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A B S T R A C T

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging.
Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using
specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative ad-
versarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly
acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving
the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research
potential of very few population databases with imaging modalities (such as MRA) that enable quantitative
characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and
virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated
generator and discriminator that leverage the shared and complementary features of multi-source images. We
design a composite loss function for emphasising vascular properties by minimising the statistical difference
between the feature representations of the target images and the synthesised outputs in both 3D volumetric
and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality
MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The
importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than
T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral
regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres
with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The
results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular
anatomy at scale from structural MR images typically acquired in population imaging initiatives.
1. Introduction

Magnetic resonance angiography (MRA) images are clinically used
to evaluate vascular anatomy accurately, but not included in stan-
dard scanning protocols because of the long acquisition time required.
This study focuses on synthesising subject-specific MRA images, given
other available multi-contrast but non-angiographic MR images (e.g.
T1/T2/PD-weighted MRIs) for the same subject. A reliable technique
for synthesising MRA images from other multi-contrast MR images is
valuable because — (i) there are few large databases with imaging
modalities (such as MRA) that enable quantitative characterisation
of whole-brain vasculature. To the best of our knowledge, very few
publicly available datasets exist that provide MRA images of the brain
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for multiple individuals, the largest of which is the Information eX-
traction from Images (IXI) database containing 600 subject images;1
and (ii) no extensive public database exists that provides image-derived
anatomical models of brain vasculature, ready for use in studies inves-
tigating cerebrovascular haemodynamics. The largest public database
of whole-brain vascular models is the BraVa database (Wright et al.,
2013), which comprises just 61 samples of healthy adults. Previous
studies that have simulated and assessed blood flow in cerebral vas-
culature have been limited in sample size, ranging from tens (typi-
cal) (Larrabide et al., 2015; Holmgren et al., 2021) to a few hundred
(rare) (Cebral et al., 2011). This paucity of data has thus limited the
size of in-silico studies conducted thus far to assess cerebrovascular
vailable online 20 April 2023
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haemodynamics, thereby limiting the degree to which inter-patient
variability has been characterised and leveraged to improve our un-
derstanding of the interplay between anatomy, physiology and patho-
logical processes.

As different modality/contrast images are acquired from the same
anatomical structure using different imaging settings, underlying corre-
lation between those images and mappings can be learned to transform
to each other. Here we use the term ‘‘modality’’ to denote differ-
ent imaging techniques (such as CT, MR and PET, etc.), whilst the
‘‘contrast’’ indicates different contrast sequences (such as T1/T2/PD-
weighted) in multi-contrast MRI scenario. Early work on cross-contrast
image synthesis within the community utilised non-linear regression
techniques, based on random forests for example, to predict the inten-
sities of an image from the desired contrast, given single or multiple
images from complementary contrasts as predictors (inputs) (Jog et al.,
2014, 2017). Fully convolutional neural networks have also been in-
vestigated for multi-contrast image synthesis (Chartsias et al., 2017b;
Joyce et al., 2017; Dewey et al., 2018, 2019; Mehta and Arbel, 2018).
For instance, Chartsias et al. (2017b) and Joyce et al. (2017) proposed
similar encoder–decoder neural networks for multi-contrast MRI syn-
thesis that learned a shared modality-invariant latent representation
from all input contrasts, which could be transformed into the target
image via a learned decoder.

Inspired by recent advances in generative adversarial networks
(GANs) and image-to-image translation techniques, cross-modality syn-
thesis of missing or corrupted images has received increased attention.
Adversarial learning has been demonstrated to yield high synthesis
quality in cross-modality imaging applications such as CT to PET
synthesis (Ben-Cohen et al., 2017; Bi et al., 2017), MR to CT synthe-
sis (Wolterink et al., 2017a,b; Hiasa et al., 2018; Nie et al., 2018), CT to
MR synthesis (Chartsias et al., 2017a), and retinal vessel map to image
synthesis (Costa et al., 2017; Zhao et al., 2018). It is worth mention-
ing that studies regarding multi-contrast MRI synthesis also leverage
GANs, such as in Dar et al. (2019) and Dalmaz et al. (2022). Tech-
niques developed for multi-modal/contrast image synthesis leverage
the complementary information and underlying correlations present
in multi-source images of a given anatomical structure/organ. This
is conceptually well-grounded as each modality or contrast captures
specific characteristics of the underlying anatomy (i.e. provides addi-
tional information), enabling learning of more holistic representations
that enhance image synthesis quality (Jog et al., 2014, 2015; Chartsias
et al., 2017b; Jog et al., 2017; Joyce et al., 2017; Dewey et al., 2018;
Mehta and Arbel, 2018; Wei et al., 2018; Olut et al., 2018; Dewey
et al., 2019; Hagiwara et al., 2019; Lee et al., 2019; Li et al., 2019;
Sharma and Hamarneh, 2019; Dar et al., 2020; Zhou et al., 2020;
Lee et al., 2020). Several studies have demonstrated the ability of
GANs and adversarial learning to interpolate the manifold of multi-
contrast data with high-fidelity and synthesise high-quality images of
the contrast of interest (Wei et al., 2018; Olut et al., 2018; Dewey
et al., 2019; Hagiwara et al., 2019; Lee et al., 2019; Li et al., 2019;
Sharma and Hamarneh, 2019; Dar et al., 2020; Lee et al., 2020; Zhou
et al., 2020; Yurt et al., 2021). Important examples include the hybrid-
fusion network (Hi-Net) (Zhou et al., 2020) that is based on adversarial
learning and simultaneously explores the contrast-specific properties
within each image and the correlations across contrasts, which are
integrated using a layer-wise fusion strategy to effectively fuse infor-
mation from multiple contrasts within different feature layers; and the
collaborative generative adversarial network (CollaGAN) (Lee et al.,
2020), which synergistically learns the joint image manifold of multiple
MRI contrasts using multiple cycle consistency specifically for multiple
inputs. These methods were shown to outperform several state-of-the-
art synthesis methods, both quantitatively and qualitatively. Alterna-
tively, Özbey et al. (2022) proposed an adversarial diffusion model with
a cycle-consistent architecture devised with coupled diffusive and non-
2

diffusive modules that bilaterally translate between two modalities and
facilitate training on unpaired datasets. They showed that their model
outperformed competing GAN and diffusion models.

Despite the success of multi-contrast MR image synthesis, several
types of images are challenging to generate, including MRA images,
which capture details of vascular anatomy. Thus far, few studies have
explored cross-domain MRA synthesis using other multi-contrast MR
images as inputs/predictors. Olut et al. (2018) extended the well-
established pix2pix architecture for MRA synthesis by incorporating
steerable filters of the target image and a Huber loss to highlight
vesselness properties. However, the model was built on 2D images, and
cannot guarantee vascular topology and continuity in 3D. Fujita et al.
(2020) designed to output the weighted average of a single convolution
and the U-net classification results at 5 raw 3D-quantification using
an interleaved Look-Locker acquisition sequence with T2 preparation
pulse (3D-QALAS) data and constructed a mapping function to convert
the 3D-QALAS data to their corresponding MRA images. The authors
compared their model with a simple linear combination model. The
training and test datasets used in their study were five types of 3D-
QALAS sequence images, which capture information of inflow effect
and thus ease the difficulty of synthesising MRA images.

To the best of our knowledge, this is the first study to synthesise
anatomically plausible, high-resolution 3D MRA images, whilst pre-
serving the continuity of vascular anatomy using a combination of
commonly acquired image sequences such as T1, T2 and PD-weighted
MR contrasts. We demonstrate the performance of our approach across
comprehensive experiments, including comparisons with state-of-the-
art methods developed for multi-contrast MR image synthesis and
importance assessment of various structural MR contrasts as inputs/
predictors to drive MRA synthesis. Furthermore, we demonstrate the
similarity in flow-derived parameters between geometries extracted
from the original images and their synthesised counterparts highlights
preservation of key vascular morphological characteristics. We show
that the proposed approach, once pre-trained, can effectively use the
small data regime to retrain and fine-tune the model to drive MRA syn-
thesis through transfer learning, when the target domain is significantly
different from the training domain. We also apply the proposed ap-
proach to completely unseen data that involves a single subject scanned
at multiple centres across different scanners (no MRA acquisitions
were included in the scanning protocol in this dataset), without fine-
tuning and transfer learning. These results are promising and pave the
way to create digital twin cohorts whereby in-silico trials of vascular
implants can be evaluated at scale that no previous conventional trial
has undertaken.

2. Methods

This study proposes an end-to-end GAN-based image translation
framework that generates MRA images from existing multi-contrast
structural MR images. To synthesise visually appealing, high resolution
3D MRA images, we proposed a dedicated generator and discriminator
that leverage the shared and complementary features of multi-source
images. The generator contains several residual blocks, where all nor-
malisation layers are conditioned and modulated on available source
images concatenated at the input level (i.e., T1, T2 and/or PD-weighted
MRIs), to leverage complementary features from multi-contrast se-
quences and ensure that fine details are effectively propagated through
image generation pathway. A multi-scale discriminator was employed
to ensure the recovery of both global and local spatial features. All
generators and discriminators used in this work are 3D models in
order to leverage inter-slice context and 3D anatomical information
for synthesising globally coherent images. We considered deep feature
consistencies with feature matching and perceptual loss to faithfully
synthesise vessel structures and preserve their continuity. We designed
new loss terms in feature space for emphasising reconstruction of
vasculature properties. The generator, discriminator and the loss func-
tions will be discussed in subsequent sections. The proposed network

architecture is illustrated in Fig. 1.
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Fig. 1. Structure of the proposed GAN network for multi-contrast MRA image synthesis. The generator and discriminator used in this work are 3D models in order to leverage
inter-slice context for generating globally coherent images. The generator contains several residual blocks. All normalisation layers are modulated with auxiliary, complementary
information extracted from multi-contrast sequences and ensure that fine details are effectively propagated through the image generation pathway. A multi-scale discriminator is
employed to ensure the recovery of both global and local spatial features. The feature consistencies with feature matching loss and perceptual loss were designed in 3D volume
and 2D projection domain from different perspective views for emphasising reconstruction of vasculature properties.
2.1. Conditional GANs

Image-to-image translation architecture (Isola et al., 2017) (also
known as the pix2pix model) has been shown to effectively map to
target images 𝑦 from statistically-dependent observed source images 𝑥.
Two sub-models, a generator 𝐺 and a discriminator 𝐷, are trained si-
multaneously. 𝐺 aims to generate images that can fool the discriminator
𝐷, and 𝐷 tries to classify whether generated images are real, from the
domain, or fake, generated by the generator 𝐺. The optimisation of 𝐺
and 𝐷 can be reformulated as:

cGAN = E𝐱𝑚 ,𝑦
[

log𝐷
(

𝐱𝑚, 𝑦
)]

+ E𝐱𝑚
[

log
(

1 −𝐷
(

𝐱𝑚, 𝐺
(

𝐱𝑚
)))]

, (1)

where 𝐱𝑚 ∶ 𝑚 = 1, 2,… ,𝑀 indicating the concatenation of 𝑀 contrast
structural MRI sequences in our case.

The reconstruction loss, e.g., Euclidean (L2) distance or L1 distance
between the target and synthesised images, is integrated into the
objective function as:

𝐿1 = E𝐱𝑚 ,𝑦

[

‖

‖

‖

𝑦 − 𝐺
(

𝐱𝑚
)

‖

‖

‖1

]

. (2)

The loss function combines Eqs. (1) and (2). However, although
impressive results were obtained for synthesising photographic images,
the native image-to-image translation models may be unstable and
prone to failure for synthesising medical images, which are more
complex, noisy, higher dimensional and contain richer quantitative
information. Our generative model is inspired by recent advances of
GAN architectures and is able to generate HR anatomically plausible 3D
MRA sequences, faithfully reproducing vessel structures and preserving
continuity. The following subsections outline the detailed architecture
of the proposed model.

2.2. Generator

The generator is an encoder–decoder model, where the encoder
aims to extract the feature of source images, and the decoder maps
the underlying representation into MRA images. The encoder comprises
several 3D convolutional layers (kernel size = 3 × 3 × 3, padding
3

= 1 × 1 × 1, stride = 2 × 2 × 2), instance normalisation and ac-
tivation LeakyReLU layers. The decoder follows a full pre-activation
residual network architecture (i.e. BatchNorm-ReLu-convolution) (He
et al., 2016). The model consists of the residual blocks, followed by
nearest neighbour up-sampling layers. The residual block contains two
convolutional layers (kernel size = 3 × 3 × 3, padding = 1 × 1 × 1, stride
= 2 × 2 × 2), and a learned residue of input is added to the output.

To ensure shared feature maps and relevant fine details are effec-
tively propagated through the decoder, we adapted conditional batch
normalisation (CBN), which has been exploited in several previous
studies (De Vries et al., 2017; Chen et al., 2019; Park et al., 2019;
Xia et al., 2020). CBN suggests a new conditioning mechanism to
incorporate auxiliary information (such as labels, embedding, masks
or input latent vectors) into the image generation through batch nor-
malisation, to guide image generation process with respect to certain
constraints. In this study, we used available structural MRIs concate-
nated as multi-channel input (i.e., a concatenation of T1, T2 and/or
PD-weighted MRIs) to the CBN module, to consistently encode and
emphasise shared spatial features and fine structural details, which con-
tributes to enhanced performance in MRA generation regarding high
quality and anatomical plausibility. We first normalise the extracted
features to zero mean and unit standard deviation in each CBN layer.
Next, the normalised features are modulated/de-normalised using the
affine transformation whose scale and shift parameters are learned from
multi-channel input. Specifically, in the batch normalisation, input
feature batch 𝑛𝑏,𝑤,ℎ,𝑐 ∈ R𝐵×𝑊 ×𝐻×𝐶 (𝑏 ∈ 𝐵,𝑤 ∈ 𝑊 ,ℎ ∈ 𝐻 , and 𝑐 ∈ 𝐶
denote the batch size, width, height, and channel of the feature map,
respectively, and 𝑁 = 𝐵 × 𝑊 × 𝐻) is normalised in a channel-wise
manner:

𝑛′𝑏,𝑤,ℎ,𝑐, = 𝛾𝑤,ℎ,𝑐
(

𝐱𝑚
)

×
𝑛𝑏,𝑤,ℎ,𝑐 − 𝜇𝑐

𝜎𝑐 + 𝜖
+ 𝛽𝑤,ℎ,𝑐

(

𝐱𝑚
)

, (3)

with

𝜇𝑐 =
1
𝑁

∑

𝑏,𝑤,ℎ
𝑛𝑏,𝑤,ℎ,𝑐 , 𝜎2𝑐 = 1

𝑁
∑

𝑏,𝑤,ℎ

(

𝑛𝑏,𝑤,ℎ,𝑐 − 𝜇𝑐
)2 , (4)

where 𝐱𝑚 denotes multi-channel input stack, 𝛾 (⋅) and 𝛽 (⋅) represent
the spatial dimension-dependent functions and 𝜖 is a number to avoid
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division by zero. To leverage contextual information contained across
slices, 3D convolutional kernels (kernel size = 3 × 3 × 3, padding = 1 ×
1 × 1 and stride = 1 × 1 × 1) were suggested to learn 𝛾 and 𝛽. The mod-
ulation parameters of the CBN were learned simultaneously through the
GAN training. The structure of the proposed CBN is illustrated in Fig. 1.

2.3. Discriminator

Rather than using a deeper network that would increase the network
capacity and cause overfitting, we employed a multi-scale discrimina-
tor (Durugkar et al., 2017; Nguyen et al., 2017; Wang et al., 2018)
operating at two-scale pyramid structure. The input images to the first
discriminator are down-sampled by a factor of two for the second
discriminator. The network is treated in a multi-task manner. The
discriminator with the larger receptive field can guide the generator
to synthesise globally coherent images, and the smaller scale one can
encourage the generator to capture local finer details. The discriminator
is built using five blocks with a 3D convolution (kernel size = 4 × 4 × 4,
adding = 2 × 2 × 2 and stride = 2 × 2 × 2), instance normalisation and
eakyReLU with slope 0.2 applied in each block in the discriminator.

.4. Loss functions

By adopting the least-squares loss function (Mao et al., 2017) and
he multi-scale discriminator, our GAN training loss can be formulated
s:

GAN
(

𝐺,𝐷𝑘
)

= −E𝐱𝑚 ,𝑦

[

(

𝐷𝑘
(

𝐱𝑚, 𝑦
)

− 1
)2
]

−E𝐱𝑚

[

𝐷𝑘
(

𝐱𝑚, 𝐺
(

𝐱𝑚
))2

]

, (5)

here 𝑘 ∈ [0, 1] denotes the discriminator operating at two different
cales.

As MRA specifically targets vasculature imaging, accurately and
aithfully synthesising vascular structures is crucial. Inspired by the fact
hat the MIP is commonly used to process 3D MRA images to highlight
ascular trees over background tissues, we removed the pixel-wise L1
oss that struggles with capturing high-frequency details and designed
ew loss terms for emphasising vascular properties by minimising the
tatistical difference between the intermediate feature representations
f the target images and the synthesised outputs in both the 3D volume
nd 2D projection domains, as shown in Fig. 2. First, a feature matching
oss (Salimans et al., 2016; Wang et al., 2018) based on the discrimina-
or was used to match the feature consistency between real volumetric
RA data and synthesised image data, in multiple intermediate layers

f 𝐷𝑘:

FM3D

(

𝐺,𝐷𝑘
)

= E𝐱𝑚 ,𝑦

𝑇
∑

𝑖=1

1
𝑁𝑖

[

‖

‖

‖

𝐷𝑖
𝑘
(

𝐱𝑚, 𝑦
)

−𝐷𝑖
𝑘
(

𝐱𝑚, 𝐺
(

𝐱𝑚
))

‖

‖

‖1

]

, (6)

where 𝑖 means the 𝑖th layer features in 𝐷, 𝑁𝑖 is the number of features
in each layer, 𝑇 is the total number of layers. Second, we introduced
a perceptual loss (Johnson et al., 2016) and measured perceptual
differences between real and generated images in both 3D volume
domain and 2D projection domain through high-level features extracted
from a pre-trained VGG-16 network 𝑉 :

PER3D
(𝐺, 𝑉 ) = E𝐱𝑚 ,𝑦

𝐹
∑

𝑗=1

1
𝑀𝑗

[

‖

‖

‖

𝑉 𝑗 (𝑦) − 𝑉 𝑗 (𝐺
(

𝐱𝑚
))

‖

‖

‖1

]

, (7)

PER2D_ax
(𝐺, 𝑉 ) = E𝐱𝑚 ,𝑦

𝐹
∑

𝑗=1

1
𝑀𝑗

[

‖

‖

‖

𝑉 𝑗 (𝑝ax (𝑦)
)

− 𝑉 𝑗 (𝑝ax
(

𝐺
(

𝐱𝑚
)))

‖

‖

‖1

]

, (8)

PER2D_co
(𝐺, 𝑉 ) = E𝐱𝑚 ,𝑦

𝐹
∑

𝑗=1

1
𝑀𝑗

[

‖

‖

‖

𝑉 𝑗 (𝑝co (𝑦)
)

− 𝑉 𝑗 (𝑝co
(

𝐺
(

𝐱𝑚
)))

‖

‖

‖1

]

, (9)

PER2D_sa
(𝐺, 𝑉 ) = E𝐱𝑚 ,𝑦

𝐹
∑

𝑗=1

1
𝑀𝑗

[

‖

‖

‖

𝑉 𝑗 (𝑝sa (𝑦)
)

− 𝑉 𝑗 (𝑝sa
(

𝐺
(

𝐱𝑚
)))

‖

‖

‖1

]

, (10)

here 𝑗 indicates the 𝑗th layer features, 𝑀𝑗 and 𝐹 represent the number
f features in layer 𝑗 and the total number of layers in 𝑉 , respectively.
he MIP algorithm projects the largest voxel values of 3D MRA data
4

long the axial, coronal and sagittal direction path on a 2D projection
mage 𝑝ax (⋅), 𝑝co (⋅) and 𝑝sa (⋅), respectively. These 2D projection views
f inherently 3D structures can reveal important vascular structures due
o varying projection angles. The feature-based loss terms presented in
q. (6)–(10) aim to encourage the generator to synthesise HR anatom-
cally plausible 3D MRA images resembling the appearance of target
mages and preserve the topology and continuity of vascular structures
imultaneously. The final composite objective combines the adversarial
oss, the feature matching loss, and the perceptual loss as:

Final = min
𝐺

((

max
𝐷1 ,𝐷2

∑

𝑘=1,2
GAN

(

𝐺,𝐷𝑘
)

)

+𝜆1
∑

𝑘=1,2
FM3D

(

𝐺,𝐷𝑘
)

+ 𝜆2PER3D
(𝐺, 𝑉 )

+ 𝜆3PER2D_ax
(𝐺, 𝑉 ) + 𝜆4PER2D_co

(𝐺, 𝑉 ) + 𝜆5PER2D_sa
(𝐺, 𝑉 )

)

, (11)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5 control the weighting of the feature match-
ing loss and perceptual loss, to the adversarial loss. The conditioned
𝐺 and 𝐷 models are optimised by Final to infer an MRA image 𝑦
from available source images 𝐱𝑚, such as T1, T2 and PD-weighted MR
images.

3. Experimental setup

3.1. Datasets

We evaluated the proposed method using three separate neuroimag-
ing datasets: the IXI dataset,2 the MIDAS dataset3 and the SIMONS
dataset.4

In the IXI dataset, images were acquired on a 1.5T and a 3T
scanner with the following parameters. T1-weighted images: TE =
4.6 ms, TR = 9.6/9.8 ms, flip angle = 8◦. T2-weighted images: TE
= 100 ms, TR = 5725.8/8178.3 ms, flip angle = 90◦. PD-weighted
images: TE = 8 ms, TR = 8178.3 ms, flip angle = 90◦. MRA images:
TE = 5.7/6.9 ms, TR = 16.7/20 ms, flip angle = 16◦∕25◦. T1, T2, PD-
weighted contrast sequences have spatial resolution = 0.94 × 0.94 ×
1.2 mm3 with matrix size = 256 × 256 × 150, and the MRA sequences
have resolution of 0.5 × 0.5 × 0.8 mm3 with a matrix size of 512 × 512
× 100. Images from 486 subjects were used and divided into a split of
340/50/96 for training/validation/test sets, respectively. All structural
MRIs were registered onto the corresponding MRA images based on
mutual information performed via FSL (Jenkinson and Smith, 2001).

In the MIDAS dataset, images were acquired on a 3T unit under
the protocols with the following parameters. T1-weighted images: TE
= 4.38 ms, TR = 1700 ms, flip angle = 8◦. T2-weighted images: TE
= 80 ms, TR = 7730 ms, flip angle = 180◦. T1 and T2 weighted
images were reconstructed at 1.0 × 1.0 × 1.0 mm3. The MRA images
were acquired using Siemens ALLEGRA 3.0T MRI scanner with imaging
parameters (TR = 35.0 ms, TE = 3.56 ms, flip angle = 22◦), which are
very different from the imaging protocol used acquired the IXI dataset.
Thus, we fine-tuned and evaluated the proposed generative model pre-
trained on IXI data. The aim was to demonstrate that our approach,
once pre-trained, can effectively use the small data regime to retrain
and fine-tune the model to drive MRA synthesis. In total, 53 subjects
were chosen for training, and 25 subjects for testing the model. Both
IXI and MIDAS data used in this study are non-contrast enhanced TOF
MRAs.

The SIMON dataset is a multi-centre study involving a single volun-
teer for multiple observations across networks. MRIs were performed
with the three leading MRI vendors (Siemens, Philips, GE). The core

2 http://brain-development.org/ixi-dataset/
3 http://insight-journal.org/midas/community/view/21/
4
 http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html

http://brain-development.org/ixi-dataset/
http://insight-journal.org/midas/community/view/21/
http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html
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Fig. 2. To faithfully synthesise vessel structures and preserve the topology and continuity, several feature consistencies with feature matching loss and perceptual loss were designed
in 3D volume and 2D projection domain from different perspective views (sagittal, coronal and axial) for emphasising reconstruction of vasculature properties.
protocol includes: an isotropic T1 weighted scan with voxel size 1.0 ×
1.0 × 1.0 mm3 and with an acceleration factor of 2, and an interleaved
proton density/T2-weighted scan with resolution 0.9 × 0.9 × 3.0 mm3,
fat saturation, and an acceleration factor of 2. TR, TE, and other
parameters were all chosen to obtain images of similar quality in terms
of contrast and resolution. The detailed parameters are available on the
CDIP website (www.cdip-pcid.ca).

3.2. Implementation details

The Adam optimiser with an initial learning rate of 1×10−4 was used
for optimising the loss function for both the generator and discrimi-
nator. The decay rates of the gradient estimates’ first and the second
momentum were set to 0 and 0.9, respectively. The relative weighting
factors of the feature matching loss and the perceptual loss to the GAN
loss in Eq. (11) were initialised as 𝜆1 = 300, 𝜆2 = 10, 𝜆3 = 10, 𝜆4 = 10,
and 𝜆5 = 10 and adjusted to 𝜆1 = 30 and the rest unchanged after
10 epochs. All the hyperparameters were selected on the validation set
through a grid search for our method, Vox2vox, HiNet, CollaGAN and
Pix2pix. For MRA-Net and sGAN, we directly used the hyperparameters
reported in the original papers as they addressed the same problem of
synthesising TOF MRA images from non-angiographic MRIs in these
studies. For the MIDAS dataset, the model was initialised with the
weights of the previously trained network on the IXI data and fine-
tuned for another 20 epochs. The aim was to demonstrate that our
approach, once pre-trained, can effectively use the small data regime
to retrain and fine-tune the model to drive MRA synthesis. For the IXI
and MIDAS datasets, the source images (i.e., T1, T2 and PD-weighted
MRIs) and the target HR MRA images were resized to 512 × 512 × 100
and then were divided into small patches with a size of 256 × 256 ×
32.

3.3. Competing methods

To demonstrate the effectiveness and superiority of the proposed
method, we compared it with six state-of-the-art methods that were
either specifically designed to synthesise MRA images (i.e., sGAN Olut
et al., 2018 and MRA-Net Fujita et al., 2020) or are closely related
to multi-contrast MR image synthesis (i.e., Pix2pix Isola et al., 2017,
Vox2vox Cirillo et al., 2020, HiNet Zhou et al., 2020 and CollaGAN Lee
et al., 2020). To emphasise vesselness properties, sGAN Olut et al., 2018
extends the standard GAN architecture and introduces an additional
loss term that compares steerable filter responses of the target and
generated images through a Huber loss function. MRA-Net (Fujita et al.,
2020) combines the output of a single convolution and a U-net model,
and constructs a mapping function that converts five raw 3D-QALAS
images to their corresponding MRA images. Both HiNet (Zhou et al.,
2020) and CollaGAN (Lee et al., 2020) are recent adversarial learning-
based fusion networks dedicated to multi-modal MR image synthesis,
leveraging complementary information from multiple source contrasts.
We also compared our method with the popular Pix2pix model (Isola
5

et al., 2017) and Vox2vox model (Cirillo et al., 2020) as 2D and 3D
baseline image translation networks, respectively. We conducted all
the statistical analysis using Wilcoxon signed rank test, which is a
nonparametric statistical significance test and that does not assume
the data to be normally distributed. The computed p-value < 0.001
indicates statistical significance in performance between two competing
methods.

3.4. Cerebral vessel segmentation

To segment vascular structures in 3D MRA images, we used a global
thresholding method that is based on a sum of lognormal distributions
for voxel intensities (Allenby et al., 2021). All voxel intensities within
an MRA volumetric data were divided into 50 bins spanning the
whole greyscale value range. The six parameters for the lognormal
distribution were determined by minimising normalised error to the log
voxel intensity of histogram bin 3–48 with a certain margin (to avoid
overexposed/underexposed errors). A threshold value 𝑇 to segment
vascular trees can be computed for each subject as:

𝑇 = 𝑥

[

𝜕3𝑓1+2
𝜕𝑥3

= 0

]

+

(

mode
(

𝑓2
)

− 𝑥

[

𝜕3𝑓1+2
𝜕𝑥3

= 0

])

×

(

𝑓2
(

mode
(

𝑓2
))

𝑓1+2
(

mode
(

𝑓1
))

)𝑘𝑇

, (12)

where 𝑓1, 𝑓2 denote the lognormal distribution of background and
intravascular tissue respectively, and 𝑥

[

𝜕3𝑓1+2
𝜕𝑥3

= 0
]

indicates a criti-
cal point of inflexion change between the modes of 𝑓1 and 𝑓2, and
𝑘𝑇 = 1.73 denotes an empirically pre-defined weight parameter. Once
the global threshold value 𝑇 was determined, 3D vasculature can be
segmented from background cranial tissue.

4. Results

4.1. Synthesis quality evaluation

We first evaluated the proposed model using all available source
images (i.e., T1, T2 and PD-weighted MRIs) from the IXI dataset as
inputs to the generative model. Visual comparison of the generated
2D MRA axial slices to the ground-truth MRA slices from three repre-
sentative subjects is shown in Fig. 3a, alongside their respective error
maps in the rightmost column. For better visualisation, all images were
skull-stripped using the Brain Extraction Tool (BET) (Smith, 2002) from
the FMRIB Software Library (FSL) (Smith et al., 2004). Fig. 3a shows
that MRA images synthesised using the proposed approach are visually
similar to the actual (ground-truth) MRA, reflected by the in-plane
axial slice error maps, indicating that both fine-grained extravascu-
lar and intravascular tissues are captured in the synthesised images.
Fig. 3b shows results obtained for the same subjects in the two other
orthogonal (sagittal and coronal) views, demonstrating multi-planar
consistency of the generated MRA images. Results from the sagittal and
coronal views better highlight the ability of the proposed method to
preserve 3D vascular structure and continuity. These advantages can

http://www.cdip-pcid.ca
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Fig. 3. Qualitative evaluation of the proposed method. (a) Visual comparison of the generated 2D MRA axial slices to the ground-truth MRA slices from three representative
subjects. (b) Results of the same subjects in the sagittal and coronal views. The comparison is also augmented by the error maps shown in the rightmost column.
be attributed to the use of a 3D generative model and feature matching
across multiple orthogonal views in the proposed approach, designed
to emphasise vascular features and preserve 3D vascular structures.

Maximum intensity projections (MIPs) of the authentic and syn-
thesised MRA images for two subjects from the test set of the IXI
database are shown in Fig. 4a. Transverse MIPs were computed across
three projection thicknesses, namely, 32 mm, 48 mm, and 64 mm.
Higher projection thickness indicates more sequential in-plane axial
slices covered from the viewpoint to the projection plane, thus leading
to more vasculature being visible in the projection. As can be seen,
the proposed model can accurately reproduce the representation of
cerebral vessels and preserve topology and continuity, regardless of
projection thickness. Zoomed-in ROI regions of the images marked with
yellow rectangles are also displayed, along with projected T1, T2 and
PD weighted images to highlight the correlation and difference between
6

the MRA images with inflow effect and input source sequences that are
not designed to emphasise inflow effect. These results indicate that the
proposed approach is capable of capturing small, low-contrast vessels in
the periphery of the cerebral hemispheres, in addition to the more cen-
tral major cerebral arteries. Fig. 4b highlights whole-brain vasculature
in the original and synthesised MRA images (in two orthogonal views),
via a 3D rendering of the vessels extracted from their respective images.
The rendered vascular structures show good similarity between the
original and synthesised MRA images, as reflected by the side-by-side
comparison between the former and the latter.

Fig. 5 shows examples of acquired T1, T2, and PD-weighted struc-
tural MRIs and the corresponding generated MRA images, when the
authentic MRA images were not acquired or missed in the IXI dataset.
The high quality of synthesised MRA images is maintained with pre-
served vessel continuity. This demonstrates that the proposed method
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Fig. 4. (a) Two examples of axial slices and the corresponding transverse maximum intensity projections (MIPs) across three projection thicknesses. Zoomed-in ROI regions of
the images marked as the yellow rectangles are displayed below, along with projected T1, T2 and PD weighted images to reveal the correlation and difference between the MRA
images and input source sequences that are not designed to emphasise inflow-effect. (b) 3D visualisation of the synthesised MRA images from two different perspective views,
yielding comparable visibility of intracranial vascular branches, compared with the actually acquired MRA images (i.e., GT).
can potentially serve as an image imputation to synthesise MRA images
from existing MRI databases that MRA contrast is missed or corrupted,
to prevent partially acquired subject data from being entirely discarded
when analysing a given cohort.

Histograms and lognormal distributions of the voxel intensities of
extravascular (𝑓1, yellow lines) and intravascular regions (𝑓2, green
lines) for two representative cases are presented in Fig. 6a. The sum of
the lognormal distributions for voxel intensities was used to compute
a global threshold for each subject according to Eq. (12) and then to
segment vessels from surrounding intracranial tissues. Segmentation
results are shown in Fig. 6b, with the surface-to-surface distance com-
puted between vascular surface meshes extracted from the synthesised
and the reference images, over three ROIs. No apparent differences
are found in the intensity distributions between the synthesised and
ground-truth images. Most surface distance errors are smaller than the
in-plane spacing of MRA images (i.e., 0.5 mm/pixel). We also com-
puted two voxel-wise vascular morphological indices, namely, voxel
distance from vessel centrelines and voxel distance from the nearest
carotid vessel (i.e., the nearest centrepoint at the bottom of the volume
image), presented in Fig. 6c. As can be seen, there is a good agreement
regarding these morphological properties between vessels derived from
the real and generated MRA images.

4.2. Importance of different MR contrasts for MRA synthesis

To evaluate the impact of using different combinations of structural
MR images as inputs to drive MRA synthesis, and correspondingly,
7

on the final quality of MRA images synthesised using our approach,
we conducted a series of data ablation experiments using various
combinations of T1-, T2- and PD-weighted MR images as inputs to
train our model. We trained different network instances using several
possible combinations of T1, T2, and PD inputs and generated subject-
specific MRA images. In total, there were five different models: three
T1, T2, PD-weighted uni-contrast models, one bi-contrast model with
T1 and T2 as input, and one tri-contrast model with a concatenation of
all available source contrasts. The Wilcoxon T-test was used to evaluate
statistical significance when comparing results from all investigated
models. Visual comparison of the MIPs computed using the real and
synthesised MRA images from various contrast combinations is shown
in Fig. 7a for two samples from the IXI dataset. The quality of images
synthesised and their similarity to their respective ground-truth (real)
images was evaluated for each model and quantified in 3D across
the test subjects from the IXI database using two metrics: structural
similarity index measurement (SSIM) and peak signal-to-noise ratio
(PSNR), shown in Fig. 7b. We also evaluated the quality of 2D MIPs
derived from the synthesised MRA images and their similarity to their
respective ground-truth MIPs, denoting as 2D PSNR and 2D SSIM
in the figures. Images with higher SSIM and PSNR values indicate
higher image quality. Several morphometric properties of vasculature
were characterised: voxel distance from centreline, distance to nearest
vessel surface, voxel distance from the nearest carotid vessel. The
three morphometries yield a consistent relationship. A voxel-specific
polynomial regression can be fitted to measure the consistency between
three voxel-wise morphological indices, i.e., centreline distance, base
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Fig. 5. Examples of the MRA images (synthesised) that were not acquired in the IXI dataset. (a) Acquired T1, T2, and PD-weighted structural MRIs are usually included in the
imaging protocol. (b) Corresponding generated MRA images, where the authentic MRA images were not acquired in this dataset. This demonstrates that the proposed method can
serve as an image imputation for missing/corrupted MRA images to prevent partially acquired subject data from being entirely discarded when analysing any given cohort.
distance and edge distance. We computed median regressions of the test
subjects and presented the results in Fig. 7c. Two additional morpholog-
ical indices – maximum vessel length and volume – were also calculated
from the segmentation masks and plotted in Fig. 7d. We fitted a 2D
Gaussian distribution to the GT and derived morphological indices and
quantified the distance of the resulting probability distributions using
the Bhattacharyya distance.

Overall, we found that the multi-contrast synthesis model trained
using T1, T2 and PD sequences yields the best performance, both
qualitatively and quantitatively. The SSIM and PSNR values of MRA
images synthesised using the multi-contrast model are significantly
higher than those obtained for images synthesised using the other
models investigated (p < 0.001). This indicates that all three MR
8

contrasts provide complementary and valuable information for MRA
synthesis. Fig. 7c and d show that the three-contrast model yields the
closest results regarding the distance of median voxel regression and
morphological characteristics such as vessel volume and length. The
computed Bhattacharyya distance of the resulting probability distri-
butions between the reference and the derived vessel length is 0.063
for three-input model, which is smaller compared with 0.075 for PD
model and 0.109 for T1+T2 model. The Bhattacharyya distances for
predicted vessel volume are 0.066, 0.095 and 0.068 for three-input,
T1+T2 and PD models, respectively. When using a combination of T1
and T2 contrasts as input, the results are superior to those using T1 or
T2 information alone. This improvement is also statistically significant
(p < 0.001). For three uni-contrast models, we found T1 contrast alone
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Fig. 6. Cerebral vessel segmentation results and derived morphometries. (a) Histograms and lognormal distributions of the voxel intensities of extravascular (𝑓1, yellow lines) and
intravascular regions (𝑓2, green lines) for two representative cases. The sum of the lognormal distributions for voxel intensities was further used to compute a global threshold and
then segment vessels from surrounding intracranial tissues. (b) Segmentation results with surface-to-surface distance computed between the synthesised images and the reference
over three ROIs. Most surface distance errors are smaller than the in-plane spacing of MRA images (i.e., 0.5 mm/pixel). (c) Two voxel-specific morphometries of vasculature,
i.e., voxel distance from centreline and voxel distance from the nearest carotid vessel.
yields the highest error and fails to preserve the continuity of vascular
structures in the synthesised MRA images, as can be seen in Fig. 7a. This
indicates that T1 contrast contains the least correlated and redundancy
information to the MRA sequence. All other input combinations yielded
statistically significant improvements in the quality of MRA images
synthesised, relative to using only T1 images. We also observed that
the PD contrast improves the visibility of small vessel branches in the
peripheral regions than other single-input models.

4.3. Comparisons with state-of-the-art

We compared the performance of the proposed method against
six state-of-the-art approaches for multi-contrast-driven MRA image
synthesis. We trained the competing techniques with three-contrast
inputs and synthesised subject-specific MRA images. A visual compar-
ison of the synthesised slices and MIPs for an example test case from
the IXI dataset can be seen in Fig. 8a, including Pix2pix, CollaGAN,
9

HiNet, sGAN, MRA-Net, Vox2vox and the proposed method. Here,
Pix2Pix, CollaGAN, HiNet and sGAN models are 2D, while MRA-Net,
Vox2vox and the proposed method are 3D models. All six state-of-
the-art methods are also quantitatively compared with our approach
using the SSIM and PSNR metrics, summarised in Fig. 8b. Scatter plots
of SSIM measurements for the proposed method against the state-of-
the-art techniques are included in Fig. 9. Overall, although the 2D
models synthesise good quality images visually in 2D axial slices,
capturing fine-grained structures, they are less successful at preserving
the continuity of vessels in 3D as can be seen from their corresponding
MIPs. The 3D MRA-Net and Vox2vox outperform their 2D counterparts
in this regard and are able to produce adequate continuity in 3D
vessel structures in the main cerebral artery branches. However, a large
proportion of the smaller, low-contrast vessels towards the periphery
of the cerebral hemispheres (with increasing branching degree) are
still missed by both models. In contrast, our approach can retain key
visual cues and provide significantly better intracranial vasculature
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Fig. 7. Importance assessment on various contrast inputs to the MRA synthesis model. (a) Visual comparison of the MIPs computed from the real and synthesised MRA images
from various contrast combinations. (b) The bar plots of structural similarity index measurement (SSIM) and peak signal-to-noise ratio (PSNR) were computed from 3D volumes
and 2D MIPs from the test subjects. (c) Median voxel-specific polynomial regressions of test subjects fitted to measure the consistency between three morphometries, i.e., centreline
distance, base distance and edge distance. (d) Comparison of two additional morphometric features, i.e., vessel maximum length and volume, were derived from the segmentation
masks.
visualisations by emphasising vesselness properties through the dedi-
cated architecture and loss functions, and yields the most comparable
results in terms of visual quality to the ground-truth images. Besides
qualitative improvements, the SSIM and PSNR values of the proposed
method also produce statistically significant improvements over the
state-of-the-art generative models, considering a significance level of
𝑝 < 0.001 (as shown in Fig. 8b).

Additionally, we utilised an evaluation metric proposed in Sajjadi
et al. (2018) to quantify synthesis performance across different gen-
erative models. The method defines a novel notion of precision and
recall for generative models to compare a learned distribution 𝑄 to the
actual data distribution 𝑃 . The quantity precision intuitively measures
the quality of samples generated from 𝑄, while recall measures the
proportion of 𝑃 that is covered by the generator. We measured these
quantities for the proposed model and the competing methods, and
the resulting precision–recall distribution (PRD) curves are shown in
Fig. 8c. These PRD curves relate intuitively to the traditional precision
and recall metrics used for evaluating classification algorithms. We also
plotted pairs of 𝐹8 and 𝐹1∕8 scores that are estimated from each PRD
curve, to understand the bias towards precision vs recall. As can be
seen, the proposed model yields high probability under the actual data
distribution and is interpreted as a higher value in precision and recall.
Thus, it is less penalised by the 𝐹8 and 𝐹1∕8 scores than its counterparts.

4.4. Ablation study

This section presents the ablation study, in which we systematically
assessed the effectiveness and the contribution of each component
10
in the proposed method. The comparison was made between four
variants and the proposed method. These four variants correspond
to progressively remove or replace one of the proposed components,
namely, replacing multi-scale discriminator with a single discriminator
(Variant 1), removing the feature matching term (Variant 2), replacing
the perceptual loss in 3D and 2D domain with the L1 distance loss
between real and synthetic images (Variant 3), and replacing the CBN
with the standard batch normalisation (Variant 4) in turn. For fair com-
parison, we trained these variant networks using the same epochs as the
proposed method. Results from each of these network configurations
are then compared with the proposed model.

Fig. 10 illustrates a visual comparison of the images generated in
this ablation study. The proposed method with all the components
included produces images not only most visually comparable to that
of the GT, but also perceptually appealing and anatomically plausible.
Whilst using a single discriminator still retains the high-quality syn-
thesised images, removing the feature-based loss terms presented in
Eq. (6)–(10) results in a significant drop in performance, particularly
for the perceptual loss (cf. Variant 3 in Fig. 10). Last, replacing the CBN
with standard batch normalisation yields the worst synthesis results
as the shared spatial features and fine structural details of multi-
channel input cannot be effectively propagated through the generation
pathway, which is crucial to generate high-resolution MRA images.
Quantitative results in Table 1 confirm this observation and indicate
that the single discriminator yields slightly inferior results than its
multi-scale counterpart, while removing or replacing feature-based loss
terms leads to a huge performance degradation in (e.g., an SSIM of
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Fig. 8. Demonstrations of the proposed method against six state-of-the-art approaches for multi-contrast MRA synthesis. (a) Qualitative comparison of the synthesised slices and
MIPs for a representative example, including Vox2vox (Cirillo et al., 2020), MRA-Net (Fujita et al., 2020), sGAN (Olut et al., 2018), HiNet (Zhou et al., 2020), CollaGAN (Lee
et al., 2020) and Pix2pix (Isola et al., 2017) and the proposed approach. (b) Summary of the SSIM and PSNR computed on the test subjects for the competing methods. (c) A
novel notion of precision and recall for generative models to compare a learned distribution to a true data distribution (Sajjadi et al., 2018). Here, the precision recall distributions
(PRD) curves for the competing methods and pairs of 𝐹8 and 𝐹1∕8 distilled from each PRD curve are plotted.
Table 1
Quantitative results of the ablation study for four
variants that correspond to replacing multi-scale dis-
criminator with a single discriminator (Variant 1),
removing the feature matching term (Variant 2), re-
placing the perceptual loss in 3D and 2D domain with
the L1 distance loss between real and synthetic images
(Variant 3), and replacing the CBN with the standard
batch normalisation (Variant 4) in turn.

Metrics SSIM PSNR

Proposed 𝟎.𝟖𝟖𝟐 ± 𝟎.𝟎𝟏𝟗 𝟑𝟏.𝟏𝟕 ± 𝟏.𝟎𝟒
Variant 1 0.870 ± 0.024 30.91 ± 1.23
Variant 2 0.864 ± 0.026 29.87 ± 1.20
Variant 3 0.841 ± 0.029 28.72 ± 1.24
Variant 4 0.820 ± 0.026 26.93 ± 1.18

0.870 ± 0.024 to 0.841 ± 0.029). We can see that replacing the CBN
with standard batch normalisation further degrades the quality of the
images synthesised, which is reflected by an SSIM decrease of 0.841 ±
0.029 to 0.820 ± 0.026. The progressively decreasing PSNR values also
demonstrate the degradation of image quality.
11
4.5. Cross-database evaluation

We fine-tuned and evaluated the proposed generative model (pre-
trained on the IXI data) on the MIDAS dataset. The primary aim of this
experiment was to demonstrate that our approach, once pre-trained,
can perform effectively in the small data regime through transfer
learning. The model was initialised with the weights of the network pre-
trained on the IXI data and fine-tuned using data from 53 subjects in
the MIDAS dataset. To leverage complementary information of multiple
source images, we used all available contrasts in the MIDAS dataset for
fine-tuning our model. This included T1 and T2 images concatenated
to form multi-channel inputs and the original MRA images available
in MIDAS for each subject as the target to guide fine-tuning of the
network. For comparison, the proposed method also were trained di-
rectly on MIDAS data as a reference/benchmark model. Fig. 11 shows
a test sample from the MIDAS dataset, including MIPs of the original
(top row), synthesised images with the transferred model (middle row),
synthesised images with the directly trained model (bottom row) across
four projection thicknesses (32 mm, 48 mm, 64 mm and 96 mm). As
can be seen, the transferred model yields overall similar performance
to that of the IXI data when using two-contrast input and is able to
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Fig. 9. Scatter plots of SSIM measurements for the proposed method against six state-of-the-art techniques for multi-contrast MRA synthesis. Each point represents a value computed
in the axial slice in the test set. The proportion of test samples in which either method yields superior performance is noted in figure legends. The proposed model yields the best
performance and shows the superior results over Vox2vox (Cirillo et al., 2020), MRA-Net (Fujita et al., 2020), sGAN (Olut et al., 2018), HiNet (Zhou et al., 2020), CollaGAN (Lee
et al., 2020) and Pix2pix (Isola et al., 2017) for 96.23%, 92.16%, 100.0%, 99.89%, 99.77% and 100.0% of test samples, respectively.
accurately capture 3D vascular structures whilst preserving continuity,
as demonstrated by the MIP images estimated across varying projection
thicknesses. We observed a marginal drop in performance in the quality
of MRA images synthesised for test samples in MIDAS, relative to
IXI, particularly in the peripheral areas of the cerebral hemispheres,
resulting in reduced detail being captured for small arterial branches
in these areas. This may be attributed to the absence of PD images in
the MIDAS dataset, which was used as an additional input MR contrast
in the IXI dataset. This result is consistent with those obtained in the
data ablation experiment conducted using the IXI dataset (discussed
previously).

Fig. 12 presents a quantitative evaluation of the quality of syn-
thesised MRA images for 25 test subjects from the MIDAS dataset.
As previously, the SSIM and PSNR metrics are used to evaluate the
quality of synthesised MRA images in 3D and their corresponding
MIPs in 2D, relative to the original (real) images. These quantitative
12
results are consistent with results obtained in the data ablation study
when two inputs contrasts were used in the IXI dataset; see Fig. 7b.
Across the datasets, the transferred model yields variability of merely
0.72% and 0.85% in mean values of SSIM and PSNR between the IXI
and MIDAS datasets. This demonstrates the adaptation ability of the
proposed approach, even in the presence of a small dataset. We also
observed that the directly trained model shows a huge performance
degradation compared to the transferred model, due to the limited
training data in MIDAS dataset.

To demonstrate the ability of the proposed approach to generalise
to completely unseen data, we also evaluated the pre-trained model on
the SIMON dataset that involves a single subject scanned at multiple
centres across the three leading MRI vendors (Siemens, Philips, GE),
without fine-tuning and transfer learning. The common MR sequences
such as T2 and PD were acquired but MRA acquisitions were not
included in the scanning protocol in this dataset. Fig. 13a shows
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Fig. 10. An overview on results of the ablation study. Visual comparison of four variants that correspond to replacing multi-scale discriminator with a single discriminator (Variant
1), removing the feature matching term (Variant 2), replacing the perceptual loss in 3D and 2D domain with the L1 distance loss between real and synthetic images (Variant 3),
and replacing the CBN with the standard batch normalisation (Variant 4) in turn.
Fig. 11. Cross-database evaluation with the transferred model (i.e., pre-trained on the IXI data and then fine-tuned MIDAS data) and the directly trained model using 53 subjects
from the MIDAS dataset. T1 and T2 images were concatenated as multi-channel input to generate the corresponding MRA images. (a) Visual inspection of examples of the
corresponding MIPs across four projection thicknesses (32 mm, 48 mm, 64 mm and 96 mm).
examples of acquired T2/PD-weighted MRIs and synthesised MRA with
the proposed method and Fig. 13b shows MIPs of the synthesised MRA
images from the structural MRIs acquired from 12 sessions. The sites
and scanner models associated with MRIs acquired in each session
were summarised in Fig. 13c. Although no ground truth is available,
we provide two quantitative measures for assessing the synthesised
13
vascular anatomies using data from different imaging centres. The first
measurement is the vessel volume. We first applied the segmentation
method to extract vascular structures from 3D synthetic MRA images,
followed by computing vascular volume in each case (i.e., by summing
up the number of voxels in the segmentation result and multiplying
by the voxel spacing). The second measurement is the Dice score
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Fig. 12. Quantitative measurements of SSIM and PSNR computed from 2D projected MIPs across 25 test subjects for the transferred model and directly trained model.
ith respect to the reference. The reference was obtained by applying
he Simultaneous Truth and Performance Level Estimation (STAPLE)
lgorithm (Warfield et al., 2004) from the binary segmentations we
btained from the synthetic MRA images. Quantitative measures are
hown in Fig. 13d. We found the proposed framework can still gener-
te high-resolution, anatomically plausible MRA capturing whole-brain
asculature, even with the large slice thickness in the SIMON T2/PD-
eighted images (3 mm). The results demonstrate that the proposed
pproach is pre-trained on the IXI data but can generalise to the SIMON
ata where images were acquired across multiple centres and scanners,
hilst synthesising MRAs and vascular geometries that maintain vessel

ontinuity in 3D. We highlighted the robustness of the trained model to
nter-scanner variations, as demonstrated by the high synthesis quality
n SIMON data. Note that the quantitative measures are affected by not
nly the algorithm’s synthesis performance but also the downstream
mage processing. For example, the accuracy of the vessel volume
alculation is subject to both synthesis quality and segmentation ac-
uracy. Similarly, the measured Dice score is also subject to synthesis
erformance, segmentation accuracy, the reference estimation from
TAPLE, alignment of each image, etc.

iscussion

MR image synthesis offers the potential to minimise scan time by
cquiring only essential imaging data from which others images can
e derived. Despite success on multi-contrast MR image synthesis,
enerating specific modalities remains challenging. For instance, MRA
mages highlight details of vascular anatomy using specialised imaging
equences underpinned by an endogenous or exogenous contrast mech-
nism. A reliable technique for synthesising MRA images from other
vailable MR contrasts is valuable because there are few large databases
ith imaging modalities (such as MRA) that enable quantitative char-
cterisation of whole-brain vasculature and is also motivated by the
eed to generate digital twin populations of cerebrovascular anatomy
t scale for use in in-silico studies and/or in-silico trials.

This study demonstrated that multi-contrast structural MR images
f the brain (such as T1, T2, and PD) could be used to synthesise high-
esolution, anatomically plausible MRA images that capture whole-
rain vasculature using the proposed GAN-based image translation
ramework. Our approach leverages complementary information avail-
ble from multi-contrast structural MR images to learn a mapping
o their corresponding MRA image in a subject-specific manner. A
hared latent embedding for multi-contrast MR images from the source
omains (T1, T2 and PD) are learned through an encoder network and
sed by a dedicated generator and discriminator to synthesise MRA
mages. The multi-scale discriminator utilises deep feature consistency
oss terms estimated slice-wise along orthogonal views (axial, sagittal
nd coronal) to emphasise vascular structures and synthesise MRA
14

mages whilst preserving the continuity of vessels in 3D.
A data ablation study assessed the relative importance of the struc-
tural MR contrasts used as inputs/predictors to drive MRA synthesis
and revealed that incorporating T1, T2 and PD-weighted images pro-
vided the best results in terms of the quality of MRA images syn-
thesised. T2 and PD-weighted images were better predictors of MRA
images than T1. Additionally, we found that PD-weighted images con-
tributed to better visibility of small vessel branches towards the pe-
ripheral regions than the other two MR contrasts. For the adaptability,
we demonstrated that the proposed approach, once pre-trained, can
effectively use the small data regime to retrain and fine-tune the
model to drive MRA synthesis in the MIDAS dataset, when the target
domain is significantly different from the training domain. We also
demonstrated the ability of the proposed approach to generalise to
completely unseen data (SIMON dataset) whilst synthesising MRAs and
vascular geometries that maintain vessel continuity in 3D. We high-
lighted the robustness of the trained model to inter-scanner variations,
as demonstrated by the high synthesis quality on SIMON data.

In this work, we selected a global thresholding method used for
segmenting vasculature for subsequent analyses because the variances
of each structural class (background, non-vessel and vessel) are rela-
tively small in MRA, which makes the segmentation of the vasculature
relatively easy. We applied this traditional, unsupervised segmentation
method to both authentic MRA images and synthetic images for com-
parison. Therefore, we expect that the segmentation results and the
derived vascular morphological indices in the evaluation would involve
both synthesis and segmentation errors.

It is also worth to noting that the input structural MRIs typically
have lower spatial resolution (e.g., 0.9 × 0.9 × 1.2 mm3), and the gen-
erated MRA images have higher resolution (e.g., 0.5 × 0.5 × 0.8 mm3),
which yield comparable overall image quality and visualisation of all
intracranial vessels to the actually acquired MRA images. Thus, the
task tackled by the propose method involves not only image-to-image
translation but also super-resolution, implicitly. The ability for gen-
erating high-resolution MRA images is attributed to: (i) replacing the
traditional pixel-wise loss functions with feature-based loss terms facili-
tates better recovery of high-frequency image information, (ii) using the
effective feature guidance by consistently encoding and emphasising
shared spatial features and fine structural details of multi-channel input
through the CBN module along the generation pathway.

One limitation of this study is that all the datasets investigated only
involve the healthy subjects. Although we did not include patients with
arterial pathologies such as aneurysm in our study, the synthesised
high-resolution MRA images were 0.5 × 0.5 × 0.8 mm3 and the quality
of MRA images may be sufficiently high to evaluate arterial diseases.
Also, based on the observations that the synthetic MRA images exhibit
similar legibility and quality as to the real MRA data, we argue that
the proposed method with the dedicated modules will not adversely

impact the image quality and is capable of reconstructing final details
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Fig. 13. Synthesised MRA images for the SIMON dataset containing a single subject scanned at multiple sites and with various scanner models. The common MR sequences such as
T1, T2 and PD were acquired but MRA acquisitions were not included in the scanning protocol in this dataset. (a) Examples of acquired T2 and PD-weighted MRIs and synthesised
MRA. (b) MIPs of the synthesised MRA images from the structural MRIs acquired from 12 sessions. (c) Various sites and scanner models associated with MRIs were acquired in
each session. (d) Two quantitative measures on the differences of the synthesised vascular anatomies.
in pathological anatomy such as clogged vessels or aneurysms man-
ifesting as protrusions of arterial walls. Nevertheless, future studies
should assess in more detail the generalisability and performance of
the proposed network on the MRA image synthesis across pathologies
more specifically, for instance, investigating the applicability of the
model trained on healthy volunteer data to subjects with intracranial
aneurysms. The current results, whilst preliminary, show the potential
15
for use of the proposed approach to generating digital twin cohorts of
cerebrovascular anatomy at scale from structural MR images typically
acquired in population imaging initiatives such as the UK Biobank.
This could serve as a platform to curate libraries of whole-brain vas-
cular geometries that may be used in the future to scale up in-silico
studies and/or in-silico trials assessing cerebrovascular blood flow to
previously unseen sample sizes.
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5. Conclusion

In conclusion, this work proposed an end-to-end generative ad-
versarial network that can synthesise anatomically plausible, high-
resolution 3D MRA images using commonly acquired multi-contrast
MR images (e.g. T1/T2/PD-weighted MR images) for the same sub-
ject whilst preserving the continuity of vascular anatomy and key
vascular morphological characteristics. We assessed the performance
of our approach across comprehensive experiments, including com-
parisons against state-of-the-art image synthesis methods, assess the
importance of various contrast sources, and explore the reproducibility
of our results across databases. Combined with population imaging
studies, these results pave the way to create digital twin cohorts of
cerebrovascular anatomy at scale.
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