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Abstract
Zeroing neurodynamics methodology, which dedicates to finding equilibrium points of
equations, has been proven to be a powerful tool in the online solving of problems with
considerable complexity. In this paper, a method for underwater acoustic sensor network
(UASN) localisation is proposed based on zeroing neurodynamics methodology to
preferably locate moving underwater nodes. A zeroing neurodynamics model specifically
designed for UASN localisation is constructed with rigorous theoretical analyses of its
effectiveness. The proposed zeroing neurodynamics model is compatible with some
localisation algorithms, which can be utilised to eliminate error in non‐ideal situations,
thus further improving its effectiveness. Finally, the effectiveness and compatibility of the
proposed zeroing neurodynamics model are substantiated by examples and computer
simulations.
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1 | INTRODUCTION

In recent decades, approaches based on neural networks are
often exploited to meet the increasing demand of powerful
computing methods and are proven to be effective tools in
solving computational problems [1–3]. Particularly, zeroing
neural network (ZNN), which transforms various computing
problems into zero‐finding problems, is developed to conduct
online operations for solving time‐varying problems, and is
employed in optimisation [4], robot motion control [5, 6],
mobile manipulators [7, 8], and a variety of complicated
computational problems [9–12]. ZNN models are constructed
based on a special design formula, whose main role is to find
the equilibrium points of equations by driving specifically
designed error functions to zero. Zeroing neurodynamics,
which is further generalised from ZNN design methodology, is
considered a systematic neurodynamics approach for time‐

varying problem solving [13]. In ref. [14], static tensor‐based
problems are solved via approaches based on zeroing neuro-
dynamics methodology. As a further improvement, several
finite‐time convergent zeroing neurodynamics models for
solving time‐varying tensor‐based equations are presented in
ref. [15]. In ref. [16], an improved type of zeroing neuro-
dynamics model that dedicates to solving generalised Sylvester
equations is presented, which finds applications in robots and
acoustic source localisation. An optimisation approach for
deep neural network first‐order optimisers is presented based
on zeroing neurodynamics in ref. [17]. As an important
component of the zeroing neurodynamics model, activation
functions are verified to be capable of greatly accelerating
convergence speed, and thus draw much attention from re-
searchers. Notably, several different activation functions are
developed and applied to zeroing neurodynamics models such
that the resulting models are finite‐time convergent [18, 19].
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The finite‐time convergence property is also further investi-
gated in their work with thorough theoretical analyses [20].

Research on underwater acoustic sensor network (UASN)
has attracted increasing concern in recent years. Being viewed
as a key technology of UASN, underwater localisation inherits
the basic methodology of wireless sensor network (WSN)
localisation [21]. Due to the fact that radio signals can only
travel a short distance underwater, UASN relies on acoustic
signals for long‐range transmission. Consequently, UASN is
challenged by difficulties introduced by complicated under-
water environments, such as limited bandwidth, limited energy,
long propagation latency, low link quality, and more [22]. As
such, a variety of UASN localisation algorithms are designed to
accustom the underwater environments [23, 24]. In ref. [25],
several modified time difference of arrival (TDoA) algorithms
are presented for nodes to locate themselves passively with low
energy consumption. A node localisation algorithm that utilises
node movement prediction is developed in ref. [26] to improve
localisation accuracy on moving nodes. By using a number of
synchronised mono‐static sensors in motion, a method of
locating a moving underwater object is investigated in ref. [27].
In ref. [28], in order to improve anchor node locating accuracy,
a frequency‐based anchor node localisation and prediction al-
gorithm is designed. In general, the research of UASN local-
isation focuses on locating moving nodes with high precision,
high robustness and limited expense.

The main purpose of this paper, which is motivated by
problems encountered during the development of UASN
routing protocols, is to propose a zeroing neurodynamics
model with activation functions that are suitable for contin-
uous UASN localisation. Precisely locating underwater nodes
often needs measuring the distances between nodes or the
angles of incoming transmission, which requires extra devices
to be equipped on underwater nodes. However, this may
exhaust the limited energy reserves of underwater nodes and
potentially be very expansive. Furthermore, due to the low data
rate, it is appropriate to transmit only the most important in-
formation that maintains the connectivity of a network, which
leads to the development of many non‐location‐based routing
protocols. However, the position information of nodes can
prove invaluable for a network to establish connections, and
the data transmission routes can be decided easier if the po-
sition information of nodes is ready and available. Thus, it is
necessary to develop a method of node localisation for UASN
with limited expanse. As the energy costs are dominated by
transmission in UASN [21], the zeroing neurodynamics model
proposed in this paper focuses on providing nodes position
information continuously without increasing data exchanges
between nodes, in other words, trading computational costs for
transmission costs. Combined with other positioning strategies,
the accuracy of the proposed model is revealed to be
improvable.

The remainder of this paper is organised into five sections.
The problem formulation is presented in Section 2 with details
of several basic UASN localisation algorithms. The construc-
tion methodology of the zeroing neurodynamics model for
UASN localisation is proposed in Section 3 along with

activation functions. As a continuation, vigorous theoretical
analyses on the proposed zeroing dynamics model are pro-
vided in Section 4. The effectiveness of the newly proposed
zeroing neurodynamics model is substantiated by illustrative
computer simulations conducted as examples in Section 5.
Finally, in Section 6, this paper is concluded with final remarks.
Before ending this introduction, the main contributions of this
paper are listed below:

1) A zeroing neurodynamics model is specifically designed for
UASN localisation, which provides an alternative method
to effectively locate a moving underwater node. The pro-
posed model is capable of quickly locating a underwater
node with fast convergence speed. If the data used in cal-
culations is not already contaminated by error, then the
unknown moving node can be locate with the zeroing
neurodynamics model with high precision. In addition, the
model can adapt different activation functions to further
enhance its convergence speed. Theoretical analyses prove
that it has finite‐time convergence property if certain acti-
vation functions are applied.

2) The proposed zeroing neurodynamics model is designed to
be compatible with other components of localisation stra-
tegies used in UASN. By combining with other error‐
reducing methods, the effectiveness of locating the mov-
ing underwater node can be further improved in the face of
inaccurate data, which is demonstrated in examples.

2 | PROBLEM FORMULATION

In general, the existing UASN localisation algorithms inherit
the basis of WSN localisation and are often divided into range‐
based algorithms and range‐free algorithms. The range‐based
algorithms require actually measuring the distance or angle
between nodes, while the range‐free algorithms approximate
the distance between nodes based on connectivity information.
Considering the distributed nature of UASN, it is appropriate
to allow each node to locate itself individually. In distributed
localisation, both kinds of algorithms require a node to gather
information about other nodes first in order to calculate its
own position, and thus a large portion of the localisation
procedure is similar. In addition, depth information can be
obtained by measuring water pressure in UASN. Therefore, the
localisation in this paper focuses on two‐dimensional (2D)
situations, as three‐dimensional problems can be transformed
into 2D ones if depth information is already known.

The basic DV‐hop algorithm uses hop counts and esti-
mated distance per hop to locate target nodes. Let anchor
nodes denote the nodes which are aware of their own posi-
tions, and unknown nodes denote the nodes that need to locate
themselves. The localisation procedure of 2D basic DV‐hop
can be organised into three steps as follows:

� Each anchor node broadcasts a packet that contains its own
position into the network, with the initial hop counts value
being set as 1. A table containing the locations of anchor

2 - WANG ET AL.

 2
4
6
8
2
3
2
2
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
4
9
/cit2

.1
2
2
2
5
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

6
/0

5
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



nodes and minimum numbers of hops is maintained by each
node. If a packet from a particular anchor node is received
while the hop counts value is lower than the current one in
the table, then the table is updated. Otherwise, the packet is
discarded. If the table is successfully updated, then the
packet is forwarded by the node and the hop counts value is
increased by 1. In this way, the positions of anchor nodes
and corresponding minimum hop counts are flooded in the
network.

� The next step is to approximate the average distance per
hop of each anchor node. For an anchor node with co-
ordinates (xi, yi), the average distance per hop σi can be
approximated as follows:

σi ¼

Pn
j¼1 xi − xj

� �2
þ yi − yj
� �2

� �1
2

Pn
j¼1hij

; j ≠ i; ð1Þ

where (xj, yj) denotes the coordinates of anchor node j, n is the
total number of the anchor nodes, and hij denotes the hop
counts between node i and node j. After the average distance
per hop is approximated, the message is flooded into the
network in a similar manner.

� The final step is calculating the position of nodes. When an
unknown node is aware of the approximated distance to-
wards at least three anchor nodes, its own coordinates can
be calculated via the multilateration method. Let (x, y)
denote the coordinates of an unknown node X, which is to
be located, (xi, yi) denote the coordinates of a set of anchor
nodes Ni, where i = 1, 2, …, n. Let ki be the hop counts
between the ith anchor node and unknown node X, the
distance between these two nodes can be approximated as
di = ki � σi. After that, the coordinates (x, y) can be
calculated by

x1 − xð Þ2 þ y1 − yð Þ2 ¼ d21;

x2 − xð Þ2 þ y2 − yð Þ2 ¼ d22;
⋯

xn − xð Þ2 þ yn − yð Þ2 ¼ d2n:

8

>

>

>

>

<

>

>

>

>

:

ð2Þ

By subtracting the last equation with previous n − 1
equations, the above Equation (2) is rewritten into Ax = b
form, which can be detailed as follows:

A¼

2 x1 − xnð Þ 2 y1 − ynð Þ
2 x2 − xnð Þ 2 y2 − ynð Þ

⋯ ⋯

2 xn−1 − xnð Þ 2 yn−1 − ynð Þ

2

6

6

4

3

7

7

5

; x ¼
x
y

� �

;

b ¼

x21 − x2n þ y21 − y2n þ d2n − d21

x22 − x2n þ y22 − y2n þ d2n − d22
⋯

x2n−1 − x2n þ y2n−1 − y2n þ d2n − d2n−1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

ð3Þ

where coefficient matrix A ∈ Rðn−1Þ�2, vector b ∈ Rðn−1Þ, and
x is the coordinate to be calculated. Note that the above
equation is often overdetermined and the coordinate of the
unknown node is commonly obtained via the least square
method.

It is worth mentioning that the above basic DV‐hop al-
gorithm is a range‐free localisation algorithm because the
distance between nodes is approximated. However, if the dis-
tance is actually measured, such as measuring the arrival time
of packets, then the algorithm becomes range‐based and is
basically consistent with the time of arrival (ToA) algorithm.

Similarly, the angle of arrival (AoA) localisation algorithm,
as another kind of range‐based algorithm, locates unknown
nodes by measuring arrival angles between unknown nodes
and anchor nodes. After the arrival angles from several anchor
nodes to an unknown node are obtained, the coordinate of the
unknown can be calculated. The mathematical expression of
the 2D AoA algorithm can also be written in Ax = b form:

A¼

−tan α1ð Þ 1
−tan α2ð Þ 1

⋯ ⋯

−tan αnð Þ 1

2

6

6

6

4

3

7

7

7

5

; x ¼
x
y

� �

;

b ¼

y1 − x1tan α1ð Þ

y2 − x2tan α2ð Þ

⋯

yn − xntan αnð Þ

2

6

6

6

4

3

7

7

7

5

;

ð4Þ

where αi is the arrival angle of ith anchor node and tan
(αi) = (y − yi)/(x − xi).

The TDoA algorithm is another popular range‐based
localisation algorithm. Its principle is to calculate the coordi-
nate of a source node by comparing the TDoA at different
receiver nodes, where the source node is an unknown node and
the receiver nodes are often anchor nodes. The mathematical
expression of 2D TDoA algorithm follows a similar pattern
and is written in Ax = b form:

A¼

x2 − x1 y2 − y1 r21
x3 − x1 y3 − y1 r31

⋯ ⋯ ⋯

xn − x1 yn − y1 rn1

2

6

6

6

4

3

7

7

7

5

; x ¼

x
y
r1

2

6

4

3

7

5
;

b ¼
1
2

r221 − k2 þ k1

r231 − k3 þ k1

⋯

r2n1 − kn þ k1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

ð5Þ

where ki ¼ x2i þ y2i , ri represents the distance between ith
anchor node and the unknown node, and rij the distance dif-
ference between ri and rj. The TDoA algorithm shares many
similarities with the ToA algorithm. However, the TDoA
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algorithm doesn't require the system clocks of nodes to be
synchronised.

Apparently, despite utilising different methods to locate
unknown nodes, these localisation algorithms involve solving a
matrix equation in the form of Ax = b, which is essential to
obtain the coordinates of unknown nodes. It is also worth
mentioning that the matrix equations in these localisation al-
gorithms are static because of the scenario they are designed
for. However, as UASN differs from WSN in various ways,
necessary improvements should be made in order to obtain
better performance.

3 | ZEROING NEURODYNAMICS
MODEL FOR UASN LOCALISATION

This section focus on laying the framework of a zeroing
neurodynamics‐based localisation method that is suitable for
an unknown node to locate itself dynamically in UASN. Thus,
the problem to be solved is considered a dynamic one in this
section. The static instances are theoretically special cases of
dynamic problems and are covered in discussions.

Assume that an unknown node is always aware of the
coordinates of anchor nodes in the corresponding network.
The original static problem can be transformed into

ATðtÞAðtÞxðtÞ ¼ ATðtÞbðtÞ; ð6Þ

in which every element in A(t) and b(t) is dependent on time t,
the solution to be obtained is denoted by x(t), and T denotes
the transpose operation of vectors or matrices. Based on the
above Equation (6), an error monitor function is defined as

εðtÞ ¼ ATðtÞAðtÞxðtÞ − ATðtÞbðtÞ: ð7Þ

Apparently, given that ɛ(t) = 0, then the theoretical solu-
tion x*(t) is an equilibrium point of Equation (6). Hence from
a control perspective, the object is to regulate the error
monitor function ɛ(t) to zero, so that the state vector x(t)
reaches theoretical solution x*(t). Based on zeroing neuro-
dynamics design methodology, a basic design formula as fol-
lows can be used to regulate ɛ(t):

_εðtÞ ¼ −βΨðεðtÞÞ; ð8Þ

in which scaling factor β > 0, _εðtÞ represents the time derivative
of ɛ(t), and Ψð⋅Þ : R

n
→ R

n is a vector‐valued activation func-
tion array, of which each element is activation function ψ(⋅).
Substituting Equation (7) into Equation (8) yields

ATðtÞAðtÞ _xðtÞ ¼ − βΨ ATðtÞAðtÞx ðtÞ − ATðtÞbðtÞ
� �

− ATðtÞ _AðtÞx ðtÞ þ ATðtÞ _bðtÞ

− _A
T
ðtÞAðtÞx ðtÞ þ _A

T
ðtÞbðtÞ:

ð9Þ

The above equation is the zeroing neurodynamics model
designed for finding the solution x*(t) of Equation (6), and in
turn, locating the unknown node. If the matrix AT(t)A(t) is
non‐singular at any time, then the above zeroing neuro-
dynamics model (9) can be rewritten as

_xðtÞ ¼ ATðtÞAðtÞ
� �−1

−βΨ ATðtÞAðtÞx ðtÞ − ATðtÞbðtÞ
� �� �

− ATðtÞAðtÞ
� �−1ATðtÞ _AðtÞxðtÞ − _bðtÞ

� �

− ATðtÞAðtÞ
� �−1

_A
T
ðtÞðAðtÞxðtÞ − bðtÞÞ:

ð10Þ

If the problem is static, as the original design, then the
above model is simplified as

_xðtÞ ¼ −β ATA
� �−1Ψ ATAxðtÞ − ATb

� �

: ð11Þ

Theoretically, zeroing neurodynamics models can adopt any
monotonically‐increasing odd functions as activation functions.
Certain activation functions are capable of enhancing the zeroing
neurodynamics model with various properties. A few special
examples are listed below [20]:

1) Linear activation function: ψ(ɛ) = ɛ.
2) Power‐Q activation function:

ψðεÞ ¼ asigqðεÞ; q ∈ ð1;þ∞Þ:

3) Bi‐Power activation function:

ψðεÞ ¼ a sigpðεÞ þ sigqðεÞð Þ; p ∈ ð0; 1Þ; q ∈ ð1;þ∞Þ:

In above activation functions, a is a positive scaling factor
and the function sigϑ(ɛ) is detailed as follows:

jεjϑ; if ε > 0;
0; if ε ¼ 0;
−jεjϑ; if ε < 0;

8

<

:

where |⋅| means absolute value. Both the Power‐Q activation
function and the Bi‐Power activation function can accelerate
the convergence speed of zeroing neurodynamics model (10).
With appropriate activation functions applied, the zeroing
neurodynamics model that is suitable to locate unknown nodes
in UASN can be constructed following the steps detailed in
this sector.

4 | CONVERGENCE ANALYSES

In this section, theoretical analyses on the convergence prop-
erty of the proposed models are given below.
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Theorem 1 If AT(t)A(t) is non‐singular and a monotonically‐
increasing odd activation function is applied, then starting
from any initial state x(0), the zeroing neurodynamics model
(10) globally converges to the theoretical solution x*(t) of
problem (6).

Proof Define a Lyapunov candidate function as LðtÞ ¼
εðtÞk k22=2, of which the time derivative can be expressed as
_LðtÞ ¼ ε

TðtÞ _εðtÞ. By substituting Equations (7) and (8) into the
time derivative, the following equation is obtained:

_LðtÞ ¼ −β ATðtÞAðtÞx ðtÞ − ATðtÞbðtÞ
� �

Ψ ATðtÞAðtÞxðtÞ
�

−ATðtÞbðtÞ
�

:

Since Ψ(⋅) is monotonically‐increasing odd, _LðtÞ ≤ 0 and
_LðtÞ ¼ 0 only if ɛ(t) = 0. In addition, due to its definition,
apparently L(t) ≥ 0 and L(t) = 0 only if ɛ(t) = 0. In other
words, _LðtÞ < 0;LðtÞ > 0 for x(t) ≠ x*(t), _LðtÞ ¼ 0;LðtÞ ¼ 0
only when x(t) = x*(t). Based on Lyapunov stability theory, it
is concluded that the zeroing neurodynamics model (10)
converges to the theoretical solution x*(t) with time. □

Theorem 2 If AT(t)A(t) is non‐singular and the Bi‐Power
activation function is applied, then starting from any initial
state x(0), the zeroing neurodynamics model (10) globally
converges to the theoretical solution x*(t) of problem (6) with
finite‐time convergence.

Proof Consider the equation _εðtÞ ¼ −βΨðεðtÞÞ, that is, the
compact form of the zeroing neurodynamics model (9). Its ith
subsystem is expressed as

_εiðtÞ ¼ −βψ εiðtÞð Þ;

in which the ith component of ɛ(t) is represented by ɛi(t). The
initial state of ɛ(t) is denoted by εð0Þ ¼ ε1ð0Þ; ε2ð0Þ;…;½
εnð0Þ�T. Then Define the ɛi(t) with largest absolute values at
initial stage to be ξ(t), that is, |ξ(0)|≥|ɛi(0)| for any possible i.
Based on the comparison lemma, since every subsystem has
identical dynamics, it means that |ξ(t)|≥|ɛi(t)| as time evolves
aswell. Thus, if ξ(t) converges to 0, every subsystem converges to
0 along with ξ(t). Define the convergence time of the dynamics
of ξ(t) as tξ. Then, depending on the sign of ξ(0), the conver-
gence has three situations:

_ξðtÞ ¼ −γξpðtÞ − γξqðtÞ;

where γ = aβ and the time derivative of ξ(t) is represented by
_ξðtÞ. Since γξ

q(t) in the above equation is non‐negative, an
equation can be obtained as follows:

� The situation of ξ(0) > 0. According to Equations (3) and
(8), the dynamics of ξ(t) can be expressed as follows:

_ξðtÞ ≤ −γξpðtÞ;

which is equivalent to

dt ≤ −
1
γ
ξ−pðtÞdξðtÞ:

Integrating on both sides yields

Z tξ

0
dt ≤ −

1
γ

Z 0

ξð0Þ
ξ−pðtÞdξðtÞ:

Solving the above equation yields

tξ ≤
ξ1−pð0Þ
γð1 − pÞ

¼
jξð0Þj1−p

γð1 − pÞ
:

� The situation of ξ(0) < 0. Via a similar procedure, it can be
concluded that

tξ ≤
ð−ξð0ÞÞ1−p

γð1 − pÞ
¼
jξð0Þj1−p

γð1 − pÞ
:

� The situation of ξ(0) = 0. It is evident that

tξ ¼ 0¼
jξð0Þj1−p

γð1 − pÞ
:

By summarising all three situations, the conclusion is that the
zeroing neurodynamics model (10) with the Bi‐power activa-
tion function converges in finite time. □

5 | ILLUSTRATIVE EXAMPLES

Several computer simulations are conducted to verify the
effectiveness of the proposed models in this section. The ad-
vantages of the model proposed in this paper are also discussed
accordingly.

5.1 | Example 1

Consider a square area with a side length of 1000 m, in which
five anchor nodes are randomly deployed following the uni-
form distribution. Assume that all nodes are stationary and
distance measurements are accurate. Then an unknown node
can calculate its own position accurately via zeroing neuro-
dynamics model (11) if it has position information of anchor
nodes under this ideal configuration. The initial state x(0) is set
as the coordinates of the closest anchor node.

The simulation result is plotted in Figure 1. Apparently, as
observed from Figure 1a, the zeroing neurodynamics model
(11) is capable of converging to the theoretical solution, which
means the unknown node is located. With different activation
functions applied, the convergence of x(t) follows different
trajectories as well. The residual error ‖ɛ(t)‖2 during the
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convergence of zeroing neurodynamics model (11) with three
activation functions presented in this paper is displayed
respectively in Figure 1b. Compared to the Linear activation
function, it is evident that both the Power‐Q activation func-
tion and the Bi‐power activation function are capable of greatly
accelerating the convergence. It is worth noting that different
values of q are assigned to the Power‐Q activation function and
the Bi‐power activation function. In general, a larger q means
faster convergence speed. However, as can be observed in
Figure 1b, after around 2 s, the zeroing neurodynamics model
(11) with the Bi‐power activation function has a smaller ‖ɛ(t)‖2
than the rests, which is because of the finite‐time convergence
property and is consistent with theoretical analyses in
Section 4.

5.2 | Example 2

In this example, scenario configuration is largely the same as
the previous example, except that nodes are considered dy-
namic instead of stationary. An unknown node that is to be
located is set to be cruising around a random point in a circle
within the test area. Thus, the localisation problem is dynamic
if the node locates itself continuously.

To the best of authors' knowledge, there are few existing
neurodynamics‐based UASN localisation methods, while con-
ventional UASN methods tend to track node positions via
solving a series of static equations. Thus, for comparison
purpose, another type of neurodynamics model is constructed
following the classic gradient neural network (GNN) meth-
odology. The model is detailed as follows:

_xðtÞ ¼ −δATðtÞΨðAðtÞxðtÞ − bðtÞÞ; ð12Þ

where scaling factor δ > 0, and Ψ(⋅) is a vector‐valued acti-
vation function array with ψ(⋅) being tanh activation function.
The GNN model (12) is able to precisely find the least square
solution of the original static localisation problem. However, in
face of dynamic scenarios it has some limitations. As such, the
addition of tanh activation function is to suppress chattering
and yield better results.

As can be observed from Figure 2a, the movement path of
the unknown node is covered by the trajectories of the state
vector x(t) of the zeroing neurodynamics model (10). In
addition, Figure 2b demonstrates that as time goes on, ‖ɛ(t)‖2
of the zeroing neurodynamics model (10) converges to zero,
that is, the state vector x(t) converges towards the position of
the unknown node. Thus, despite that the unknown node is
moving, the zeroing neurodynamics model (10) can effectively
track and locate the unknown node. In contrast, it is visually
demonstrated that the GNN model (12) can not precisely track
the position of the unknown node in this case. Furthermore, as
shown in Figure 2b, ‖ɛ(t)‖2 of the GNN model (12) is not
successfully reduced to zero, which means a large portion of
error always exists. By comparing the performances of these
two models, it can be concluded that the zeroing neuro-
dynamics model proposed in this paper is much more effective
in this case. Note that zeroing neurodynamics model (10) with
the Power‐Q activation function or Bi‐power activation is able
to locate to moving unknown node as well, and converges
faster, which is similar to that of Figure 1b, but is not shown in
Figure 2 for simplification.

5.3 | Example 3

Consider an autonomous underwater vehicle (AUV), whose
starting point is set as the coordinate origin (0,0), moving along
the positive direction of the x‐axis at an average speed of 2 m/s.
There are eight buoys serving as anchor nodes within a 1000 m
radius centred around the AUV, which are considered to be
within effective communication range. All nodes, including the
AUV, are under the effects of elements such as water waves,
and begin to drift away from the planned positions as time goes
on. To locate the moving AUV, the measurement error of
distance between nodes is neglected and x(0) is set to be (0, y0),
where y0 ∈ [−10, 10]. Both the zeroing neurodynamics model
(10) and the GNN model (12) are tested in this example.

Figure 3 illustrates the simulation result. Careful examina-
tion shows that the zeroing neurodynamics model (10) with all
three kinds of activation functions converges to the theoretical
solution, and thus the movement trajectory of the AUV is

F I GURE 1 A randomly deployed unknown node locates itself via the
zeroing neurodynamics model (11), with the Linear activation function
(signified by Linear), the Power‐Q activation function (signified by Power‐
Q), and the Bi‐power activation function (signified by Bi‐power), where
q = 2 for Power‐Q activation function and p = 0.5, q = 1.5 for Bi‐power
activation function. (a) Trajectories of x(t). (b) Residual error ‖ɛ(t)‖2.

F I GURE 2 Localisation of a cruising unknown node via the zeroing
neurodynamics model (10) (signified by ZD), and the GNN model (12)
(signified by GNN), with theoretical trajectories of the unknown node
added for comparison (signified by Theoretical). (a) Trajectories of x(t).
(b) Residual error ‖ɛ(t)‖2. GNN, gradient neural network; ZD, zeroing
neurodynamics.
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successfully and effectively tracked. It can be further observed
from Figure 3 that the zeroing neurodynamics model (10) with
the Power‐Q activation function or the Bi‐power activation
function is capable of quickly locating the AUV near its starting
point. The trajectories of the zeroing neurodynamics model
(10) with these two activation functions overlap with each
other, as their effects are highly identical. It is noticeable that,
unlike in Example 2, the position of the moving AUV is
successfully tracked by the GNN model (12) in this case. This
is largely because the time derivative of A(t) is overall much
smaller than that of the previous one. As shown in Figure 3,
after careful adjustment of parameters, it is possible to reduce
residual error to a negligible amount. However, this can be
inconvenient and potentially unreliable in comparison with the
zeroing neurodynamics model (10).

5.4 | Example 4

In previous examples, it is assumed that the target node to be
located always knows exactly the positions of anchor nodes
as well as the distances in between. However, in practice,
packets are used to exchange data between nodes, which are
transmitted periodically rather than continuously. In this
example, on the basis of Example 3, the AUV knows the
localisation information from all anchor nodes at t = 0, but
later it can only update the position and distance information
of an anchor node upon receiving a packet from that specific

anchor node. Let xAUV(t) denote the actual position of the
AUV, and the time interval between receiving packets from a
specific anchor node follow the exponent distribution with
average time interval te = 5 s. To counter the error caused by
outdated information, the localisation is improved by allow-
ing the AUV to predict its current position with its previous
position and speed, as well as weighting outdated information
less as time goes on. The weighting matrix consist of diag-
onal elements within [0,1] range. Both the prediction and
weighting are made continuously and x(0) = (0, y0), where
y0 ∈ [−100, −50] ∪ [50, 100].

It should be noted that in Figure 4, the error e(t) means the
distance from the actual coordinates xAUV(t) of the AUV to x
(t). It can be observed from Figure 4 that although the zeroing
neurodynamics model (10) is able to reduce ‖ɛ(t)‖2 to 0, which
is verified by previous examples, it can not locate the AUV
with similar precision. At roughly t = 2 s, e(t) begins to increase
because of the outdated data, then decreases when a new
packet is received so that position information is updated.
After around t = 10 s, e(t) gradually becomes stable and
maintains at a relatively small number. The reason for this
result is not computational but rather the measurement error
introduced into matrix A(t) and vector b(t) by the outdated
data, which is not to be handled by the zeroing neurodynamics
model (10) alone without any data preprocessing. As such, it is
also demonstrated in Figure 4 that by combining with pre-
diction and weighting strategy, the zeroing neurodynamics
model (10) can yield better results, which reduces error roughly
by half and has a trajectory much closer to that of the AUV.
Note that the prediction and weighting strategy used in this
example is preliminary and demonstrative, and further
improvement is possible.

5.5 | Example 5

In practice, it is unlikely that the distance or angle measure-
ment is completely accurate. As most distance or angle is
measured in complicated environments or just roughly esti-
mated in practical UASN, distances measured between nodes

F I GURE 3 Localisation of a moving AUV via the zeroing
neurodynamics model (10), with the Linear activation function (signified by
Linear), the Power‐Q activation function (signified by Power‐Q), and the
Bi‐power activation function (signified by Bi‐power), where p = 0.5, q = 2.
Test result of the GNN model (12) (signified by GNN) and the actual
movement trajectory of AUV (signified by AUV) are added for further
comparison. (a) Trajectories of x(t). (b) Residual error ‖ɛ(t)‖2.
(c) Comparison of x(t). (d) Comparison of ‖ɛ(t)‖2. AUV, autonomous
underwater vehicle; GNN, gradient neural network.

F I GURE 4 Localisation of a moving AUV based on outdated data via
the zeroing neurodynamics model (10), without counter error measure
(signified by Basic), and with counter error measure (signified by
Improved), where β = 5. The actual movement trajectory of AUV is added
for comparison (signified by AUV). (a) Trajectories of x(t). (b) Error e
(t) = ‖x(t) − xAUV(t)‖2. AUV, autonomous underwater vehicle.
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are calculated with the error within a �5% range in this
example. All other settings are the same as those in Example 4.
Note that as anchor nodes can be as far as 1000 m away, the
error can be 50 m large at most, which should greatly disrupt
the accuracy of the localisation.

Figure 5 shows the corresponding simulation result. By
carefully observing the figure, it is not difficult to notice that
the basic zeroing neurodynamics model (10) without counter
error measure is able to achieve better results at some time
points, for example, at around t = 15 s. This is because the
error from inaccurate measurement may compensate for that
from outdated data, depending on the relative positions of
AUV and anchor nodes. In the improved zeroing neuro-
dynamics model (10) with counter error measure, however,
such inaccurate distance or angle measurements are discarded
due to low reliability, which results in the worse performance at
those special time points. Despite that the improved version of
the zeroing neurodynamics model (10) is still capable of
providing more accurate node positions than the basic one in
general, the localisation is greatly disrupted, as can be viewed
from Figure 5a, due to a large amount of error introduced by
inaccurate measurements. By comparing with the result from
Example 4, it is apparent that the proposed model is still quite
vulnerable to measurement errors contained in raw data. At
current stage zeroing neurodynamics model (10) lacks its own
error countering design, its error countering efficiency is highly
dependent on what error reducing algorithms are combined
with it. Therefore, more advanced error reducing algorithms
should be combined with the proposed model to better
eliminate such effect.

5.6 | Example 6

To better demonstrate the performance of the proposed
zeroing neurodynamics model (10), in this example, compari-
sons are made between three situations where the average time
interval te between receiving packets from a specific anchor
node is different. The positions of anchor nodes are identical
in all three situations, but te = 5, 10 s, and 20 s respectively.
The actual time points of receiving a packet from an anchor

node are randomly chosen following the exponent distribution.
The other settings are the same as those in Example 4.

The simulation results are visualised in Figure 6, where
only the results from zeroing neurodynamics model (10) with
error reduction strategies are displayed for convenient com-
parison. It is worth mentioning that by combining with error
reduction strategies, zeroing neurodynamics model (10) re-
duces locating error by roughly 45% in these three situations.
By observing Figure 6, it is evident that the zeroing neuro-
dynamics model (10) can locate the moving AUV with
considerable accuracy in all three situations, which proves its
effectiveness when te is much larger than those of previous
examples. However, it is also noticeable that the maximum
locating error is proportional with te, which is predictable as
the error‐reducing strategies used in this example are pre-
liminary and demonstrative. Combining zeroing neuro-
dynamics model (10) with more complicated and advanced
strategies should be able to effectively counter the locating
error if te is considerably large.

6 | CONCLUSIONS

A zeroing neurodynamics‐based method for UASN local-
isation has been proposed in this paper to preferably locate
moving underwater nodes. The methodology of constructing a
zeroing neurodynamics model for UASN localisation has been
explicated in detail, and several activation functions have been
applied to enhance the convergence of the zeroing neuro-
dynamics model. The effectiveness of the zeroing neuro-
dynamics model has been proven via theoretical analyses,
which has been verified by illustrative examples. It has also
been demonstrated in examples that the proposed zeroing
neurodynamics model proposed is compatible with other
error‐reducing strategies designed for UASN localisation,
which has proven that further improvement in the effective-
ness and accuracy of the proposed model can be achieved with
ease. As the main focus has been zeroing neurodynamics in
this paper, the combination with other locating strategies has
not been investigated in depth, which will be the direction of
future research.

F I GURE 5 Localisation of a moving AUV based on inaccurate and
outdated data via the zeroing neurodynamics model (10), without counter
error measure (signified by Basic), and with counter error measure
(signified by Improved), where β = 5. The actual movement trajectory of
AUV is added for comparison (signified by AUV). (a) Trajectories of x(t).
(b) Error e(t). AUV, autonomous underwater vehicle.

F I GURE 6 Localisation of a moving AUV via the zeroing
neurodynamics model (10) with different te, where te = 5 s (signified by
te = 5 s), 10 s (signified by te = 10 s), 20 s (signified by te = 20 s)
respectively. The actual movement trajectory of AUV is added for
comparison (signified by AUV). (a) Trajectories of x(t). (b) Error e(t). AUV,
autonomous underwater vehicle.

8 - WANG ET AL.

 2
4
6
8
2
3
2
2
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
4
9
/cit2

.1
2
2
2
5
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

6
/0

5
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



ACKNOWLEDGEMENTS
This work is supported in part by the Key Laboratory of IoT of
Qinghai under Grant 2022‐ZJ‐Y21, in part by the National
Natural Science Foundation of China under Grant No.
61962052.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on
request from the corresponding author. The data are not
publicly available due to privacy or ethical restrictions.

ORCID
Shuqiao Wang https://orcid.org/0000-0002-9426-0174

REFERENCES
1. Wang, G., et al.: Convergence and robustness of bounded recurrent

neural networks for solving dynamic Lyapunov equations. Inf. Sci. 588,
106–123 (2022). https://doi.org/10.1016/j.ins.2021.12.039

2. Li, J., Zhang, Y., Mao, M.: General square‐pattern discretization formulas
via second‐order derivative elimination for zeroing neural network
illustrated by future optimization. IEEE Trans. Neural Netw. Learn. Syst.
30(3), 891–901 (2019). https://doi.org/10.1109/tnnls.2018.2853732

3. Li, W., Su, Z., Tan, Z.: A variable‐gain finite‐time convergent recurrent
neural network for time‐variant quadratic programming with unknown
noises endured. IEEE Trans. Industr. Inform. 15(9), 5330–5340 (2019).
https://doi.org/10.1109/tii.2019.2897803

4. Wei, L., et al.: New noise‐tolerant neural algorithms for future dynamic
nonlinear optimization with estimation on Hessian matrix inversion.
IEEE Trans. Syst. Man Cybern. Syst. 4, 2611–2623 (2021). https://doi.
org/10.1109/tsmc.2019.2916892

5. Jin, L., et al.: Saturation‐allowed neural dynamics applied to perturbed
time‐dependent system of linear equations and robots. IEEE Trans. Ind.
Electron. 68(10), 9844–9854 (2021). https://doi.org/10.1109/tie.2020.
3029478

6. Jin, L., et al.: Novel joint‐drift‐free scheme at acceleration level for ro-
botic redundancy resolution with tracking error theoretically eliminated.
IEEE ASME Trans. Mechatron. 26(1), 90–101 (2021)

7. Li, S., et al.: Distributed recurrent neural networks for cooperative
control of manipulators: a game‐theoretic perspective. IEEE Trans.
Neural Netw. Learn. Syst. 28(2), 415–426 (2017). https://doi.org/10.
1109/tnnls.2016.2516565

8. Tan, N., et al.: Model‐free motion control of continuum robots based on
a zeroing neurodynamic approach. Neural Netw. 133, 21–31 (2021).
https://doi.org/10.1016/j.neunet.2020.10.005

9. Xu, F., et al.: Zeroing neural network for solving time‐varying linear
equation and inequality systems. IEEE Trans. Neural Netw. Learn. Syst.
30(8), 2346–2357 (2019). https://doi.org/10.1109/tnnls.2018.2884543

10. Gerontitis, D., et al.: Varying‐parameter finite‐time zeroing neural
network for solving linear algebraic systems. Electron. Lett. 56(16),
810–813 (2020). https://doi.org/10.1049/el.2019.4099

11. Simos, T.E., et al.: Unique non‐negative definite solution of the time‐
varying algebraic Riccati equations with applications to stabilization of
LTV systems. Math. Comput. Simul. 202, 164–180 (2022). https://doi.
org/10.1016/j.matcom.2022.05.033

12. Xue, Y., Sun, J., Qian, Y.: Continuous and discrete zeroing neural network
for a class of multilayer dynamic system. Neurocomputing 493(7),
244–252 (2022). https://doi.org/10.1016/j.neucom.2022.04.056

13. Jin, L., et al.: Zeroing neural networks: a survey. Neurocomputing 267,
597–604 (2017). https://doi.org/10.1016/j.neucom.2017.06.030

14. Wang, X., Che, M., Wei, Y.: Neural network approach for solving non-
singular multi‐linear tensor systems. J. Comput. Appl. Math. 368, 112569
(2020). https://doi.org/10.1016/j.cam.2019.112569

15. Wang, S., et al.: Accelerated convergent zeroing neurodynamics models
for solving multi‐linear systems with M‐tensors. Neurocomputing
458(11), 271–283 (2021). https://doi.org/10.1016/j.neucom.2021.06.005

16. Jin, L., et al.: RNN for solving time‐variant generalized Sylvester equation
with applications to robots and acoustic source localization. IEEE Trans.
Ind. Inform. 16(10), 6359–6369 (2020). https://doi.org/10.1109/tii.
2020.2964817

17. Liao, S., et al.: A zeroing neural dynamics based acceleration optimization
approach for optimizers in deep neural networks. Neural Netw. 150,
440–461 (2022). https://doi.org/10.1016/j.neunet.2022.03.010

18. Xiao, L., et al.: Improved finite‐time solutions to time‐varying Sylvester
tensor equation via zeroing neural networks. Appl. Math. Comput. 416,
126760 (2022). https://doi.org/10.1016/j.amc.2021.126760

19. Zhang, X., et al.: Design and analysis of recurrent neural network models
with non‐linear activation functions for solving time‐varying quadratic
programming problems. CAAI Trans. Intell. Technol. 6(4), 394–404
(2021). https://doi.org/10.1049/cit2.12019

20. Xiao, L., et al.: Finite‐time and predefined‐time convergence design for
zeroing neural network: theorem, method, and verification. IEEE Trans.
Industr. Inform. 17(7), 4724–4732 (2021). https://doi.org/10.1109/tii.
2020.3021438

21. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in un-
derwater networks. ACM Sigmobile Mob. Comput. Commun. Rev. 11(4),
23–33 (2007). https://doi.org/10.1145/1347364.1347372

22. Erol‐Kantarci, M., Mouftah, H.T., Oktug, S.: A survey of architectures
and localization techniques for underwater acoustic sensor networks.
IEEE Commun. Surv. Tutor. 13(3), 487–502 (2011). https://doi.org/10.
1109/surv.2011.020211.00035

23. Alexandri, T., Walter, M., Diamant, R.: A time difference of arrival based
target motion analysis for localization of underwater vehicles. IEEE
Trans. Veh. Technol. 71(1), 326–338 (2022). https://doi.org/10.1109/tvt.
2021.3120201

24. Sun, S., et al.: Underwater acoustic localization of the black box based on
generalized second‐order time difference of arrival (GSTDOA). IEEE
Trans. Geosci. Remote Sens. 18(8), 1317–1321 (2020)

25. Liu, F., et al.: Time‐difference‐of‐arrival‐based localization methods of
underwater mobile nodes using multiple surface beacons. IEEE Access
9, 31712–31725 (2021). https://doi.org/10.1109/access.2021.3060565

26. Zhang, W., et al.: A node location algorithm based on node movement
prediction in underwater acoustic sensor networks. IEEE Trans. Veh.
Technol. 69(3), 3166–3178 (2020). https://doi.org/10.1109/tvt.2019.
2963406

27. Jia, T., et al.: Localization of a moving object with sensors in motion by
time delays and Doppler shifts. IEEE Trans. Signal Process. 68,
5824–5841 (2020). https://doi.org/10.1109/tsp.2020.3023972

28. Li, Y., et al.: Node dynamic localization and prediction algorithm for
internet of underwater things. IEEE Internet Things J. 9(7), 5380–5390
(2022). https://doi.org/10.1109/jiot.2021.3108424

How to cite this article:Wang, S., Du, X., Deng, T.: A
zeroing neurodynamics‐based location method for
nodes in underwater acoustic sensor network. CAAI
Trans. Intell. Technol. 1–9 (2023). https://doi.org/10.
1049/cit2.12225

WANG ET AL. - 9

 2
4
6
8
2
3
2
2
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
4
9
/cit2

.1
2
2
2
5
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

6
/0

5
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se


	A zeroing neurodynamics‐based location method for nodes in underwater acoustic sensor network
	1 | INTRODUCTION
	2 | PROBLEM FORMULATION
	3 | ZEROING NEURODYNAMICS MODEL FOR UASN LOCALISATION
	4 | CONVERGENCE ANALYSES
	5 | ILLUSTRATIVE EXAMPLES
	5.1 | Example 1
	5.2 | Example 2
	5.3 | Example 3
	5.4 | Example 4
	5.5 | Example 5
	5.6 | Example 6

	6 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT


