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ABSTRACT

Speech separation models are used for isolating individual speak-

ers in many speech processing applications. Deep learning mod-

els have been shown to lead to state-of-the-art (SOTA) results on a

number of speech separation benchmarks. One such class of mod-

els known as temporal convolutional networks (TCNs) has shown

promising results for speech separation tasks. A limitation of these

models is that they have a fixed receptive field (RF). Recent research

in speech dereverberation has shown that the optimal RF of a TCN

varies with the reverberation characteristics of the speech signal. In

this work deformable convolution is proposed as a solution to allow

TCN models to have dynamic RFs that can adapt to various reverber-

ation times for reverberant speech separation. The proposed models

are capable of achieving an 11.1 dB average scale-invariant signal-

to-distortion ratio (SISDR) improvement over the input signal on the

WHAMR benchmark. A relatively small deformable TCN model

of 1.3M parameters is proposed which gives comparable separation

performance to larger and more computationally complex models.

Index Terms— speech separation, deformable convolution, dy-

namic neural networks

1. INTRODUCTION

The separation of overlapping speech signals is an area that has been

widely studied and which has many applications [1–4]. Deep learn-

ing models have demonstrated impressive results on separating clean

speech mixtures [5, 6]. However, this performance still degrades

heavily under noisy reverberant conditions [7]. This performance

loss can be alleviated somewhat with careful hyper-parameter opti-

mization but a significant performance gap still exists [8].

The Conv-TasNet speech separation model has been widely

studied and adapted for a number of speech enhancement tasks

[5, 9–11]. Conv-TasNet generally performs very well on clean

speech mixtures with a very low computational cost compared to

the most performant speech separation models [6, 12, 13] on the

WSJ0-2Mix benchmark [14]. As such, it is still used in many re-

lated areas of research [9, 11]. Recent research efforts in speech

separation have focused on producing more resource-efficient mod-

els even if they do not produce the most SOTA results on separation

benchmarks [12, 13]. Previous work has investigated adaptations

to Conv-TasNet with additional modifications such as multi-scale

convolution and gating mechanisms applied to the outputs of con-

volutional layers but these significantly increase the computational

complexity [15]. The Conv-TasNet model uses a sequence model
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known as a TCN. It was recently shown that the optimal RF of TCNs

in dereverberation models varies with reverberation time when the

model size is sufficiently large [10]. Furthermore, it was shown

that multi-dilation TCN models can be trained implicitly to weight

differently dilated convolutional kernels to optimally focus within

the RF on more or less temporal context according to the reverber-

ation time in the data for dereverberation tasks [16], i.e. for larger

reverberation times more weight was given to kernels with larger

dilation factors.

In this work deformable depthwise convolutional layers [17–19]

are proposed as a replacement for standard depthwise convolutional

layers [5] in TCN based speech separation models for reverberant

acoustic conditions. Deformable convolution allows each convolu-

tional layer to have an adaptive RF. When used as a replacement

for standard convolution in a TCN this enables the TCN to have a

RF that can adapt to different reverberant conditions. Using shared

weights [15] and dynamic mixing [20] are also explored as ways

to reduce model size and improve performance. A PyTorch library

for training deformable 1D convolutional layers as well as a Speech-

Brain [21] recipe for reproducing results (cf. Section 5) are provided.

The remainder of the paper proceeds as follows. In Section 2 the

signal model is discussed. The deformable temporal convolutional

network (DTCN) is introduced in Section 3. Section 4 discusses the

experimental setup, data and baseline systems. Results are given in

Section 5. Section 6 provides analysis of the proposed models and

conclusions are provided in Section 7.

2. SIGNAL MODEL

A noisy reverberant mixture of C speech signals sc[i] for discrete

sample index i convolved with room impulse responses (RIRs) hc[i]
and corrupted by an additive noise signal ν[i] is defined as

x[i] =

C
∑

c=1

hc[i] ∗ sc[i] + ν[i] (1)

where ∗ is the convolution operator. The goal in this work is to

estimate the direct speech signal sdir,c[i] and remove the reverberant

reflections srev,c[i] where

x[i] =
C
∑

c=1

(sdir,c[i] + srev,c[i]) + ν[i]. (2)

3. DEFORMABLE TEMPORAL CONVOLUTIONAL

SEPARATION NETWORK

3.1. Network Architecture

The separation network uses a mask-based approach similar to [5].

The noisy reverberant microphone signal is first segmented into Lx



blocks of length LBL with a 50% overlap defined as

xℓ = [x[0.5(ℓ− 1)LBL], . . . , x[0.5(1 + ℓ)LBL − 1]] (3)

for frame ℓ ∈ {1, . . . , Lx}. Motivated by [5, 6], the frames in (3)

are encoded by a 1D convolutional layer with trainable weights B ∈
R

LBL×N such that

wℓ = Henc (xℓB) (4)

with a rectified linear unit (ReLU) activation function Henc :
R

1×N → R
1×N . Encoded features wℓ are used as the input to

a mask estimation network to produce masks mℓ,c for each speaker

c ∈ {1, . . . , C}. The masks are then applied to the encoded fea-

tures using the Hadamard product, i.e. wℓ ⊙mℓ,c resulting in vℓ,c.

The encoded estimate vℓ,c for speaker c can be decoded from the

same space back into the time domain using the inverse filter of B,

denoted as U ∈ R
N×LBL , such that

ŝℓ,c = vℓ,cU (5)

where ŝℓ,c is the estimated clean speech signal for frame ℓ in the time

domain. These frames are then combined following the overlap-add

method. The entire network model diagram is shown in Fig. 1.

Encoder

Decoder

Decoder

Mask Estimator

Fig. 1: Mask-based separation network, exemplary for 2 speakers.

3.2. Mask Estimation Network

In this subsection, the deformable depthwise convolution (DD-Conv)

layer is introduced as a replacement for depthwise convolution

(D-Conv) layers and then the DTCN network is described in full.

The mask estimation network consists of channelwise layer nor-

malization (cLN) and a bottleneck pointwise convolution (P-Conv)

layer which transforms the feature dimension from N to B followed

by the DTCN which is followed by a P-Conv and ReLU activation

to compute a sequence of masks mℓ,: with dimension C ·N [5].

3.2.1. Deformable Depthwise Convolution (DD-Conv)

The formulation of DD-Conv in this section is adapted from [17]

and [18]. The D-Conv operation of kernel size P , dilation factor f

and convolutional kernel weights for the gth channel of an input with

G channels denoted yg ∈ R
Lx at the ℓth frame is defined as

D(ℓ,yg,kg) =

P
∑

p=1

kg[p] yg[ℓ+ f · (p− 1)]. (6)

The corresponding DD-Conv operator with learnable continuous off-

set of the pth kernel weight denoted τℓ,p at frame ℓ is defined as

C(ℓ,yg,kg, τℓ,1:P ) =

P
∑

p=1

kg[p] yg[ℓ+ f · (p− 1) + τℓ,p]. (7)

Note that τℓ,p only varies temporally and not across channels. It

is feasible to vary these values across channels but in this work to

Fig. 2: Single channel example of Deformable depthwise convo-

lution (bottom) on pseudo-random signal (shown in black) with a

kernel size of 6, dilation factor of 2 and stride of 11. R denotes the

RF of the kernel. Dotted lines indicate original sampling position of

kernel weights before deformation.

reduce computational complexity offsets are only varied temporally.

An illutsration of the DD-Conv operation is shown in Figure 2. To

simplify notation let ∆ℓp = ℓ+f ·(p−1)+τℓ,p. Linear interpolation

is used to compute values of y[∆ℓp] from input sequence y such that

y[∆ℓp] =

⌊∆ℓp⌋+1
∑

u=⌊∆ℓp⌋

max(0, 1− |u−∆ℓp|)y[u]. (8)

In practice the interpolation function is designed to constrain the de-

formable convolutional kernel so it cannot exceed a maximum RF of

P ·(f−1)+1 by replacing u = ⌊∆ℓp⌋ with u = min(⌊∆ℓp⌋, ℓ+P ·
(f − 1)− 1) in the bottom of the summation of (8). This constrains

the kernel with the benefit of improving interpretability for the over-

all scope of the DTCN described in the following subsection.

3.2.2. Deformable Temporal Convolutional Mask Estimation Net-

work

The DTCN is formulated in the same way as the Conv-TasNet TCN

described in [22]. This implementation deviates slightly from the

original Conv-TasNet [5] by neglecting the skip connections (SCs)

and associated P-Conv layers. It was found empirically that these SC

layers have a negligible impact on performance (≤ 0.1 dB SISDR)

while having a significant negative impact on model size (≈ 35%
parameter increase).

The DTCN is composed of X · R convolutional blocks where

X,R ∈ Z
+ [22]. Each convolutional block consists of a P-Conv

which projects the feature dimension from B to H , DD-Conv

that performs a depthwise operation across the H channels and

another P-Conv layer which projects the feature dimension back

to B from H . The DD-Conv proceeded by P-Conv layer forms a

deformable depthwise-separable convolution (DDS-Conv) structure.

Depthwise-separable convolution (DS-Conv), i.e. a P-Conv pro-

ceeded by any D-Conv layer, is used as a replacement for standard

convolutional layers as it is more parameter efficient and mathemat-

ically equivalent [5]. In each convolutional block the DD-Conv has

an increasing dilation factor f for each additional block in a stack of

X blocks as in [5, 22]. The dilation factor f increases in powers of

two through the stack such that f ∈ {1, 2, . . . , 2X−1}. Note that in

D-Conv the dilation factor determines the fixed RF whereas in the

proposed DD-Conv the dilation factor defines only the maximum

possible RF of the kernel. The stack of X convolutional blocks is

then repeated R times where the dilation factor is reset to 1 at the be-

ginning of each stack. Using shared weights (SW) for each repeat is

experimented with as this significantly reduces the model size simi-

lar to [15]. The offsets τℓ,p are computed using DS-Conv following

the initial P-Conv in the block, referred to as the offset sub-network.

A parametric ReLU (PReLU) activation is used at the output as this

allows for both negative and positive offsets. Residual connections
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Fig. 3: Layers inside deformable temporal convolutional blocks.

are applied around each of the convolutional blocks similar to the

TCN described in [22]. A schematic of the convolutional blocks is

shown in Fig. 3.

4. EXPERIMENTAL SETUP

4.1. Data

Two datasets are used to evaluate the proposed DTCN network. The

first is a clean speech mixture corpus known as WSJ0-2Mix [23].

In WSJ0-2Mix, two speech segments are overlapped at SNRs of

0 to 5 dB. The second is a noisy reverberant speech mixture cor-

pus known as WHAMR [7]. Speech segments in WHAMR are

convolved with simulated RIRs then summed together with mixing

SNRs of 0 to 5 dB. Ambient noise sources from outdoor pedestrian

areas are added at SNRs of −6 to 3 dB (cf. (1)). Dynamic mix-

ing (DM), i.e. simulating new training data each epoch, is also ex-

perimented with at training time as it has been shown to lead to im-

proved separation performance [6, 24]. Speed perturbation training

is also performed as part of the DM process as described in [6].

4.2. Model Configuration

Feature dimensions N , B and H , kernel size P and encoder block

size LBL are fixed:

{N,B,H, P, LBL} = {512, 128, 512, 3, 16}. (9)

These values correspond to the optimal TCN network in [5]. Note

LBL equates to 2 ms at 8 kHz. Five DTCN model configurations are

evaluated:

{X,R} ∈ {{3, 8}, {4, 6}, {5, 5}, {6, 4}, {8, 3}}. (10)

These configurations are selected as they have a similar or the same

number of convolutional blocks to the optimal model configuration

in [5], i.e. {X,R} = {8, 3}. The SISDR loss function [25] defined

as

L(ŝ, sdir) :=
1

C

C
∑

c=1

−10 log10

∥

∥

∥

⟨ŝc,sdir,c⟩sdir,c

∥sdir,c∥
2

∥

∥

∥

2

∥

∥

∥
ŝc −

⟨ŝc,sdir,c⟩sdir,c

∥sdir,c∥
2

∥

∥

∥

2
(11)

is used to train the DTCN models. Permutation invariant training

(PIT) is used to solve the speaker permutation problem [26].

Two GitHub repositories have been released in conjunction with

this work. The first1 is a Pytorch library for performing 1D de-

1URL to dc1d pip repository: github.com/jwr1995/dc1d

formable convolution. The second2 is a model and recipe for repro-

ducing our results with the DTCN model using the SpeechBrain [21]

framework.

4.3. Evaluation Metrics

A number of metrics are used to evaluate the performance of

the proposed DTCN models. SISDR and signal-to-distortion ra-

tio (SDR) [27] are used to measure residual distortion in the

signal. Perceptual evaluation of speech quality (PESQ) [28] and

extended short-time objective intelligibility (ESTOI) [29] are used

to measure speech quality and intelligibility, respectively. Speech-

to-reverberation modulation energy ratio (SRMR) [30] is used to

measure residual speech reverberation for the WHAMR corpus.

5. RESULTS

The results for various performance measures against each DTCN

configuration’s RF on the clean speech WSJ0-2Mix evaluation are

shown in Fig. 4 where they are also compared against their corre-

sponding TCN configurations. When the model size of the TCN is

Fig. 4: Performance measures over RF for WSJ0-2Mix clean speech

mixtures.

of the same size by changing H to 532 the DTCN still outperforms

it. Performance improvements can be seen across all configurations

but is more significant with the models which have a RF of 0.19s to

0.51s. The improvement in most metrics at the highest RF 1.53s is

marginal and for the intelligibility metric ESTOI the performance is

identical to the TCN.

Fig. 5 shows respective results for each DTCN configura-

tion’s RF against the performance measures on noisy reverberant

WHAMR data. Note that SDR has been replaced by SRMR to

provide a measure of reverberation. The DTCN again shows im-

provement over the TCN across all measures and model configura-

tions. The performance also increases more consistently as the RF

increases. The performance convergence seen on the clean speech

mixtures in Fig. 4 at the largest RF, R = 1.53s, is not seen in

the results for the noisy reverberant data in Fig. 5. These findings

suggest that deformable convolution is useful in particular for noisy

reverberant data.

In Table 1 the proposed DTCN model is compared against other

speech separation models in terms of size, efficiency and perfor-

mance. Comparing for model size the proposed DTCN outper-

2URL to DTCN recipe: github.com/jwr1995/DTCN



Table 1: Comparison of various DTCN models with other speech separation models of varying size and complexity. DM and SW demote

dynamic mixing and shared weights, respectively. Compuational efficiency is expressed in mutiply-acccumulate operations (MACs). Where

possible, MACs have been estimated on a 5.79s signal (mean signal length of WHAMR evaluation set) using thop [31].

WSJ0-2Mix WHAMR

Model ∆SISDR ∆SDR ∆SISDR ∆SDR Model size GMACs

Conv-TasNet [5] 15.3 15.6 9.2 [7] - 5.1M 5.2

Conv-TasNet (w/o SC) 15.4 15.7 9.7 9.1 3.4M 3.5

Conv-TasNet (w/o SC and H = 532) 15.2 15.5 9.8 9.1 3.6M 3.7

SkiM-KS8 [32] 17.4 17.8 - - 6.0M 5.1

Tiny-SepformerS-32 [13] 15.2 16.0 - - 5.3M -

SuDoRM-RF++ 1.0x+DM [12] 17 - - - 2.7M 2.7

SuDoRM-RF 0.5x+DM [12] 15.4 - - - 1.4M 1.7

SepFormer+DM [6] 22.3 22.4 14.0 13.0 26M 59.4

QDPN+DM [24] 23.6 - 14.4 - 200M -

DTCN (proposed) 15.6 15.9 10.2 9.3 3.6M 3.7

DTCN+DM (proposed) 17.2 17.4 11.1 10.3 3.6M 3.7

DTCN+SW (proposed) 15.0 15.3 10.0 9.3 1.3M 3.7

DTCN+SW+DM (proposed) 16.1 16.3 10.1 9.5 1.3M 3.7

Fig. 5: Performance measures over RF for WHAMR noisy reverber-

ant speech mixtures.

forms all the Conv-TasNet model baselines including those of equal

or larger model size [5], and the recurrent SkiM-KS8 model [32].

When DM is used in training, the DTCN outperforms the much

larger convolutional SuDo-RM-RF 1.0x++ model [12]. Using SW

reduces the model size by two-thirds but is still able to give com-

parable performance to the SuDoRM-RF 0.5x model of similar size

and much-improved performance when DM is also used.

6. ANALYSIS

In the following the offset values of the best-performing model con-

figuration {X,R} = 8, 3 are analysed with the aim to provide in-

sight as to how temporal offsets τℓ,p in (7), cf. also Fig. 2, behave rel-

ative to one another. The 2nd convolutional block of the 2nd repeat

in the DTCN (i.e. the 10th block overall) was selected for analysis

as it was found to have the highest average offset variance over the

WHAMR evaluation set. The motivation for this choice is that it is

assumed that blocks with offsets of larger variances are more indica-

tive of the benefits of using deformable convolution. A correlation

analysis was performed between each of three offset values averaged

per utterance τ̄p, corresponding to the three kernel weight positions.

Fig. 6 shows scatter plots for the mean of the middle and outermost

offsets denoted τ̄2 and τ̄3, respectively, against the mean offset value

of the first kernel sample point τ̄1 for every example in the evalua-

Fig. 6: Mean offset values τ̄2 (top) and τ̄3 (bottom) of the 10th con-

volutional block of the DTCN model plotted against the mean offset

value of the first kernel weight τ̄1 for each example in the WHAMR

evaluation set. Pearson correlation coefficients are denoted with ρ.

Dashed black line indicates line of best fit.

tion set. A strong negative correlation (ρ = −0.99) can be observed

between τ̄1 and τ̄3 indicating that the deformation is causing the RF

of the kernel to shrink and grow more than shifting its focal point. A

less strong negative correlation (ρ = −0.88) was found between τ̄1
and τ̄2 indicating similar behaviour. The comparison of τ̄2 against τ̄3
is omitted from Fig 6 for brevity but these mean offset values were

found to have a positive correlation of ρ = 0.81.

7. CONCLUSION

In this paper deformable convolution was proposed as a method

to improve TCNs for noisy reverberant speech separation. It was

shown that the DTCN model is particularly useful for noisy rever-

berant conditions as performance increases were less consistent in

the case of anechoic speech separation with a sufficiently large re-

ceptive field. Using shared weights and dynamic mixing led to fur-

ther performance improvements resulting in a small model size for

the DTCN compared to other separation models which give compa-

rable performance. Finally, it was shown that the DTCN offsets vary

the size of the receptive field of convolutional blocks in the network

relative to the input data.
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