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Abstract Spatial networks are known to be informative about the spatiotemporal

transmission dynamics of COVID-19. Using district-level panel data from Germany

that cover the first 22 weeks of 2020, we show that mobility, commuter and so-

cial networks all predict the spatiotemporal propagation of the epidemic. The main

innovation of our approach is that it incorporates the whole network and updated

information on case numbers across districts over time. We find that when disease

incidence increases in network neighbouring regions, case numbers in the home dis-

trict surge one week later. The magnitude of these network transmission effects is

comparable to within-district transmission, illustrating the importance of networks

as drivers of local disease dynamics. After the introduction of containment policies

in mid-March, network transmission intensity drops substantially. Our analysis sug-

gests that this reduction is primarily due to a change in quality—not quantity—of

interregional movements. This implies that blanket mobility restrictions are not a

prerequisite for containing the interregional spread of COVID-19.
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1 Introduction

COVID-19 has spread rapidly across the world, with 188 countries reporting at

least one COVID-19 case.1 In many Western countries, community transmission is

pervasive. Because regions, particularly within the same nation, are interlinked, this

implies that local COVID-19 transmission dynamics not only depend on community

transmission rates, but also on disease dynamics in other regions. Local flare-ups can

spill over into other regions. Understanding patterns and extent of such spillovers

becomes particularly relevant now, as countries are beginning to lift nation-wide

lockdowns and move to more localised responses. This requires identifying relevant

spatial networks, i.e., networks that help predict the spatiotemporal diffusion of the

disease and investigating their effect under different containment policy regimes.

Contributing to this understanding is the aim of this paper.

In this paper, we focus on Germany and analyse the influence of three different

types of spatial networks on the spread of COVID-19 across districts over time and

containment strategies. The three networks are: the mobility network, the commuter

network, and the social network. The strength of connection between two districts

within the mobility network is measured via phone-location-tracking-derived move-

ment of individuals, whereas connectivity within the commuter network is based on

data from the Federal Employment Agency. The strength of links within the social

network is measured by the Social Connectedness Index (Bailey et al 2020), which

captures the intensity of Facebook friendships between two districts. It is important

to note that the structure of the networks (i.e., the strength of links) is time-invari-

ant and pre-determined, i.e., reflecting typical patterns of connectivity prior to the

outbreak of COVID-19.

To investigate if the three networks influence interdistrict transmission dynamics,

we compile a dataset on weekly incidence rates (defined as the number of new

COVID-19 cases per inhabitant) for each of the 401 German districts. This district-

level panel dataset spans the period 1 January 2020–31 May 2020. We link dis-

ease incidence in the remaining districts to the home district by averaging COVID-

19 incidence rates across all other districts using connectivity within a given net-

work as weight. This measure thus captures the network-proximity-weighted average

COVID-19 incidence rate of all other districts. The intuition behind this index is

that disease dynamics in other districts are more relevant the closer districts are

connected to the home district. Importantly, this measure incorporates the whole

network (i.e., all districts) and updated information on case numbers. This is—to

the best of our knowledge—novel and allows us to investigate the effect of networks

on the spatiotemporal propagation of the disease beyond initial stages.

Using the panel data, we then employ an OLS regression approach to empiri-

cally assess if lagged changes in network-proximity-weighted average COVID-19

incidence rate predicts disease incidence in the home district. Our regression setup

accounts for district fixed effects as well as state�week dummies. The latter absorb

general (within-state) disease dynamics as well as variation in state-wide contain-

ment policies. The former control for differences in district-level characteristics that

1 See, for example, https://coronavirus.jhu.edu/map.html.
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could influence disease transmission intensity (e.g. population density or distance to

initial hotspots). Furthermore, we always include lagged incidence rates observed in

the home district to control for within-district transmission dynamics.

The regressions produce two main results. First, the structure of all three net-

works is predictive of the spatiotemporal diffusion of COVID-19. Case incidence

rises in the home district following an increase in the network-proximity-weighted

average COVID-19 incidence rate. The size of the point estimators for the network

effects are statistically indistinguishable from within-district dynamics, illustrating

the importance of taking into account network effects when trying to understand

the spatiotemporal spread of the COVID-19 epidemic. Among the three networks,

the social network has the strongest effect and contains the most information (as

measured by the Bayesian information criterion).

The second main result is that the intensity of transmission within all spatial

networks drops substantially (below the critical value of one) after the introduction

of containment policies in week 12 (16 March 2020). Using information on daily

observed mobility (rather than time-invariant, typical mobility patterns), we show

that neither changes in the (relative) pattern of mobility nor changes in the quantity

of movement can explain the reduction in network transmission intensity. Though

not empirically testable, the natural conjecture then is that qualitative aspects of

mobility must have changed. Possible aspects are a change in mode of transport or

the adherence to physical distancing guidelines. A main policy implication of our

findings is that changing qualitative aspects of mobility are far more important in

slowing down the spread of the disease across space than the reduction of mobility

itself.

The remainder of this paper is structured as follows: The next section discusses the

literature related to our study, which is followed by a brief overview of the COVID-

epidemic in Germany during the first 22 weeks of 2020. In Sect. 4, we present the

data used in our analysis before outlining the estimation approach in Sect. 5. The

results are discussed in Sect. 6, while Sect. 7 offers concluding remarks.

2 Literature

Closely related to our paper is the strand of literature that investigates the impor-

tance of spatial networks in explaining the diffusion of COVID-19. For Germany,

Schlosser et al (2020), Fritz and Kauermann (2022) and Fritz et al (2022) show

how network connectedness (mobility and social network) predict the propagation

of the disease. Smolyak et al (2021) highlight the importance of human mobility

restrictions in slowing COVID-19 diffusion in Italy. For Ahmedabad, India, Patil

et al (2021) provide evidence that contact networks and road connectivity patterns

correlate with the rate of transmission of COVID-19. Compared to these studies,

we go further by highlighting that the quality not the quantity of contacts seem to

explain the decline in network transmission after the introduction of containment

measures in March 2020. Our work is further differentiated from the previous lit-

erature based on the fact that our approach allows us to separate within-location

transmission from network diffusion transmission. Additionally, our empirical setup
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improves existing studies by including unit-of-observation (county) and time fixed

effects, which reduce problems related to omitted variables that often makes causal

interpretation of network effects difficult. In this aspect, we contribute to a small but

growing literature in economics that aims at causally identifying effects of mobility

patterns and mobility restrictions on COVID-19 infection rates (Glaeser et al 2022).

Our work further speaks to a small but important literature that is able to map

network connectivity at the individual level to investigate its effect on the diffusion

of COVID-19. The focus of these studies, however, is generally limited to specific

population groups and limited in geographical scope. For example, using the social

media network of 93 university students in Spain, Benítez-Andrades et al (2021)

document a correlation between network centrality and COVID-19 infection rates.

Using 237 cases, Yang (2021) highlight the importance of social networks for the

spread of COVID-19 in China.

More broadly, our work fits within the huge literature concerning the importance

of mobility, transport infrastructure and, more generally, geographical distance for

the spatial diffusion of COVID-19 in the early stages of the epidemic. Since COVID-

19 is an infectious disease that spreads through human contact, the literature high-

lights the imperative importance of transport systems and human mobility for the

diffusion of COVID-19 at the international- and subnational level (e.g., Giuliani et al

2020; Harris 2020; Li et al 2020; Kuchler et al 2020; Tian et al 2020; Felbermayr

et al 2021). The main focus of the literature lies in describing and predicting the

spread rather than in causal inference.

Our findings also speak to the research on effectiveness of COVID-19 contain-

ment approaches (Cowling et al 2020; Dehning et al 2020; Hartl et al 2020; Kraemer

et al 2020; Flaxman et al 2020; Hsiang et al 2020; Tian et al 2020) and to studies

on design of optimal containment policies that incorporate economic trade-offs. The

latter have so far focussed on optimal testing strategies as well as policies targeted

at specific age groups, health-status groups, sectors, or geographic areas (Acemoglu

et al 2020; Chinazzi et al 2020; Eichenbaum et al 2020; Fajgelbaum et al 2020;

Glover et al 2020; Rampini 2020). Our results highlight the existence of inter-re-

gional dependencies in disease propagation, suggesting the need for coordination

among regions. This does not, however, imply mobility restrictions are necessary to

avoid negative (cross-regional) spillovers. Rather, changes in the quality of interper-

sonal contact—such as adherence to hygiene and social distancing guidelines—may

be sufficient for disease containment.

Finally, our work also links into the literature that tries to identify factors that

explain varying degrees of compliance with COVID-19-related containment policies,

e.g., mobility restrictions. For example, Borgonovi and Andrieu (2020) show that

higher levels of social capital are associated with reductions in mobility during the

early stages of the epidemic. Similarly, Bargaina and Aminjonovb (2020) find that

higher levels of social trust is associated with higher levels of compliance to public

health policies.
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Fig. 1 COVID-19 and mobility over time. a depicts new weekly COVID-19 infection numbers (data

version: 9 June 2020). b shows mobility between districts relative to week 11 (data: Teralytics)

3 Background

Germany reported its first COVID-19 case on 28 January 2020. Retrospectively, the

Robert Koch Institute dates the earliest laboratory-confirmed infection back to 1

January 2020.2 As depicted in Fig. 1a, case numbers remained relatively low and

confined to few districts in January and early February. Starting with the third week

of February, however, diffusion across space accelerated dramatically. The fraction

of districts reporting COVID-19 cases surged from 9% to 91% in just three weeks.

2 See Sect. 4 for more details on case data.
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Similarly, the number of new infections rose rapidly; from 152 in week 8 to the

peak of 32,693 in week 12.3

Reacting to the intensification of transmission, local and national governments

first urged people to adhere to hygiene guidelines. Failing to reduce infection num-

bers, first restrictions were imposed. Effective 9 March, events of more than 1,000

people were banned. One week later (week 12 of 2020), non-essential cross-national

border movements were prohibited and schools, childcare facilities as well as many

stores closed. Adding to these already existing restrictions, the federal government

issued binding guidelines for limiting physical contact with people outside their own

household on 22 March 2020 for the whole of Germany.4 Similar to other countries

all non-essential shops had to close, physical distancing guidelines were enforced

by the police, and people were urged to work from home whenever possible.

Overwhelmingly, the German public adhered to the guidelines. Mobile-phone-

based mobility data, for example, documents that people limited their movement as

a result of government policies. Figure 1b unveils a strong reduction in mobility

beginning with week 12, i.e., when schools and borders were closed. By 22 March,

the number of trips between districts had dropped to 53% of the pre-epidemic level.

For the next four weeks, mobility levels remained low, before they started to rise

in week 17, coinciding with public holidays (Ascension Day) and initial relaxations

of restrictions.5 By the end of the sample period, mobility levels had returned to

pre-restriction levels. For the remainder of this paper, we will divide the 22 weeks

into two groups: the ‘pre-containment-policy period’ or ‘pre-policy period’ spanning

weeks 1–11, and the‘post-policy period’ encompassing weeks 12–22.6

4 Data

COVID-19 cases Data on COVID-19 infections (and COVID-19-related deaths)

in Germany across all settings are uniformly recorded nationwide and collated by

the Robert Koch Institute (RKI). The spatially most disaggregated version of these

data are available at the district level.7 In total, there are 401 districts; the median po-

pulation is 158,000. For each district, we compute the weekly COVID-19 incidence

3 The spatiotemporal dynamics of COVID-19-related deaths exhibit a similar pattern, although shifted by

2–3 weeks. This can be explained by the lag between infection and death (Verity et al 2020). See Fig. 4.

4 Implementing health policies falls within the responsibility of the states (‘Bundesländer’). As such, there

is some (minor) variation in the type and timing of containment policies. Such differences are accounted

for in our estimation approach (see Sect. 5).

5 For example, smaller shops with sales areas up to 800 square metres were allowed to re-open on 20 April

2020.
6 Qualitatively, all subsequently presented results remain unchanged if we additionally split the post-policy

period into two subgroups: ‘full restrictions’ (weeks 12–16), and ‘relaxed restrictions (weeks 17–22).

7 The data are available at https://bit.ly/2YQlOo1. Districts are the third level of administrative division,

thus corresponding to districts in England or counties in the US.
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Fig. 2 COVID-19 across Districts. Notes: a depicts COVID-19 prevalence rates (grouped into deciles).

b depicts the first week in which a case occurred. Data version: 9 June 2020

rate—defined as the weekly number of new COVID-19 cases per inhabitant—for

the weeks 1–22 (1 January 2020–31 May 2020).8

To illustrate spatial variation in disease transmission intensity, Fig. 2a depicts

the overall COVID-19 prevalence rate (total cases per capita as of week 22) across

districts; the darker shadings indicate higher prevalence rates. Clearly discernible are

spatially clustered high-transmission-intensity areas in the South and North West.

Comparing Fig. 2a and b further suggests that clusters formed around districts into

which the virus was introduced very early on. These patterns indicate that spatial

networks are important in understanding differences in disease incidence across

space and time.

Spatial networks To investigate if the structure of spatial networks helps to ex-

plain COVID-19 dynamics in the home district, we need a measure that captures

variation in the number of secondary cases generated via (close) contact with in-

fected individuals from other districts. This measure should capture the fact that the

number of new cases resulting from interaction with an infected individual from

district j increases with: (a) the incidence rate in district j in a given week w and

(b) the degree of interaction, or flow of people, from district j into d . We start

8 The focus on the first 22 weeks of 2020 is dictated by the availability of the mobile-phone-based mobility

data (see below for more information). As of writing, these are only available for weeks 1–22.
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Fig. 3 Network connectivity densities. Notes: The figure shows the density plots of the network connec-

tivities for: a the mobility network. b the commuter network. c the social media network (Facebook)

the construction of such a measure by first identifying how closely two districts are

connected within a given network N . To this end, we compute the share of total

flows fd;j into district d that originate from district j :

!N
d;j D

fd;jPK
kD1fd;k

: (1)

Clearly, connectivity between two districts increases with !N
d;j

and lies between zero

and one, irrespective of the level of total inflow into district d .9 This is equivalent to

row-standardising a matrix. Normalisation to one facilitates interpretation. Further-

more, it makes comparison of connectivity across the different types of networks

that we look at easier.

The three networks that we focus on are the mobility network, the commuting

network, and the social network. Bilateral flows within the mobility network are

measured by the total number of individuals that moved between two districts dur-

ing the year 2019. Movements are captured via phone location tracking and are

provided by Teralytics.10,11 The flows between two districts within the commuter

network is equal to the total number of individuals that resided in a given district

d and worked in another district j (or vice versa) in 2019. District-pair level data

on commuter patterns are published by the Federal Employment Agency.12 Finally,

bilateral connectivity within the social network is measured by the Social Connect-

edness Index (SCI), developed and described in detail in Bailey et al (2020).13 The

SCI captures the relative probability of a Facebook friendship link between a given

9 Differences in the latter are accounted for in our estimation setup through inclusion of district fixed

effects (see details below).

10 The data are commercially available at www.teralytics.de.

11 A trip is defined as any movement between two phone tower located in different district with a minimum

of 60 minutes stationary time at one location.

12 The data are available here: https://bit.ly/2YLlVRK.

13 Information on how to gain access to the SCI are provided here: https://bit.ly/316FdCg.
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Facebook user in district d and a given user in district j . Thus social interaction

between districts increases in the SCI.14 It is important to note that the structure

of all three networks is predetermined, i.e., reflecting typical (average) patterns of

interaction prior to 2020. An immediate concern is that the structures change during

the COVID-19 epidemic. We address this issue in Sect. 6.

To gain an insight into the degree to which in the structure the three networks

differs, Fig. 3 depicts the densities of the connectivities (i.e., !N
d;j

) separately for

each network. It is clearly visible that the mobility- and commuter network are very

similar in their structure. For both networks, the density plots are skewed heavily to

the left, indicating that the for a typical county connectivity is very high to relatively

few counties while connectivity is low to the vast majority of remaining counties.On

the other hand, the density plot for the social media connectivity indicates a more

equal distribution, implying that the reach of the social media network is much

broader (i.e. less spatially concentrated).

Naturally, connectivities within the three types of networks are correlated. For ex-

ample, districts linked closely within the commuter network will also maintain more

social connections. Similarly, commuter flows are correlated with the total number

of people moving from one district to another. The similarity in the structure of

the networks becomes evident when looking at the correlation between the bilateral

connectivities of the different networks (see Correlation Table 4). Bivariate cor-

relation between bilateral connectivity—defined according to equation (1)—within

the mobility and commuting network is 0.97. The association between the mobility

network and social network is somewhat weaker, but still high with a value of 0.86.15

It is important to note that we will not be able to isolate the effects of an individual

network on cross-district COVID-19 transmission dynamics. Rather, our aim is to

compare the effect and information content of the three networks with respect to the

spatiotemporal transmission of the disease.

Using the information on connectivity !N
d;j

between district-pairs, we can com-

pute the network-proximity-weighted average COVID-19 incidence rate I N
d;w

for

district d in week w as:

I N
d;w D

JX

j 62d

!N
d;j ij;w ; (2)

where ij;w is the disease incidence rate of district j in week w. The intuition behind

this measure is that disease dynamics in other districts are more relevant the closer

districts are connected to the own district. Absent physical distancing or mobility

restrictions, we expect I N
d;w

to have a positive effect on generation of new cases in

district d . That is, an increase in average—proximity weighted—incidence in other

districts, will lead to higher case numbers in the home district.

14 If the SCI increases by a factor 2, doubles the probability that a Facebook user in district j is connected

to a Facebook user in district j .

15 Similarly, the correlation between the commuting and the social network is 0.85.
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Our final estimating dataset consists of 8,421 district�week level observations.16

Summary statistics of key variables are presented in Table 3.

5 Empirical Strategy

The following OLS regression model forms the basis of our empirical analysis:

id;w D  I N
d;w�1 C ˇ id;w�1 C �d C �s.w/ C "d;w : (3)

The number of new infections per inhabitant in district d and week w is represented

by id;w . Our main regressor of interest is I N
d;w�1

, the network-proximity-weighted

COVID-19 incidence rate in districts j ¤ d and week w � 1. We allow for a

one-week lag to take into account that the median serial interval—the time period

between the onset of symptoms with the primary patient and the onset of symptoms

with the secondary patient—is around 4–5 days (Nishiura et al 2020 and https://

www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html).17,18 The

coefficient  represents the network transmission intensity, i.e., the number of new

cases per capita in the home district generated by an increase of network-proximity-

weighted incidence rate of one.19

In addition to new cases generated via interaction with individuals from other

districts, local incidence rates also depend on past incidence within the home district.

Uncontrolled, higher case numbers yesterday imply more infected individuals today.

To capture these within-district dynamics, we account for last week’s incidence rate

in the home district, id;w�1.20 The coefficient ˇ is interpretable as internal growth

rate and reflects how many new COVID-19 cases per capita are generated from one

additional case per inhabitant.

All regressions control for district fixed effects �d which capture any time-in-

variant characteristics that influence the propagation of the disease within a given

district. Possible aspects are population size and density, demographic composition

16 The ‘raw’ dataset consists of 401�22 D 8,822 observations. However, because our estimating equation

includes lagged values, the number of observations drops to 8,822 � 401 D 8,421. See Sect. 5 below for

more details.
17 The median incubation period, i.e., the time from the moment of exposure to the virus until symptoms

of the disease appear, is estimated to be around 5–6 days (Nishiura et al 2020 and https://www.rki.de/

DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html). Consistent with a substantial proportion

of pre-symptomatic transmission, this is longer than the estimated median serial interval.

18 Using lagged rather contemporary values has the additional advantage of avoiding issues of reverse

causality and simultaneity, i.e., infections in partner districts being a function of disease incidence in the

home district. More generally, using panel data insulates from the reflection problem (multidirectional

causality) present in cross-section network analysis (see Manski (1993) and García-Jimeno et al (2022))

19 A potential concern with dynamic panel data models is that estimates are affected by the Nickell bias

(Nickell 1981). However, due to the long time dimension and the high frequency of our data, the bias is of

limited relevance in the context of our study.

20 The inclusion of a one week lag is motivated by studies that find highest viral loads at the time of

symptom onset (i.e. 4–5 days after infection) and infectiousness to decline quickly within 7 days thereafter

(He et al 2020).
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and, importantly, the average amount of people flowing in and out of the district.

The location dummies also account for the position of the district in the network

(e.g, distance to initial hotspots). The variation exploited in our analysis is thus not

generated by the structure of, or the position within, the network but by changes

in network-proximity-weighted case numbers across all districts.21 General time-

varying shocks symmetrically affecting all districts located within state s are ab-

sorbed by state�week fixed effects �s.w/. In particular, they capture the aggregate

dynamics of the epidemic (depicted in Fig. 1a) as well as changes in state-wide

testing capacities and strategies over time. They also account for potentially slightly

differing policies and attitudes across states and time. Finally, the idiosyncratic error

term—symbolised by "d;w—is clustered at the district level.

A natural conjecture is that disease transmission dynamics—within and between

districts—change after implementation of COVID-19-related containment policies.

To test whether this is the case, we estimate separate slope coefficients for the

pre-policy period (weeks 1–11) and post-policy period (weeks 12–22).22 Extending

regression model (3) to include an indicator P for the weeks after which policies

had been implemented, the estimating equation becomes:

id;w D 1 .1 � P / I N
d;w�1 C 2 P I N

d;w�1 C ˇ1 .1 � P / id;w�1 C ˇ2 P id;w�1

C �d C �s.w/ C "d;w :
(4)

Coefficient 1 captures the effect of the network-connectivity-weighted incidence

before the implementation of policies, whereas 2 is the estimate for the post-pol-

icy period. Analogously, ˇ1 and ˇ2 captures within-district transmission dynamics

before and after policies.

6 Results

In this section, we first present the main results of our regression analysis. In the

second part, we then turn to investigating potential mechanisms.

Spatial networks and interdistrict disease transmission As a benchmark, we

start by estimating a version of regression equation (4) without network effects.

That is, we regress current COVID-19 incidence rate on last week’s incidence rate.

As outlined above, we estimate separate slope coefficients for the pre-and post-

policy periods. Column (1) of Table 1 presents the results. The coefficient of 1.184

implies that a rise in the incidence rate of 1 this week, increases the incidence rate by

1.184 next week. Thus, even before accounting for cross-district infections, within-

district transmission is intense enough to lead to sustained growth in case numbers.

21 As mentioned earlier, a concern is that the structure of the networks change. We address this issue in

Sect. 6 below.
22 We have opted to estimate separate slope coefficients rather than introducing a simple interaction term.

Econometrically, the two approaches are equivalent. However, differences in effect sizes can be more

readily discernible when estimating separate slope coefficients.
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Table 1 Spatial networks and interdistrict disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.184*** 1.150*** 1.149*** 1.158***

(0.347) (0.341) (0.340) (0.338)

Network-weighted 0.819*** 0.850** 1.737***

incidence in week w � 1 (0.302) (0.330) (0.624)

Post-

policies
Incidence in week w � 1 0.656*** 0.592*** 0.591*** 0.589***

(0.033) (0.061) (0.063) (0.062)

Network-weighted 0.240** 0.248** 0.373**

incidence in week w � 1 (0.102) (0.106) (0.152)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.827 0.831 0.831 0.831

Observations 8,421 8,421 8,421 8,421

BIC –133,150 –133,344 –133,336 –133,372

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Network-weighted incidence in week w �1’ is the lagged network-proximity-weighted weekly incidence

rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–22.

*p < 0.10, **p < 0.05, ***p < 0.01.

This is consistent with the rapid growth of new infections observed during the initial

phases of the epidemic. After the implementation of containment policies in week

12, however, dynamics change significantly. The point estimate of 0.656 is now

below one, implying—all else equal—a slow dissipation of the disease.

In column (2), we add the mobility-network-weighted incidence rate to the list

of regressors. Looking first at within-district transmission dynamics, the estimates

remain very stable compared to column (1). Central to our analysis, we find that

the structure of the spatial network predicts COVID-19 case numbers in the home

district. The coefficient of 0.819 implies that if (proximity-weighted) average inci-

dence within the mobility network increases by one, this generates 0.819 secondary

cases per capita in the home district. The size of the point estimator is statistically

indistinguishable from the within-district effect, illustrating the importance of taking

into account network effects when trying to understand the spatiotemporal transmis-

sion of the COVID-19 epidemic.23 This is further illustrated by the difference in

the Bayesian information criterion (BIC). Compared to column (1) the information

content substantially increases when network effects are accounted for. Combined,

the within and network transmission coefficients imply that one additional COVID-

19 case per inhabitant in each region generates 1.97 (1.15 C 0.819) new cases per

capita.

23 The p-value for coefficient equality is 0.549.
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Table 2 Structure and quantity of mobility

Incidence in week w

(1) (2) (3)

Pre-

policies
Incidence in week w � 1 1.146*** 1.147*** 1.170***

(0.339) (0.339) (0.339)

Updated network-weighted 0.857*** 0.856*** 0.618***

incidence in week w � 1 (0.301) (0.300) (0.199)

Post-

policies
Incidence in week w � 1 0.587*** 0.587*** 0.649***

(0.060) (0.060) (0.037)

Updated network-weighted 0.237** 0.236** 0.094

incidence in week w � 1 (0.092) (0.092) (0.059)

Total Inflows w � 1 0.000

(0.000)

Network Mobility Mobility Mobility

Network weights Normalised Normalised Absolute

District FE Yes Yes Yes

State�week FE Yes Yes Yes

R-squared 0.831 0.831 0.827

Observations 8421 8421 8421

BIC –133,363 –133,355 –133,171

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Updated network-weighted incidence in week w � 1’ is the lagged network-proximity-weighted weekly

incidence rate (defined according to Eq. 1 and computed using observed weekly mobility data). ‘Total

Inflows w � 1’ is the total number of journeys to district d that originate in other districts. ‘Pre-policies’

refers to weeks 1–11, ‘Post-policies’ to weeks 12–22. *p < 0.10, **p < 0.05, ***p < 0.01.

Paralleling within-district dynamics, network transmission intensity decreases

after implementation of COVID-19-containment policies.24 Compared to the pre-

policy period the point estimate for network transmission drops by 71%, whereas

it is reduced by 49% for within-district transmission. There are multiple potential

explanations for the particularly stark drop in cross-district transmission intensity.

These will be discussed in the next section. First, however, we investigate the rel-

evance of the remaining two types of networks in explaining inter-district disease

transmission.

Column (3) tests whether the structure of the commuter network predicts the

spatiotemporal spread of the COVID-19 epidemic. This is the case; the pattern of

results is qualitatively equivalent to column (2). Furthermore, the size of point esti-

mates as well as the information content—measured by the BIC—remain practically

unaltered. This is unsurprising given the high degree of similarity in the structure of

the commuter and mobility networks (see Table 4).

In the last column of Table 1, we investigate the ability of social networks, prox-

ied by the SCI, to explain cross-district transmission dynamics. The point estimate

24 Combined, the network and within transmission are now below the critical value of one (0.592 C
0.240 D 0.832).
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for the social-network-proximity-weighted incidence rate of 1.737 is substantially

larger than for the mobility and commuter networks. Combined, the network and

within district transmission estimates imply that one COVID-19 case generates 2.89

new cases per capita. This suggests that social ties are a particularly relevant di-

mension along which diseases spread across space and time. A possible explanation

is that while mobility and commuter networks capture movement of people, social

networks (additionally) contain information on the quality of interaction. Social con-

tact is likely to be more intimate than casual (or professional) interactions, thereby

increasing the risk of infection. This additional information content is also reflected

in the BIC, which is higher than for the mobility and commuter networks. This

is a remarkable result. Even though, social network connectivity captures online

friendship intensity and not necesarily physical contacts, the social network has

higher predictive power than the mobility network. The latter in fact captures phys-

ical population movements. In analogy to previous results, the network effect drops

markedly after the introduction of containment policies in week 12. In fact, the re-

duction in coefficient size of 79% is more pronounced than for the two other types

of networks.25

In Table 6, we re-run regression model (4) and simultaneously account for multi-

ple spatial networks, rather than just one. That is, we run a statistical horse race. The

key insight from this exercise is that—while the estimates become more noisy—the

size of the social-media-network-weighted incidence rates remains remarkably sta-

ble irrespective of which additional network is accounted for. Point-estimates of

the other networks are not stable and are typically reduced by an order of magni-

tude when controlling for multiple networks. This is consistent with previous results

and indicates that social network connectivity is—among the networks investigated

here—the most important explanatory factor.

To sum up, Table 1 presents two main results. First, the structure of spatial

networks—particularly social networks—strongly influences the spread of COVID-

19 over space and time. The higher transmission intensity in well connected districts,

the higher is future disease incidence in the home district. The existence of spillovers

suggests the need for coordination of containment policies among well connected

areas. Unilateral policies may prove (relatively) ineffective if transmission across

districts is not stopped. For example, the localised easing of restrictions could have

negative effects on disease containment in well connected regions. Second, network

transmission intensity substantially drops after introduction of containment policies.

Understanding the underlying causes is key in deriving policy implications. In the

last section of this paper, we analyse potential mechanisms. First, however, we

briefly discuss the validity and robustness of the results presented in Table 1.

One concern is that our OLS estimates are severely biased due to the dynamic

regression setup. However, given the relatively large number of time periods included

25 It is important to note that we do not claim to be able to isolate—i.e. causally separate—the effects of

a specific network. The reason being the likely presence of latent networks. For the social media network,

for example, it is plausible that friendships (i.e. connectivity) do not emerge randomly, but rather latent

networks give rise to friendship connections across space (e.g., core-periphery spatial structures etc.).

Consequently, social network connectivity might be associated with—and capture—these deeper, more

persistent, network structures.
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in our analysis, this is unlikely to be the case. To illustrate this formally, we re-run

regressions of Table 1 using the difference GMM estimator developed in Arellano

and Bond (1991). This estimator was specifically designed to produce consistent

estimates in fixed effects models with lagged dependent variables. Reassuringly, the

GMM estimation approach produces very similar results (Table 7). Similarly, we

find that standard errors remain stable when we allow for spatial autocorrelation

across districts using the Conley (1999) procedure or two-way cluster along the

district and week dimension (Tables 8–9).26 Additionally, we show that the pattern

of results remains unchanged if we look at absolute numbers of new cases rather

than incidence rates (Table 10). Further, Table 11 illustrates that our results do not

depend on week 12 as the cut-off point for the policy regimes. The results remain

qualitatively unchanged if we move the cut-off to week 13, i.e. the week in which

the federal government imposed nationwide restrictions. Finally, we show that the

reduction in network transmission intensity is not driven by the period of severe

restrictions (i.e. weeks 12–16). Estimating an additional separate slope coefficient

for weeks 17–22 documents that, if anything, transmission intensity is even lower

during this last period in our sample (Table 12).

Before investigating potential mechanisms underlying our main results, we want

to highlight an important limitation of our study. The networks discussed here may

not only facilitate the spread of COVID-19 infections, but also the spread of disease-

related information. For example, increases in observed COVID-19 cases in the

early stages of the pandemic could have been the result of higher testing capabilities

or higher awareness of the disease itself rather than a consequence of actually

increasing incidence rates. At the same time higher awareness about COVID-19 as

well as information about testing possibilities can spread through social networks,

leading to higher detection rates in neighbouring counties. In the presence of such

effects, we would overestimate the effect of network connectivity on the diffusion

of COVID-19 in the early stage of the pandemic. Unfortunately, the data structure

does not allow us to disentangle these two processes.

Structure, quantity and quality of interdistrict interaction As documented

above, the effect of network-proximity-weighted COVID-19 incidence drops sub-

stantially after the introduction of containment policies. Three non-exclusive mech-

anisms could underlie this result:

(i) Change in network structure: If the relative strength of bilateral links changes

after introduction of containment policies—i.e. if the structure of the network

changes—our predetermined networks would do a poor job at capturing actual

cross-district interaction. As a consequence, the information contained in the

network-proximity weighted average COVID-19 incidence rate would be very

noisy after week 12. This, in turn, could bias estimates towards zero and explain

the drop in size of the network transmission intensity coefficient.

26 For the Conley (1999) standard errors, we report results where we allow for spatial autocorrelation

across districts that declines linearly in distance up to a cut-off of 200 kilometres (representing the aver-

age diameter of a state). We have experimented with cut-offs ranging from 100 to 1,000 kilometres. The

standard errors change very little (results available upon request).
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(ii) Change in quantity: The level of inter-district movement drops substantially after

the introduction of containment policies (cf. Fig. 1b). Therefore, the reduction in

coefficient size could simply reflect the fact that fewer individuals move between

districts. The district fixed effects in our regression setup control for differences

in the size of average total inflows, but do not account for changes in quantities

over time.

(iii) Change in quality: Qualitative aspects of inter-district movement and interaction

could change. For example, adherence to hygiene and physical distancing guide-

lines, can reduce infection risks even if people move across space. Similarly, the

curtailment of large social events is likely to have reduced the nature of contact

(e.g., preventing super-spreader events) and thus the spatial disease transmission

dynamics, even conditional on mobility.

To empirically analyse the relevance of these three potential mechanisms, we require

time-varying information on interaction between districts. While unattainable for the

commuter and social networks, data on interdistrict mobility are available at a daily

interval for the whole sample period (i.e., weeks 1–22 of 2020). In the subsequent

analysis, we therefore focus on the mobility network. We first use these observed

mobility flows to investigate if the structure of the network changes over time. To this

end, we compute the network proximity weights !N
d;j

separately for each of the 22

weeks (cf. Eq. 1). As an initial step in gauging whether the structure of the mobility

network changes, we look at the correlation between the weights computed from

total mobility in 2019 and the weekly weights based on data from 2020. Over the

22-week period, the correlation between the time-invariant and the weekly updated

weights is on average 0.997. Although there is a drop in correlation observable in

week 12, this change is quantitatively small. Correlation drops from 0.996 in week

11 to 0.994 in week 12.27

The high correlation in bilateral connectivity over time strongly suggests that

changes in the structure of networks is an unlikely explanation for the drop in the

network transmission intensity observed after the implementation of containment

policies. To formally confirm this impression, we use the time-varying weights to

compute the network-proximity-weighted COVID-19 incidence rates according to

Eq. 2. We then re-run the regression of column (2), Table 1. As expected, the

estimates as well as information content (BIC)—both presented in Table 2 column

(1)—remain virtually unaltered when using the updated weights to compute network

exposure to COVID-19. Crucially, there is still a large and statistically significant

reduction in network transmission intensity after the introduction of containment

policies in week 12. This documents that changes in the structure of the network

are not driving the decline in network transmission coefficient after introduction of

containment policies.

The drop in the absolute amount of mobility after week 11 is the second plausible

explanation for the reduction in network transmission intensity. While the results

of column (1) illustrate that the decline was proportional across districts—i.e. the

relative importance of links and therefore the network structure did not change—the

27 Figure 5 in Appendix visualises the stability of the structure of the network over time.
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reduction in absolute numbers varies across districts. For populous districts, the

absolute drop in inflows is much larger than for small districts. These changes are

not accounted for by the relative weights or the district fixed effects and hence could

bias our estimates towards zero. To test if changes in the quantity of interdistrict

movement explain the post-policy reduction in network transmission intensity, we

first simply control for the total inflows into a district in a given week. As shown

in column (2), the coefficients of network-transmission-weighted incidence remain

very stable. Importantly, the magnitude of the drop in coefficient size after week

12 is unchanged. On the other hand, the point estimate of uninteracted mobility

(i.e., total inflows into a given district) is extremely small and statistically non-

significant.28,29 The same holds if we add total mobility to the regressions of Table 1

(see Table 5 for the results).

To further show that changes in levels of mobility do not drive the pattern of

results, we take into account the absolute volume of population flows and compute

network-proximity weighted incidence using absolute observed number of mobility

as weights.30 Compared to column (1), the modification is thus that bilateral mobility

weights are not normalised.31 The resulting point estimates imply that COVID-19

incidence rate in the home district increases by 0.618 with a one unit increase in

absolute-weighted network case incidence in the pre-policy period, and by 0.09 in

the post-policy period (column (3)). In relative terms, the size of reduction is similar

to column (1), and if anything, stronger (72% vs 85%). These results illustrate that

changes in the amount of inter-district movements cannot explain why we observe

a reduction in transmission intensity across districts.

Taken together, the results presented in Table 2 document that the decline in the

size of network effect after the introduction of containment policies is neither due

to changes in the structure of networks nor the drop in mobility levels. Though not

empirically testable, the natural conjecture then is that qualitative aspects of mobility

must have changed. A main policy implication thus is that changing qualitative

aspects of mobility are far more important in slowing down the spread of the disease

across space than the reduction of mobility itself. Due to the lack of data, we are

not able to pinpoint which specific aspect of quality is particularly important in

explaining the reduction in cross-regional transmission intensity. Possible aspects

include (but are not restricted to): Changes in behaviour (e.g., adherence to physical

distancing guidelines), changes in means of transports used, or changes in the type of

trips (e.g., travelling in groups or individually). Identifying the relative contribution

of these factors is an important question left for future research.

28 The size of the point estimate implies that there is one additional COVID-19 case per capita for each

one hundred billion (100,000,000,000) trips that started outside the district and ended in the home district.

29 The results remain unchanged if we allow the effect of mobility to differ between the pre- and post-

policy period (i.e. if we estimate separate slope coefficients).

30 More specifically, we use absolute cross-district movements measured in millions.

31 Formally, the absolute weights are defined as !N
d;j

D fd;j , where fd;j is the number of trips into

district d that originate from district j in a given week.
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7 Conclusion

This paper illustrates that spatial networks are important in understanding the spread

of COVID-19 over space and time. This is particularly true during early stages of

the epidemic, when no containment policies are in place. After the introduction of

such policies, the effect of networks on cross-regional transmission drops markedly.

Our results suggest that this reduction is primarily due to a change in quality—not

quantity—of interregional movements. An important policy implication of this find-

ing is that changing qualitative aspects of mobility are far more important in slowing

down the spread of the disease across space than the reduction of mobility itself.

When interpreting our results, it is important to keep in mind that these results could

be specific to Germany, where legitimacy of the government—and therefore degree

of adherence to guidelines—is high.

8 Appendix

8.1 Supporting information

Fig. 4 Figure depicts new weekly COVID-19-related deaths. (Data version: 9 June 2020)
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Table 3 Descriptive Statistics key variables

Variable Mean Std. Dev. Min. Max. Obs.

Overall

Incidence 0.00011 0.00021 0 0.00422 8421

Mobility-network-proximity-weighted

incidence

0.00011 0.00017 0 0.00206 8421

Commuter-network-proximity-

weighted incidence

0.00011 0.00017 0 0.00196 8421

Social-network-proximity-weighted

incidence

0.00010 0.00016 0 0.00164 8421

Table 4 Correlations District-Pair-Level Network Proximity Measures

Mobility Network Commuting Network Social Network

Mobility Network 1

Commuting Network 0.972 1

Social Network 0.864 0.846 1

Notes: Table depicts the correlation between bilateral connectivity within the mobility, commuting and

social network. Connectivity is computed according to Eq. 1.

Fig. 5 Correlation coefficients between time-invariant network proximty weights (average 2019) and

time-varying network proximity weights (based on weekly mobility data)

K



M. Flückiger, M. Ludwig

8.2 Robustness

Table 5 Spatial networks and interdistrict disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.185*** 1.151*** 1.150*** 1.159***

(0.347) (0.341) (0.340) (0.338)

Network-weighted 0.818*** 0.849** 1.735***

incidence in week w � 1 (0.302) (0.329) (0.623)

Post-

policies
Incidence in week w � 1 0.656*** 0.591*** 0.591*** 0.589***

(0.033) (0.061) (0.063) (0.062)

Network-weighted 0.240** 0.248** 0.372**

incidence in week w � 1 (0.102) (0.106) (0.152)

Total Inflows w � 1 0.240** 0.248** 0.372**

(0.102) (0.106) (0.152)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.827 0.831 0.831 0.831

Observations 8,421 8,421 8,421 8,421

BIC –133,150 –133,344 –133,336 –133,372

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Network-weighted incidence in week w �1’ is the lagged network-proximity-weighted weekly incidence

rate (defined according to Eq. 1). ‘Total Inflows w � 1’ is the total number of journeys to district d that

originate in other districts. ‘Pre-policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–22. *p < 0.10,

**p < 0.05, ***p < 0.01.
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Table 6 Multiple Networks: Spatial networks and interdistrict disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.150*** 1.167*** 1.164*** 1.167***

(0.341) (0.340) (0.342) (0.341)

Mobility-weighted 0.397 –0.372 –0.556

incidence in week w � 1 (1.742) (0.675) (1.831)

Commuter-weighted 0.442 –0.288 0.194

incidence in week w � 1 (1.857) (0.585) (1.661)

Facebook-weighted 2.437 2.253* 2.426

incidence in week w � 1 (1.533) (1.337) (1.513)

Post-

policies
Incidence in week w � 1 0.591*** 0.587*** 0.588*** 0.588***

(0.062) (0.063) (0.063) (0.063)

Mobility-weighted 0.258 0.059 0.207

incidence in week w � 1 (0.180) (0.087) (0.180)

Commuter-weighted –0.020 0.021 –0.184

incidence in week w � 1 (0.181) (0.117) (0.249)

Facebook-weighted 0.296* 0.347* 0.332*

incidence in week w � 1 (0.168) (0.202) (0.200)

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.831 0.831 0.831 0.832

Observations 8,421 8,421 8,421 8,421

BIC –133,326 –133,356 –133,354 –133,342

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

the different ‘Network-weighted incidence in week w � 1’ variables are the lagged network-proximity-

weighted weekly incidence rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-

policies’ to weeks 12–22. *p < 0.10, **p < 0.05, ***p < 0.01.
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Table 7 Arellano and Bond (1991) difference GMM estimator: Spatial networks and interdistrict disease

transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.279*** 1.238*** 1.097*** 1.242***

(0.357) (0.351) (0.256) (0.347)

Network-weighted 0.901*** 0.899*** 1.914***

incidence in week w � 1 (0.323) (0.327) (0.662)

Post-

policies
Incidence in week w � 1 0.776*** 0.702*** 0.754*** 0.696***

(0.040) (0.074) (0.090) (0.076)

Network-weighted 0.245** 0.326*** 0.386**

incidence in week w � 1 (0.111) (0.083) (0.165)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

Observations 8,421 8,421 8,421 8,421

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Network-weighted incidence in week w �1’ is the lagged network-proximity-weighted weekly incidence

rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–22.

*p < 0.10, **p < 0.05, ***p < 0.01.

Table 8 Conley standard errors: Spatial networks and disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.184*** 1.150*** 1.149*** 1.158***

[0.345] [0.330] [0.329] [0.330]

Network-weighted 0.819*** 0.850** 1.737***

incidence in week w � 1 [0.290] [0.307] [0.619]

Post-

policies
Incidence in week w � 1 0.656*** 0.592*** 0.591*** 0.589***

[0.039] [0.045] [0.046] [0.042]

Network-weighted 0.240*** 0.248*** 0.373***

incidence in week w � 1 [0.049] [0.052] [0.074]

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.827 0.831 0.831 0.831

Observations 8,421 8,421 8,421 8,421

BIC –133,150 –133,344 –133,336 –133,372

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors computed using

the approach of Conley (1999) reported in brackets (cut-off 2 degrees) at the district level and reported

in brackets. Dependent variable is the weekly COVID-19 incidence rate in district d . ‘Incidence in week

w �1’ represents the lagged weekly incidence rate in district d , and ‘Network-weighted incidence in week

w �1’ is the lagged network-proximity-weighted weekly incidence rate (defined according to Eq. 1). ‘Pre-

policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–22. *p < 0.10, **p < 0.05, ***p < 0.01.

K



Spatial networks and the spread of COVID-19: results and policy implications from Germany

Table 9 Two-way clustering: Spatial networks and interdistrict disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.184*** 1.150*** 1.149*** 1.158***

(0.361) (0.338) (0.337) (0.345)

Network-weighted 0.819** 0.850** 1.737**

incidence in week w � 1 (0.336) (0.372) (0.711)

Post-

policies
Incidence in week w � 1 0.656*** 0.592*** 0.591*** 0.589***

(0.059) (0.085) (0.086) (0.088)

Network-weighted 0.240** 0.248** 0.373**

incidence in week w � 1 (0.098) (0.104) (0.147)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.827 0.831 0.831 0.831

Observations 8,421 8,421 8,421 8,421

BIC –133,150 –133,344 –133,336 –133,372

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are two-way clustered

along the district and week dimension and reported in parentheses. Dependent variable is the weekly

COVID-19 incidence rate in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence

rate in district d , and ‘Network-weighted incidence in week w � 1’ is the lagged network-proximity-

weighted weekly incidence rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-

policies’ to weeks 12–22. *p < 0.10, **p < 0.05, ***p < 0.01.

Table 10 Absolute case numbers: Spatial networks and disease transmission

Cases in week w

(1) (2) (3) (4)

Pre-

policies
Cases in week w � 1 1.564** 1.527** 1.521** 1.509**

(0.676) (0.671) (0.667) (0.657)

Network-weighted 0.348*** 0.373*** 2.064***

cases in week w � 1 (0.128) (0.126) (0.787)

Post-

policies
Cases in week w � 1 0.750*** 0.743*** 0.744*** 0.742***

(0.036) (0.040) (0.039) (0.039)

Network-weighted 0.033*** 0.029*** 0.172***

cases in week w � 1 (0.012) (0.011) (0.058)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.827 0.831 0.831 0.831

Observations 8,421 8,421 8,421 8,421

BIC 73,100 73,063 73,059 73,038

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly number of new COVID-

19 cases in district d . ‘Cases in week w � 1’ represents the lagged weekly new cases in district d ,

and ‘Network-weighted cases in week w � 1’ is the lagged network-proximity-weighted weekly case

number (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–22.

*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 11 Week 13 as beginning of post-policy period: Spatial networks and disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.321*** 1.241*** 1.233*** 1.238***

(0.183) (0.208) (0.210) (0.203)

Network-weighted 0.591*** 0.668*** 1.126***

incidence in week w � 1 (0.212) (0.223) (0.328)

Post-

policies
Incidence in week w � 1 0.590*** 0.514*** 0.516*** 0.511***

(0.020) (0.035) (0.036) (0.038)

Network-weighted 0.268*** 0.274*** 0.420***

incidence in week w � 1 (0.074) (0.075) (0.118)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.844 0.851 0.851 0.852

Observations 8,421 8,421 8,421 8,421

BIC -134,049 -134,397 -134,399 -134,480

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Network-weighted incidence in week w �1’ is the lagged network-proximity-weighted weekly incidence

rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–12, ‘Post-policies’ to weeks 13–22.

*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 12 Three time periods: Spatial networks and disease transmission

Incidence in week w

(1) (2) (3) (4)

Pre-

policies
Incidence in week w � 1 1.240*** 1.205*** 1.206*** 1.220***

(0.342) (0.332) (0.332) (0.330)

Network-weighted 0.812*** 0.830*** 1.738***

incidence in week w � 1 (0.297) (0.319) (0.617)

Post-

policies
Incidence in week w � 1 0.764*** 0.692*** 0.692*** 0.689***

(0.025) (0.056) (0.057) (0.055)

Network-weighted 0.225** 0.232** 0.349***

incidence in week w � 1 (0.089) (0.092) (0.126)

First-

relax-

ations

Incidence in week w � 1 0.579*** 0.527*** 0.534*** 0.535***

(0.031) (0.033) (0.034) (0.035)

Network-weighted 0.202*** 0.189*** 0.249***

incidence in week w � 1 (0.039) (0.040) (0.058)

Network Mobility Commuter Facebook

District FE Yes Yes Yes Yes

State�week FE Yes Yes Yes Yes

R-squared 0.820 0.825 0.825 0.826

Observations 8,421 8,421 8,421 8,421

BIC -132,847 -133,046 -133,032 -133,070

Notes: This table reports estimates of Eq. 4 using the OLS estimator. Standard errors are clustered at

the district level and reported in parentheses. Dependent variable is the weekly COVID-19 incidence rate

in district d . ‘Incidence in week w � 1’ represents the lagged weekly incidence rate in district d , and

‘Network-weighted incidence in week w �1’ is the lagged network-proximity-weighted weekly incidence

rate (defined according to Eq. 1). ‘Pre-policies’ refers to weeks 1–11, ‘Post-policies’ to weeks 12–26, and

‘First-relaxations’ to weeks 17–22. *p < 0.10, **p < 0.05, ***p < 0.01.
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