2 norm, which is defined as the standard Euclidean
distance, is used in combination with the learning rate to
define the structure of the tree. Thus the model complexity
Ψ(hm) contains the total number of leaves and the L2 sums
the optimal weights within the ensemble. This formulation
can be expressed as:

Ψ(hm) = λ‖ωm‖2 + γL (11)

where ωm is the optimal weight assigned to each leaf in a
particular round of the training experiment and γL is the



TRANSACTIONS ON BIG DATA 6

total number of leaves from the tree. Algorithm 1 below
presents the pseudo code for the boosted decision tree
algorithm (following [34]).

3.3 Pseudocode and time complexity analysis

Algorithm 1 shows the steps in the application of the BDT
algorithm in making a prediction to a cloud server KPI.
The algorithm accepts as input, the server KPI metric as
a training set example (e.g. server throughput KPI). By
defining a finite set of hypotheses, the algorithm constructs
an error function and the base-learner. The read stage of the
algorithm computes the negative gradient and includes this
to the hypothesis space. The gradient descent is optimized
to minimize the square of the loss error objective function.

In terms of time complexity analysis, the boosted de-
cision tree (BDT) algorithm has O(N ∗ D2) running time,
where D is the number of features. For each level of the
decision tree it has O(ND) running time when constructing
each function in a hypothesis space with D features and a
total number of N hypotheses.

Algorithm 1 The Boosted Decision Tree Algorithm

Inputs: the sampled server KPIs, {xi, zi}
N
i=1; the loss function,

Loss(zi, ẑi); and the number of trees, m

1: procedure BDT({xi, zi}, Loss(zi, ẑi),m)
2: Initialize the model with a constant value:

f0(x) = argminẑ

∑N

i=1 Loss(zi, ẑi)
3: read current state
4: for i← 1,m do
5: Compute the pseudo-residuals for i = 1, ..., N

(the negative gradient is optimized):

residualim = −
[

∂Loss(z,f(xi))
∂f(xi)

]

Construct the base-learner: ĥm ← constant
with {xi, residualim}

N
i=1 as new inputs

Compute the multiplier ẑm to optimize the
following one-dimensional problem:
ẑm = argminẑ

∑m

i=1 Loss(zi, fm−1(xi)) + ẑihm(xi)
6: Update the model with the estimate:

fm(x)← fm−1(x) + ẑihm(xi)
7: end for
8: return Output fm(x)
9: end procedure

4 EXPERIMENTAL DESIGN

This section describes the various experimental methods
and tools set up in order to critically evaluate our conceptual
framework. This is a real experimental testbed designed in
the Microsoft Azure cloud with resources distributed across
different geolocations.

We designed and implemented a webservice platform
(http://mytwg.azurewebsites.net) that mimics a shopping ap-
plication like Amazon or eBay, designed to accept large
numbers of hits from simulated virtual users. In Azure
we provisioned six logically separate servers, running in
three distinct geographical regions (US East Coast, West
Coast, and Europe), and migrated the application to each
of these servers, to provide a high availability service with
a failover mechanism. For instance, if the main site being
remotely hosted in these data centers is shut down for any

reason, a load-balancer can redirect traffic to one of the
six replicated servers. These six servers are networked to
communicate with each other with one server controlling
the entire domain of the virtual infrastructure.

We then programmed robot virtual users using the
JMeter server tool to distribute concurrent virtual users
which are driven by scripts under experimental control,
and scheduled them to execute concurrently as clients of
the sales application. The users come in the form of Java
threads that are programmed to send requests to a server.
We also provisioned a generic load balancer in Azure that
regulates the network and user traffic that are directed to
the application servers.

In addition to the virtual infrastructure network, the
web service platform is interfaced with Azure application
Insights [40] in order to monitor live server KPIs as the ex-
periment is being run. Instrumenting Google Analytics [41]
with the applications also allows the measure of metrics on
the remote procedure calls, user behaviour and navigation
patterns as they open sessions to the web platform. The
techniques of load balancing ensure that users requests are
uniformly distributed on the server without overburdening
a particular resource. These resources implemented within
the Azure cloud form the real testbed in order to measure
the key performance indicators characterizing the virtual
infrastructure network and the application servers.

Below is a description of the steps taken when conduct-
ing the experiments on the virtual infrastructure network
and the application server of the web service platform.

4.1 The experiments

For the purpose of our data collection in building our pre-
dictive framework with the boosted decision tree algorithm,
we performed four main experiments simulating different
user scenarios on the webservice platform. The results of
these experiments are shown in Fig. 3.

We aligned the streaming of the workload characteristics
of the virtual machines provisioned in Azure to be homoge-
neous in terms of CPU and RAM, and adopt the approach
in [8], [42]. A homogenous workload influx assumed here
can also be applied to heterogenous VMs and cloud re-
sources. In a co-located environment such as Azure, mul-
tiple VMs do run in parallel and in cases of high resource
demands, workload is evenly distributed among multiple
virtual machines [8].

In experiment One, the server was immediately loaded
with a high number, N , of virtual users from the start of the
experiment. The ramp-up period was set to zero, in which
case an idle time was set for the server to prepare and pro-
cess the load influx. The experiment was run for 180 minutes
before decreasing the load to zero. For this experiment we
employed the standard JMeter thread sampler for the load
distribution onto the server.

In experiment Two, the objective was to simulate a real
user behavior by employing the concepts of pacing and
think time. In a real world web platform, users do not
usually execute all their actions at once (in quick succession)
when browsing a web application but there is usually some
delay in the series of activities referred to as the user “think
time”. To simulate the behavior of the virtual users in a



TRANSACTIONS ON BIG DATA 7

realistic manner, the stepping thread group in JMeter was
employed. The parameter settings for this experiment can
be described as follows:

A maximum constant number, N , of virtual users was
set on the thread group with a delay of 65 seconds before
starting the threads on the application server. After the
65 seconds the experiment began by adding a constant
number of threads every 20 seconds with first a ramp-
period of 5 seconds. After reaching the maximum load of N
virtual users, then the server was programmed to delay the
execution of the load for five seconds (the server was kept
idle for this period of time). The application then allowed
the virtual users to browse the platform for 60 minutes and
then it started decreasing the load by 10 virtual users every
second.

In Experiment Three, instead of defining a constant
maximum load influx, the uniform random timer in JMeter
was used so that a random number of virtual users could
be added on the application server. This experiment was
intended to depict a real-world scenario in which one does
not know the rate of user load influx on the application
server. It was also intended to show how a server responds
to highly randomized user activities.

Experiment Four combined both a constant load influx
for a period of time and then the load was decreased to
a minimum value and then a random number of load
influx was added again. Thus we increased the load and
decreased the maximum load randomly to near zero and
then increased the load for a constant load before bringing
the experiment to an end. The main goal with this experi-
ment is to show a mixture of random and a predetermined
user behavior – for instance, a server may be designated to
process a constant workload but for one reason or another
some additional load can be redirected to this server in
a random manner. For this experiment, we employed the
ultimate thread groups (see [43] for more on JMeter ultimate
thread group) from JMeter in distributing the load across the
server.

These four main experiments were conducted repeat-
edly for four weeks to generate and measure the average
values of the key performance indicators characterizing the
application server and the virtual infrastructure network. In
addition to the response times from these experiments, the
remaining server KPIs measured included the percentage
of CPU utilization, latency, bandwidth fluctuation, server
hits per second, and throughput (requests per second) for
building the predictive models.

These KPIs are of fundamental importance in cloud data
center management especially in designing SLAs, billing,
and load admission control. The work presented in [3]
describes how consumers use these KPIs when selecting a
suitable cloud service provider.

Fig. 3a shows the aggregate results of the average re-
sponse times presented as box plots on the main experi-
ments conducted for the data collection. As shown in Fig. 3a
sampling of the TVs page has the lowest mean and median
response time indicated by the red line on the box plots. The
shop page has high response times, with a larger number
of outliers (indicated by red plus) in the composite plot of
Fig. 3. The rest of the pages indicate similar mean response
times as shown in the remaining six sampled sites. The

(a) The sampled average response times of the application server under
normal workload (vU < 1000) fluctuation at different sites.

0 20 40 60 80
Sample Point

0

5

10

15

20

25

30

35

40

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

(b) The sampled % CPU utilization under normal workload (vU < 1000)
fluctuation.

Figure 3. Experimental results for the average response
times and % CPU utilization of the application server
and the virtual infrastructure network under normal load
(vU < 1000) influx.

mean response times from all the sampled sites indicate an
overall predictable average response except for the few out-
liers highlighting some potential volatilities under a normal
workload characteristic. We defer a discussion of the high
number of outliers sampled at the shop site and some of the
sampling sites until section 7.1.

Fig. 3b shows the average % CPU utilization that is
quite predictable with the mean and maximum utilization
of 5.01% and 35.01% respectively. These percentage utiliza-
tions correspond to a normal workload influx simulated
with slightly more than 1000 virtual users. The maximum
utilization of 35.01% is a little above the normal CPU
characterization (20%) under normal data center workload
as reported in [44]. The volatilities shown in the response
time plots (indicated in the outliers) are in line with the %
CPU utilization and we present a detailed case study on
the root cause of the high degradation of the application
performance (see section 7.1).



TRANSACTIONS ON BIG DATA 8

4.2 Data collection procedure

We rolled out live the web application designed for this ex-
periment on the Microsoft Azure cloud hosting environment
for virtual users (vU) to interact with the dynamic contents
of the application. Clients are required to generate events
through the web pages (e.g. by browsing and clicking on a
product image or a button) to create an HTTP request object.
Simulating client-server activities with a large number of
real users simultaneously interacting with the application
poses a huge challenge since it is difficult to attract large
number of real users on the website over a specified time
period.

To simulate realistic user loads, we used the JMeter
client-server emulator, which is capable of generating thou-
sands of HTTP requests, something that would not be
possible with human test subjects. For a system with 8 GB
memory and 4 vCPU cores, JMeter can generate as many as
1000 virtual users per server. Using JMeter, we simulated
the number of virtual users with Java thread samplers
that allow concurrent users to browse the web application
according to the four experiments described in section 4.1.
The JMeter samplers send the HTTP requests to the web
page or server and the ramp-up period determines the
frequency with which each virtual user accesses a particular
page of the application (e.g. 10 vU configured on a ramp-
up time of 10 seconds means that JMeter has 10 seconds
to get all 10 vU threads up and running. Each thread has
access to the server 1 second (10 vU/10) after the previous
thread executed its requests). In order to guarantee that
we obtain accurate measurements of the metrics we are
investigating, we subjected the web application to a prior
functional testing regime.

The main task then is to incrementally load all our ap-
plication servers concurrently with 1000s of HTTP requests
and then measure the load-capacity and server performance
metrics. Setting up our virtual infrastructure network and
the web application with these server configuration param-
eters allows us to monitor and collect the data needed for
building our predictive models.

For instance, based on our simulated data, we want to
address such research questions as:

1) Can we realistically overload the shopping application
with users until we see different resource-bounded failure
modes?

2) Can we train predictive models that react in time before
failure occurs?

3) Can we provision alternative resources within the time
window given by the predictions?

These are some of the questions we desire to concretely
answer and discuss through the experiments described in
the previous sections. The next section presents the critical
analyses and the evaluation of the machine learning model
built with the boosted decision tree algorithm.

5 CRITICAL ANALYSIS AND EVALUATION

From the experiments described in sections 4.1 and 4.2, we
sampled data on the key performance indicators charac-
terizing the web service application server and the virtual

infrastructure network, including the server hits per sec-
ond, latencies/response time, throughput, CPU utilization,
and bandwidth consumption. Each dataset was saved as a
CSV file that would serve as the input for performing the
machine learning experiment.

In Azure machine learning [44], the basic program unit
for performing an experiment on a category of dataset is
known as a module. Each module is bounded by both input
and output ports that enable the flow of information from
one module to the next during processing.

The fundamental model features selected from the
dataset consist of the number of virtual users (simulated
here as the JMeter thread groups), the average response
time (which has a direct linear correlation with the laten-
cies), CPU utilization, average throughput, bandwidth, and
memory consumption. By training the boosted decision tree
regression model using the Azure machine learning studio,
the goal here is to be able to produce predictive analyses on
these features (server and VIN KPIs).

Figure 4. These flow diagrams illustrate the machine learn-
ing experiments conducted with the boosted decision tree
algorithm.

We applied the data cleaning module, available in the ex-
perimental environment (the Azure machine learning exper-
iment canvas), after uploading the sampled data in order to
clean columns and rows with missing and redundant data.
We also applied data manipulation queries to transform and
clean the raw data into a suitable format that would increase
prediction accuracy.

5.1 Inputs and outputs in the prediction tasks

Fig. 4 illustrates the machine learning experiments con-
ducted in Azure to train the models with the boosted
decision tree regression algorithm. The figure shows the
initial settings and all the modules selected for the complete
machine learning experiments for training the dataset. The
validation experiment is conducted in a similar fashion,
where the results of the entire experiment are converted into
a webservice output platform for external users to consume.

The inputs into the components of the framework are
the server KPI metrics sampled at constant time intervals



TRANSACTIONS ON BIG DATA 9

from the monitoring components which include the mean
response time, number of requests per second, percentage
CPU utilization, bandwidth, throughput and server hits per
second. The output of the component is the predicted value
for the cloud service that is offered to the provider. The
predicted value is then used as an input into the adaptation
phase (e.g horizontal or vertical scaling, load balancing or
admission control).

To illustrate the construction of the tree with the given
inputs, as presented in Algorithm 1, the prediction tasks ini-
tially take the server KPIs metric at different time intervals,
the loss function and the number of trees as inputs. We then
define a base model with the average of the KPI metric as
the output to the base model. The first order derivatives
(gradients) of the loss function are used to minimize its
value. After fitting the base model, we then use the pre-
dicted KPI metric again as the input and the output will be
the residual. These steps are repeated sequentially together
with the learning rate as a multiplicative factor in adding a
new subtree until the final value is predicted.

We designed the boosted decision tree regression exper-
iment using a single model parameter for the training mode
with a fixed learning rate of 1.0. We then experimented with
20-maximum leaves on each tree and a default value of 10
samples per node leading to a total construction of 100 trees
per leaf on each run of the experiment. We did not use a
random seed number and the webservice parameters were
configured to average on the final hypothesis on the evalu-
ated model. Fig. 5 shows the 1st and 100th iterations of the
sub-hypotheses in filling the hypothesis space. The iteration
trees depicted in these figures are sub-hypotheses of the
hypothesis space illustrated in equation (1). As described
in section 3.1, for example, the 100th iteration tree shown
in Fig. 5b represents the new function hm(xj) that is added
to the growing tree depicted by equation (6) at j = 100.
The 100th iteration of the decision trees indicates the final
hypothesis constructed for the hypothesis spaces of 100 trees
at j = 100 as shown Fig. 5.

Further, as explained in section 3.1, for the design of the
boosted decision tree model we set out a finite hypothesis
space (M = 100) that averages over the final hypothesis
space as indicated in equations (1) and (2). Our parameter
λ is 0.001 for the L2 regulation with a maximum learning
rate of 1.0. Both training and validation datasets predict
quite well after a learning rate of 0.2 and there is not much
variation in the performance of the model as we further
increase the learning rate with the same λ parameter tuning.
Tuning the hyperparameters of the model from equations (7)
and (11) gives the final results of the model with the boosted
decision tree algorithm. Fig. 5a and Fig. 5b show the iterative
steps (from 1 to 100) of the different trees generated within
the functional hypothesis defined in equation (2) but we are
not able to display all of them.

6 MODEL EVALUATION AND INTERPRETATION

To evaluate the performance of the models built with the
boosted decision tree algorithms, we measured the mean
absolute error (MAE), root mean squared error (RMSE),
absolute error (RAE), and relative squared error (RSE),

(a) 1st iteration tree.

(b) 100th iteration tree.

Figure 5. The figures illustrate the constructed trees at the 1st

and 100th stages of the iteration with the BDT algorithm.

the standard statistical metrics suitable for describing the
performance of a model for regression [45].

The results are presented in Table II. Averaging the MAE
values at their respective learning rates gives a result of
177.29 which is less than 180 for a model to considered a
good one [46]. From the results in Table II, we recorded
the best R-squared value at a learning rate of 0.2 and as
we further increased the learning rate, there was not much
variation in the coefficient of determination (CoD) values.

TABLE II. Statistics indicating the performance of the
boosted decision tree algorithm.

Learning Rate

Model metric 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Mean Absolute Error 145.35 154.34 167.12 185.70 185.70 200.60 202.23
Root Mean Squared Error 496.91 474.08 476.15 523.89 523.894452 545.69 542.14
Relative Absolute Error 0.020917 0.02221 0.024049 0.026723 0.026723 0.028866 0.029102
Relative Squared Error 0.000907 0.000825 0.000833 0.001008 0.001008 0.001094 0.001079
Coefficient of Determination 0.999093 0.999175 0.999167 0.998992 0.998992 0.998906 0.998921

The results in Table II clearly indicate that the chosen
algorithm completely replicates the training and testing
dataset in the machine learning experiments. Similar results
(e.g. dataset on bandwidth, throughput, and server hits etc.)
are achieved with the application of the algorithm to the
other server KPIs mentioned in this paper but for the sake
of brevity, their plots are not included. We can generalize our
results and state that the boosted decision tree regression is a
suitable algorithm for predicting cloud server KPIs on cloud
application servers and the virtual infrastructure networks.



TRANSACTIONS ON BIG DATA 10

Our comparisons in the next sections demonstrate the
superiority of the BDT algorithm over some state-of-the-
art shallow and deep learning algorithms. The BDT used
here as a base learner has the desirable capability that
it can both linear and nonlinear effects which cannot be
captured by linear techniques such as the Kalman filtering
technique (KFT), Bayesian information criterion (BIC), and
ordinary least squares (OLS). Also the synergy of non-linear
and threshold effects among inputs can best be handled
inherently in the construction of the BDT algorithm in
comparison to the state-of-the-art deep learning approaches.

6.1 Comparison with the state-of-the-art shallow ma-

chine learning algorithms

We benchmark and compare the application of the BDT ap-
proach to two standard state-of-the-art models [23], [24], [45]
: the ordinary least square linear regression (OLS) and the
non-linear stochastic gradient (SGD) algorithms in making
predictions on the cloud server KPIs measured in section 4.
For this purpose, we followed the approach in [23] with the
L2 regularization.

In order to compare our results to these standard ML
techniques we ran extensive machine learning experiments
with the non-linear stochastic gradient descent from the
range 0 to 1 learning rate. We achieved 0.33 as the best
coefficient of determination on both training and test results
at a learning rate of 0.7 and any further increase of the
learning rate results in a continuous decay of the predicted
signal. Based on the mean absolute error and the coefficient
of determination, the SGD performs poorly compared to
the OLS and the BDT training algorithm. In addition to
the metrics shown in Table III, the SGD requires a longer
training time versus accuracy compared to the OLS and BDT
in attaining its best training and testing results.

Running the experiments with the ordinary least squares
method improves the model accuracy of prediction with a
0.9989 coefficient of determination at the final learning rate
of 1 as shown in Table III. Comparing standard OLS and
BDT, both algorithms achieve convergence on the models
at a very low learning rate with little variation in model
performance as we further increase the learning rates. BDT
achieves its best coefficient of determination 0.9991 at a
learning rate of 0.3 while the ordinary least squares achieves
its best coefficient of determination at a learning rate of 1.0
to closely match the BDT results.

In addition to comparing the performance of the BDT
regression algorithm to the two standard state-of-the-art
machine learning algorithms (SGD and OLS) we further
compare this approach with the reactive framework pre-
sented in [8]. Their experimental results indicate that a
maximum percentage error on the average response time es-
timation is less than 20%. Specifically, their approach is able
to provide an accuracy prediction quality that in terms of
the mean square error is always less than 10%. The VM cost
optimization technique integrated in this framework is one
of its main advantages. The mean percentage error of our
approach varies between 2% to 5% even at a very low learn-
ing rate using the boosted decision tree regression technique
as against the total of 10% prediction quality mean square
error achieved in the work from [8]. The BDT regression

algorithm described in this paper outperforms the adaptive
method presented by Ardagna et al. [8] in terms of the mean
percentage-errors of less than 5% on both the training and
testing examples. The models trained and tested achieved a
predictive accuracy of 98% and BDT outperforms the well-
known state-of-the-art ordinary least squares (OLS) and the
stochastic gradient descent algorithms (SGD).

TABLE III. This table compares the metrics of the three
regression algorithms.

Model Algorithm MAE RMSE RAE RSE CoD L2

Boosted Decision Tree 177.29 569.70 0.032033 0.001192 0.998808 0.001
Ordinary Least Squares 192.09 700.29 0.013252 0.000109 0.989145 0.001
Stochastic Gradient Descent 6057.18 16336.04 0.871653 0.980027 0.332885 0.001

Further to the evaluation of our model we compared
its performance with other shallow learning machine al-
gorithms. Specifically we compare our work with the ap-
proaches using the Bayesian information criterion (BIC)
[17] and the Kalman filtering technique (KFT) [32]. BDT
outperforms BIC in terms of average prediction accuracy.
The performance of the OLS just beats our BDT approach
in the RAE and RSE metrics, but BDT is more accurate
overall. Fig. 6a shows a comparison of the different state-of-
the-art shallow machine learning algorithms with the BDT
algorithm.

6.2 Comparison with deep learning algorithms

In addition, we compare our approach with deep learning
algorithms to further evaluate the benefits of the boosted
decision tree algorithm in such a non-linear environment.
Specifically we compared our approach with the diffusion
convolutional recurrent neural networks (DCRNN) [25], the
deep belief neural networks (DBN) [26], the traditional
neural networks (TNN) presented in [27] and the apolyadic
canonical decomposition autoencoder model (CP-SAE) [28].
As shown in Fig. 6b, the DCRNN outperforms both the DBN
and the TNN but its performance falls a little below that of
the BDT algorithm.

6.3 Comparison with genetic and ensemble algorithms

Finally we evaluated our work against state-of-the-art en-
semble (EN) and genetic algorithms (GA) as applied in
cloud resource prediction. Comparing the proposed model
with previous work in [17], as shown in Fig. 6c, our ap-
proach outperforms both GA and EN in final prediction
accuracy.

6.4 SLA violations and mitigation

We demonstrate in this section, taking as an example the
setting of a service level objective (SLO), how SLA viola-
tions can be detected by the proposed framework using
real world datasets of sampled response times and server
throughput. As a service level objective we set for our on-
line shopping service application an average response time
of 1 second. Other previous approaches have set a mean
response time of 200ms to a maximum of 1200 seconds.
Our evaluation here seeks to demonstrate the detection
and violation of SLA through the proposed monitoring
framework. For our web application we set a total of 470



TRANSACTIONS ON BIG DATA 11

BDT BIC OLS KFT SGD

Shallow Learning Algorithms

0

0.2

0.4

0.6

0.8

F
in

a
l 
P

re
d

ic
ti

o
n

 E
rr

o
r

(a) Comparison with shallow learning algorithms.

BDT DCRNN CP-SAE DBN TNN

Deep Learning Algorithms

0

0.1

0.2

0.3

F
in

a
l 

P
re

d
ic

ti
o

n
 E

rr
o

r

(b) Comparison with deep learning algorithms.

BDT GA EN

Genetic and Ensemble Algorithms

0

0.05

0.1

0.15

0.2

F
in

a
l 
P

re
d

ic
ti

o
n

 E
rr

o
r

(c) Comparison with genetic and ensemble algorithms.

Figure 6. Comparison of the different algorithms with BDT
in terms of performance degradation (smaller values mean
better performance).

pages per second as a throughput service level objective.
Consider a typical HTTP GET request to the web server
of about 256 bytes of data, running on 100 Mbps Ethernet.
Meeting this throughput SLA, when transmitting typical
200kb pages using a standard TCP/IP protocol (180 Bytes),
amounts to moving 470 pages every second (calculated as:
100Mbps/214292 bits per page).

To evaluate the SLA violations we streamed workload on
our application service and monitored the server through-
put and the performance of the mean response time. From
Fig.7a, the response seems quite predictable as it increases
linearly with the streaming of users sending requests to the
server to be processed.

However after 200 seconds, the point at which 200 users
were issuing concurrent requests, a continuous degradation
of server performance with a doubling of the mean response
time was observed. This suggests congestion within the
server due to our aggressive transmission of workload onto
the server. At the same time, monitoring the server through-
put as shown in Fig.7b, indicates that the server throughput
was pretty good before the 200 seconds of processing the

workload. The server throughput begins to degrade at the
same period that the response time was violating our set
target of 1 second. The monitoring stack described in Fig. 1
simply automates the process of a non-disruptive service by
scaling out a cloud resource or live migrating the application
to an idle or a less busy server. This process leads to a
settling of the response time back to either below or within
the mean response time with the throughput starting to
increase.

(a) Performance of the server response time.

(b) Performance of the server throughput.

Figure 7. Prediction of the response time and server
throughput.

7 POTENTIAL APPLICATIONS AND THREATS TO VA-

LIDITY

We seek to provide a framework for monitoring and predict-
ing service performance in the cloud. The related benefits
are different for service consumers and service providers.
A service consumer may wish to conduct a comprehensive
analysis of Service-Level Agreements, to see under what
conditions any of the Quality of Service (QoS) promises
may be broken. A service provider may wish to gain a
priori knowledge about how their applications are likely
to perform when deployed in a given cloud environment,
before the service is offered live, so they can make informed
choices about storage and bandwidth offered by the cloud
host. Finally, the cloud host or broker may operate the
predictive engine in real time, in order to detect when failure
is imminent and so take suitable corrective action.

The work presented in [47] details the importance of
the metrics we have used in our experiments in com-
paring different cloud service providers. Our predictive
model analysis can help in conducting these comparisons



TRANSACTIONS ON BIG DATA 12

in a more comprehensive way. Modeling and being able to
predict response time, bandwidth or latency is essential in
leveraging the control of workload fluctuations, managing
resource contention and making optimal decisions. For in-
stance, having accurate predictions about the performance
characteristics of an application can help in deciding how
to manage the arrival rates of workload in data centers,
especially during peak periods. Adagna et al. [8] in a related
work underscored the relevance of these metrics especially
in a realistic estimate of the QoS model parameters (which
include bandwidth variations, response time and network
latencies).

7.1 Case study

The graphs in Fig. 8 show a box plot of the sampled response
time and the percentage CPU utilization measured against
a high influx of virtual users opening sessions with the
application. With respect to the three training algorithms,
the response looks predictable with both BDT and OLS. As
a result of the poor performance of the SGD algorithm, it
is unable to detect some of the volatilities that have been
captured by BDT and OLS (see Table III). As shown in
the plots, the first half of the experiments indicate a stable
response time for the resource but these tend to be volatile
in the second half of the experiment. These spikes averaging
more than 10 seconds could suggest the limiting factor of the
capacity of the provisioned A1-series VM. This could also be
due to a virtualization contention or high demands placed
on the resources at the backend. The server degrades quickly
as we further increase the number of users beyond 1000
even though CPU utilization dynamically scales up to more
than 200% as shown in Fig. 8b. Contrary to normal desktops
or servers, Azure virtual machines are designed to be highly
elastic and scalable, which allows them to dynamically
adjust the CPU utilization to as high as 600% [40]. This
indicates why as we simulated extremely high workloads,
the A-series virtual machine adjusted the CPU utilization
to more than 200% which is in tandem with the spikes
experienced as shown in the response time box plots in
Fig. 8a.

In order to determine the real cause of the abnormal
latencies we contacted the Microsoft Azure technical team,
who reviewed the platform from the server side and found
that there was no additional latency incurred from the
application infrastructure. This led to the conclusion that
the latency delays could be arising from the application
code. Together with the Azure technical team we scanned
and analyzed 620 slow requests and identified that mod-
ule(s) consuming most of the time are the FastCgiModules
(94.07%). Requests are spending most of the time in the CGI
module which means that the underlying application code
(PHP, NodeJS etc.) is taking a longer time.

Our goal with this case study is not only to demonstrate
the efficacy of the BDT and the selected benchmarking
training algorithms but to also draw meaningful conclu-
sions that could possibly help in a decision-making process.
We observe a linear increase in response time and CPU
utilization corresponding to an increase in virtual users.
A suitable recommendation here could be a review of the
architectural properties of the applications such as scripts

for server instantiation or logins to the database that could
result in requests queuing.

Home Cart Products Clothings Laptops Appliances TVs Shop

http://mytwg.azurewebsites.net/

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
e
s
p

o
n

s
e
 T

im
e
 i
n

 m
il
li
s
e
c
o

n
d

s

104

(a) The sampled average response times of the application server
under extreme workload (vU > 1000 ) fluctuation at different sites.

(b) The sampled and predicted % CPU utilization under extreme
workload (vU > 1000 ) fluctuation.

Figure 8. The average response times and the % CPU utiliza-
tion of the application server and the virtual infrastructure
network under extremely high workload influx.

These discussions lead us to conclude, with regard to
the questions in section 4.2 that with a suitable algorithm
(e.g. the BDT) it is possible to project in advance the perfor-
mance metrics (e.g. response time, CPU, latency etc.) of an
application server before an application can be deployed
onto the cloud environment. This analysis is helpful in
comparing different cloud service providers for the type
of resources they offer. We have also been able to demon-
strate that our application performed optimally only under
normal workload (vU < 1000). Under an extremely high
workload (vU > 1000), resources degraded quickly where
the requests were queuing at the FastCGI module.

The potential threat to validity in the application of this
regression algorithm is that, in the presence of outliers and
noise, the minimization of the sum of squared errors can
have negative performance effects on the algorithm. This
constitutes a potential threat to internal validity especially
where measurements are performed in a highly dynamic
and noisy setup.



TRANSACTIONS ON BIG DATA 13

The number of trees and tree depth do pose a constraint
to performance improvement. Growing excessive trees can
cause over-fitting leading to both internal and external
threats to validity. We handled this by stopping at the point
where the loss value converges and we limited the tree
depth to shorter ones in the experiments.

In addition, the problem of data peeking can surface
when applying this algorithm to a training set example.
Peeking is said to occur when data intended for the testing
phase of the model building is somehow leaked to the
algorithm before its performance is validated. We mitigated
this problem by having a totally different set of training and
testing data.

8 CONCLUSIONS AND FUTURE WORK

We employed a realistic cloud testbed to investigate differ-
ent algorithms for use in proactive monitoring and adap-
tation. These used a collection of realistic KPIs measuring a
virtual infrastructure network and an application service. To
this end we designed a web service platform and remotely
hosted this at different geolocations. We aimed to simulate
real user behavior by programming robot users that open
sessions and consume our cloud resources in Microsoft
Azure. We employed JMeter as our client-server emulator
for distributing a huge amount of workload streamed from
different geolocations onto our application server and the
virtual infrastructure network. We further interfaced our
webservice platform with Google Analytics and the Azure
Application Insights for live server-metrics monitoring and
sampling.

Our framework applied the BDT machine learning algo-
rithm in training and evaluating models on the KPIs. The
application of the boosted decision tree regression method
yielded predictions of the cloud server KPIs with accuracies
intervals of 98.57% which completely replicates the input
signal. The high confidence intervals from the training and
testing evaluations are strong indications of how well the
model fits to the dataset.

A comparison with some state-of-the-art reactive solu-
tions indicate that the ML approach with the BDT algorithm
outperforms these techniques. A further comparison with
the well known standard OLS and the non-linear SGD
shows that the BDT algorithm has the best performance
in terms of prediction accuracy. The framework is suitable
for conducting fundamental analyses on cloud application
servers before deploying resources to the cloud environ-
ment.

The maturity of IoT, cloud/fog/edge and autonomous
computing has seen most research activities in the last
decade directed towards system performance optimization.
Most research activities have applied AI, machine learning,
and deep learning algorithms with successful results in
increasing system performance. In addition, the emerging
trends in next generation computing are directed towards
the application of AI/ML - integrated applications partic-
ularly in IoT, cloud, fog, edge, serverless and Quantum
Computing [48]. A very exciting field is evolving to explore
the future of deep learning through the use of transform-
ers, transfer learning, meta-learning, recurrent independent
mechanisms in building neural nets that enable a quick
adaptation to a new environment.

REFERENCES

[1] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T.
Lynn, ”A survey of Cloud monitoring tools: Taxonomy, capabili-
ties, and objectives,” in Journal of Parallel and Distributed Computing,
vol. 74, No. 10, Article No. 10, pp. 2918–2933, 2014

[2] P. Mell and T. Grance, ”The NIST definition of cloud computing
(draft),” NIST special publication, vol.10, pp. 800–845, Jan. 2011.

[3] A. Li, X. Yang, S. Kandula, and M. Zhang, ”Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 72, pp. 1-14, 2010.

[4] C. Delimitrou and C. Kozyrakis, ”HCloud: resource-efficient pro-
visioning in shared cloud systems,” in Proceedings of the 21st Intl.
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Atlanta GA, April 2016.

[5] M. Colajanni, M. Pietri, S. Tosi, and M. Andreolini, “Adaptive,
scalable, and reliable monitoring of big data on clouds,” in Journal
of Parallel and Distributed Computing, vol.79–80, pp. 67–79, 2015.

[6] M. Colajanni, M. Pietri, S. Tosi, and M. Andreolini, “Real-Time
adaptive algorithm for resource monitoring,” in 9th International
Conference on Network and Service Management 2013 (CNSM 2013),
Zuerich, Switzerland , vol.8226, No. 1, pp. 67–74, Oct. 2013.

[7] N. Mohammed and J. Al-Jaroodi, “Real-Time big data analytics:
Applications and challenges,” in 2014 International Conference on
High Performance Computing and Simulation (HPC), pp. 305–310,
July 25, 2014.

[8] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, ”Dual
time-scale distributed capacity allocation and load redirect al-
gorithms for cloud systems,” in Journal of Parallel Distribution
Computing, 72, pp. 796-808, 2012.

[9] M. S. Aslanpour, S. E. Dashti1, M. Ghobaei-Arani, and A. A.
Rahmanian, “Resource provisioning for cloud applications: a 3-
D, provident and flexible approach,” in Journal of Supercomput 74,
pp. 6470–6501, 2018.

[10] D. Menascé, V. Almeida, and L.Dowdy, ”Capacity planning and
performance modeling: from mainframes to client-server sys-
tems,” Prentice-Hall, Inc. NJ, USA, 1994.

[11] J. Rolia, and VVetland, ”Correlating resource demand information
with ARM data for application services,” in Proceedings of the 1st
international workshop on Software and performance. ACM, Santa Fe,
New Mexico, USA, pp 219–230, 1998.

[12] Q. Zhang, L. Cherkasova, and E. Smirni, ”A regression-based
analytic model for dynamic resource provisioning of multi-tier ap-
plications,” in Proceedings of the 4th ICAC Conference, Jacksonville,
Florida, USA, pp 27–27

[13] J. Kumar and A. K. Singh, “Workload prediction in cloud using
artificial neural network and adaptive differential evolution,” in
Future Generation Computer Systems, Elsevier B.V, Vol. 81, pp. 41–
52, 2018.

[14] T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, and D. Inoue, “Ref-
erential kNN regression for financial time series forecasting,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.8226,
No. 1, pp. 601–608, Oct. 2013.

[15] A. Eddahech, S. Chtourou, and M. Chtourou, “Hierarchical neural
networks based prediction and control of dynamic reconfiguration
for multilevel embedded systems,” in Journal of Systems Architec-
ture, Elsevier B.V., Vol. 59, No. 1, pp. 48–59, 2013.

[16] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” in Future
Generation Computer Systems, Elsevier B.V., Vol. 28, No. 1, pp. 155–
162, 2012.

[17] S. Tofighy, A. A. Rahmanian, and M. Ghobaei-Arani, “An ensem-
ble CPU load prediction algorithm using a Bayesian information
criterion and smooth filters in a cloud computing environment.,”
in Softw Pract Exper. 48, John Wiley & Sons, Ltd., pp. 2257–2277,
2018.

[18] N. Chauhan, and R. Agrawal, “Probabilistic Optimized Kernel
Naive Bayesian Cloud Resource Allocation System,” in Wireless
Personal Communications, Springer Science+Business Media, LLC,
part of Springer Nature 2022, https://doi.org/10.1007/s11277-022-
09493-5.

[19] M. Ghobaei-Arani and A. Shahidinejad, ”An efficient re-
source provisioning approach for analyzing cloud workloads: a
metaheuristic-based clustering approach,” in The Journal of Super-
computing (77), pp. 711-750, 2021.



TRANSACTIONS ON BIG DATA 14

[20] A Belgacem, ”Dynamic resource allocation in cloud computing:
analysis and taxonomies,” in ACM DL Computing, Vol. 104, No. 3,
pp. 681–710, 2022. https://doi.org/10.1007/s00607-021-01045-2

[21] A. Pahlevan, X. Qu, M. Zapater, and D. Atienza, ”Integrating
heuristic and machine-learning methods for efficient virtual ma-
chine allocation in data centers,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, pp. 1667-
1680, August 2018.

[22] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, ”A stable network-aware VM placement for cloud sys-
tem,” in Proceedings of IEEE/ACM Intenational Symposium Cluster
Cloud Grid Computing (CCGrid), Ottawa, ON, Canada, pp. 498–506,
2012.

[23] MLBench: ”Distributed machine learning benchmark,” 2019,
Available online: https://mlbench.readthedocs.io/en/latest/
index.html

[24] Y. Liu, H. Zhang, L. Zeng, W. Wu, and C. Zhang, ”MLBench:
benchmarking machine learning services against human experts,”
in Proceedings of the VLDB Endowment, 11(10), 1220-1232, Rio de
Janeiro, Brazil 2018.

[25] M. S. Al-Asaly, M. A. Bencherif, A. Alsanad, and M. M.
Hassan ” A deep learning-based resource usage prediction
model for resource provisioning in an autonomic cloud com-
puting environment,” in Neural Computing & Applic (2021),
https://doi.org/10.1007/s00521-021-06665-5.

[26] W. Zhang, L. T. Yang, P. Duan, F. Xia, Z. Li, Q. Lu, W. Gong, and
S. Yang, ”Resource requests prediction in the cloud computing
environment with a deep belief network,” in Softw Pract. Exper.
47(3), pp. 473-488, 2017.

[27] F. Qiu, B. Zhang, and J. Guo,, ” A deep learning approach for
VM workload prediction in the cloud,” in 2016 IEEE/ACIS 17th Int
Conf Softw Eng Artif Intell Netw Parallel/Distributed Comput SNPD,
319–324, 2016.

[28] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, ” An efficient
deep learning model to predict cloud workload for industry
informatics,” in IEEE Trans Ind Inform 14:, pp. 3170–317, 2018.

[29] D. Yang, J. Cao, J. Fu, and J. Guo, ”A pattern fusion model for
multi-step-ahead CPU load prediction.,” in The Journal of System
Software, 86(5), pp. 1257-1266, 2013.

[30] G. K. Shyam and S. S. Manvi, ” Virtual resource prediction in cloud
environment: a Bayesian approach,” in The Journal of Network
Computer Applications (65), pp. 144-154, 2016.

[31] F. Dong, J. Luo, A, Song, J. Cao, and J. Shen, ” An effective data
aggregation based adaptive long term CPU load prediction mech-
anism on computational grid.,” in Future Generation Computing
Systems. 28(7), pp. 1030-1044, 2012.

[32] T. W. Gyeera, A. J. H. Simons, and M. Stannett, ”Kalman
filter based prediction and forecasting of cloud server
KPIs,” in IEEE Transactions on Services Computing, 2022, doi:
10.1109/TSC.2022.3217148.

[33] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, ” Host load prediction
with long short-term memory in cloud computing.,” in Journal of
Supercompu, pp. 1-15, 2017.

[34] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” in The Annals of Statistics, Institute of Mathe-
matical Statistics, vol.29, No. 5, pp. 1189–1232, Oct. 2001.

[35] S. J. Russell, ”Artificial intelligence : a modern approach,” Prentice
Hall series in artificial intelligence, Prentice Hall, 2nd ed, International
ed., Upper Saddle River, N.J., isbn. 0130803022

[36] T. Dietterich, A. Ashenfelter, and Y. Bulatov, ”Training conditional
random fields via gradient tree boosting,” in ACM International
Conference Proceeding Series; Vol. 69: Proceedings of the twenty-first
international conference on Machine learning; 04-08 July 2004 vol. 7,
December 2013.

[37] M. Schmid and T. Hothorn, ”Flexible boosting of accelerated
failure time models,” in BMC Bioinformatics, vol. 9, No. 1, pp. 269–
269, 2008.

[38] T. Chen and C. Guestrin, ”XGBoost: A scalable tree boosting
system,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Association for Computing
Machinery, isbn 9781450342322, vol. 13-17, 2016.

[39] A. Enatekin and A. Eknoll, ”Gradient boosting machines, a tu-
torial,” in Frontiers in Neurorobotics, Frontiers Media S.A, vol. 7,
December 2013.

[40] D. Stephens and B. Wren, ”Azure monitor application in-
sights documentation,” Azure, Microsoft Research Academic,

2017, Available on: ”https://docs.microsoft.com/en-us/azure/
azure-monitorl/” Accessed: 2020-02-02.

[41] Google Analytics: ”All web site data (audience, behaviour, events
and conversions),” 2017, Available on: ”https://analytics.google.
com/analytics//” Accessed: 2020-02-02.

[42] L. Barroso and U. Hoelzle, ”The Datacenter as a computer: An
introduction to the design of Warehouse-Scale machines,” MC
Publishers, 2009.

[43] Apache JMeter - User’s manual, The Apache Software Foundation,
2017.

[44] Microsoft Azure: ”Machine learning studio documentation,”
Azure, Microsoft Research Academic, 2020.

[45] J. Gareth, W. Daniela, H. Trevor, and Robert Tibshirani, “An
Introduction to statistical learning : with applications in R,” New
York: Springer, 2013.

[46] Y. Liu, H. Zhang, L. Zeng, W. Wu, and C. Zhang, ”MLBench: How
good are machine learning clouds for binary classification tasks
on structured data?,” in PVLDB, arXiv preprint arXiv:1707.09562,
Microsoft Academic 11(10), 1220-1232, 2017.

[47] A. Li, X. Yang, S. Kandula, and M. Zhang, ”Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 72, pp. 1-14, 2010.

[48] Gill et al, ”AI for next generation computing: Emerging trends and
future directions,” in Proceedings of the Internet of Things (IoT), vol.
19, pp. 100514, August 2022.

Dr Thomas Weripuo Gyeera is an Assistant
Professor at the University of Massachusetts
Dartmouth. He received a PhD degree in com-
puter science from the University of Sheffield UK
in 2019 and an MS in computer and network en-
gineering with distinction from Sheffield Hallam
University, UK in 2014. He received a BSc de-
gree in computer science and communications
engineering from the University of Duisburg in
2005. He has worked for Thales Group and Ford
motor company as an application development

engineer. He has been working on using machine learning and adap-
tive algorithms for proactive cloud computing resources monitoring and
adaptation. His major interests and work are in AI, Deep and Machine
learning, cloud computing, application development, network engineer-
ing and Big Data.

Dr Anthony J.H. Simons is a Senior Lecturer
and member of the Testing Research Group
in the Department of Computer Science at the
University of Sheffield. His current research is
in model-based testing and model-driven engi-
neering, coming out of work in object-oriented
testing, type theory and precise notations. His
early research was in speech and language pro-
cessing. Previously he served as departmental
director of undergraduate admissions and direc-
tor of teaching.

Dr Mike Stannett is a Senior Lecturer and mem-
ber of the Verification Research Group in the
Department of Computer Science at Sheffield
University. Originally trained as a mathematician,
his recent work focusses mainly on machine-
verification of physical theories, though he has
also worked in macroeconomic forecasting. He
is a member of several professional societies,
including the London Mathematical Society, the
Royal Economic Society and the Association for
Symbolic Logic.


	Introduction
	Related work
	Problem definition
	Conceptual framework
	The BDT algorithm
	Pseudocode and time complexity analysis

	Experimental design
	The experiments
	Data collection procedure

	Critical analysis and evaluation
	Inputs and outputs in the prediction tasks

	Model evaluation and interpretation
	Comparison with the state-of-the-art shallow machine learning algorithms
	 Comparison with deep learning algorithms
	 Comparison with genetic and ensemble algorithms
	 SLA violations and mitigation

	Potential applications and threats to validity
	Case study

	CONCLUSIONS and FUTURE WORK
	References
	Biographies
	Dr Thomas Weripuo Gyeera
	Dr Anthony J.H. Simons
	Dr Mike Stannett


