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Abstract

Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples
are Internet-of-Things (IoT) or sensing software embedded in appliances or even specialised meters that
measure and respond to electricity demands in smart grids. Due to their pervasive nature, they are usually
chosen as recipients for larger scope cyber-security attacks. Those promote system-wide disruptions and
are directed towards one key aspect such as confidentiality, integrity, availability or a combination of those
characteristics. Our paper focuses on a particular and distressing attack where coordinated malware infected
IoT units are maliciously employed to synchronously turn on or off high-wattage appliances, affecting the
grid’s primary control management. Our model could be extended to larger (smart) grids, Active Buildings
as well as similar infrastructures. Our approach models Coordinated Load-Changing Attacks (CLCA)
also referred as GridLock or BlackIoT, against a theoretical power grid, containing various types of power
plants. It employs Continuous-Time Markov Chains where elements such as Power Plants and Botnets are
modelled under normal or attack situations to evaluate the effect of CLCA in power reliant infrastructures.
We showcase our modelling approach in the scenario of a power supplier (e.g. power plant) being targeted
by a botnet. We demonstrate how our modelling approach can quantify the impact of a botnet attack and
be abstracted for any CPS system involving power load management in a smart grid. Our results show that
by prioritising the type of power-plants, the impact of the attack may change: in particular, we find the
most impacting attack times and show how different strategies impact their success. We also find the best
power generator to use depending on the current demand and strength of attack.

Keywords: Coordinated Load-Changing Attacks, Smart Grid, Load Balancing Systems, Continuous Time
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1 Introduction

Cyber security is a major concern when evaluating critical resource infrastructures.

Malicious attacks and unintended damages significantly increase each year, and it

is therefore important to know what effects they will have. Due to strict supply-

demand requirements in power grids, to maintain equilibrium is of paramount im-

portance. In practice, the entities that regulate and those that actually maintain

equilibrium depend on the politics of the country, and we do not refer to them

specifically, rather we refer to a Cyber-Physical System (CPS) component called

Load Controller. Whenever it is required to increase or decrease energy levels, it

may trigger costly responses, e.g. turning on new energy sources or disconnecting

areas from the grid. Historically, power generation and demand have been very sep-

arated; however, this scenario is changing, and consequently their related security

risks and possible attacks are changing too, so the current mitigation strategies may

not be applicable any more. The current role of a load controller is balancing en-

ergy supply accordingly to demand while maintaining the frequency of the current

at around 50 MHz in Europe (or 60 MHz for other countries such as USA, Brazil

and Japan).

Organised attacks aimed at power infrastructures are called Coordinated Load-

Changing Attacks (CLCA), where synchronous connections or disconnections of

high-wattage units such as water heaters or air conditioning units are used to cause

disruptions in energy provision. CLCA are here considered as black boxes, i.e. they

do not require extensive knowledge as to the particularities of grid operations in

order to be employed. If sudden spikes or drops such as synchronised turning on

or off of several devices takes place, they cause the equipment to short and break,

causing damages and reducing the availability of power supply. The load controller

can easily cope with common occurrences in terms of imbalances, adjusting energy

flows accordingly; however, sudden usage spikes may unadvisedly cause the grid

to collapse. Malicious users could profit from those situations as they could infect

a considerable number of high-wattage devices to coordinate actions that impairs

energy distribution [10,11].

In the context of this paper, we are interested in two types of systems: on

the one hand, we consider CPS [17,27], i.e. systems with limited resources (low

power, energy, processing or other capacity related issue) employed in a variety of

equipment ranging from sensors to smart grid components. On the other hand,

we are taking into consideration large scale infrastructures such as the Smart Grid,

Active Buildings, different types of power plant (that can be solar or nuclear, for

example) and other power reliant schemes. We are specifically focusing on modelling

their interaction, i.e. how power supply mechanisms react due to CPS usage, as well

as the influence one has on the another. Through this model we can observe the

daily usage of energy in the smart grid, and calculate its ability to cope with duress.

Our modelled attacker (or adversary) attempts to exploit the CPS mechanisms to

decrease availability and cause damages; our model captures the probability of

success and the tolerance of a theoretical smart grid made of various different types

of power plants.
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In this application context, it is worth defining a CPS and its roles. It consists

of components with two parts, i.e. a computing part integrated with a physical

counterpart, both connecting and communicating with other CPS to achieve com-

mon objectives. For example, a CPS could be an embedded system attached to a

heartbeat sensor component to collect meaningful health data from patients inside

a care unit, or could be smart meters exchanging data on power system energy

transmission and distribution. These infrastructures usually encompass a sizeable

number of entities in hyper-connected environments, deployed to help users improve

productivity, bottleneck assessments and much more. The presence of general pur-

pose CPS in residential, commercial and industrial settings is ubiquitous as many

vendors offer solutions that vary from smart home sensing devices to closed circuit

televisions.

The simplistic nature of CPS implementations makes them prone to software

contamination: for instance, installing malware in high-wattage devices, e.g. air

conditioning units or water heaters. Due to this, they are natural recipients for

coordinated attacks aimed to disrupt grid infrastructures as a synchronised event

may cause over demand or influence voltage and frequency to inadmissible levels.

This is particularly unsettling for many reasons as it may impact overall energy

costs for customers or, in extreme cases, lead to preventable casualties in healthcare

settings. The aim of this work is to evaluate different power plant configurations in

terms of operational characteristics such as cooling down and maintenance time as

well as type (e.g. nuclear power or solar panels), aiding managers to make better

decisions when designing power systems, and potentially mitigating the impact of

these attacks by choosing better load controller configurations. Our model will

also show the trade-offs of mixing different power plant types to withstand CLCA

attacks, reducing the hazardous effects they have on the infrastructure.

The paper is organised as follows: Section 2 will address cyber security concerns

and related work. On Section 3 we will discuss our modelling, with our problem

formalisation and a simple model. We explain our cyber security model applied to

CPS on Section 4. Section 5 will describe our results and findings and in Section 6

we will discuss final considerations, model extensions and future work.

2 Security concerns and related work

A CPS often entails limited resource machinery, equipped with wireless or wired

communication capabilities. They serve distinct purposes and could be deployed in

different settings to address a multitude of objectives. In this work we are inter-

ested only in availability of CPS and the consequences it imposes to overall users

(or customers) when used as recipient for active attacks. In performance evaluation

research, availability is a crucial measure used to infer quality levels of systems as

well as capacity planning. Attacks directed at availability aim to exhaust resource

capabilities until depletion causing delays while processing messages. CPS often

operate unsupervised in a state known as Machine to Machine interaction (M2M).

Scenarios involving direct M2M, without human supervision, can have several secu-
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rity implications; it becomes a lot easier for an attacker to gain undetected access to

devices, attacks on these systems take longer to be detected and the possibility of a

device misbehaving (due to attacker control or other) becomes much more common.

The vast popularity of these kinds of systems has triggered unprecedented (and

inexpensive) access to Botnets. Simply put, a Botnet is a network of infected devices

that can be remotely and synchronously controlled by an attacker. With the raise

of popularity of the IoT, it has become almost trivial to gain access to large amount

of devices. This is an outcome of lack of security measures applied to IoT devices,

as well as the ease of access to tools such as BlackEnergy 6 . This tool in particular

was able to create a Botnet that took down large amounts of the Ukraine power grid

in 2015 7 . Denial-of-service (DoS) is a common choice of attack after gaining access

to a botnet. These attacks are directed towards availability and aim to interrupt

service to critical systems. Traditionally, DoS attempts are network-based and are

used to saturate communication channels with spurious traffic to overwhelm active

nodes until they stop servicing or begin acting abnormally. These kinds of attacks

flood targets with fake requests that may cause extreme delays, reducing service

levels on recipients. One key aspect of such service disruptions is to differentiate

active and aggressive attacks from actual requests (even for an elevated number of

messages), responding equitably to incoming messages.

DoS can be caused by various techniques, such as Ping Flood, Smurf Attack,

SYN Attack, Buffer Overflow, and other attack techniques. However, more recently,

attackers began exploiting other system specific aspects, the kinds of attacks do not

merely attempt to flood a system but rather exploit a specific vulnerability to cause

damage which is harder to trace. An example of exploiting a specific vulnerability

was the attack against the Ukrainian power load controller that caused a nationwide

blackout. However, it was not an isolated incident: as recently as this year, a

similar cyber attack was suspected to have been launched against the Russian power

grid 8 . The common goal of these attacks is to create an imbalance in the frequency

appreciated by power generators’ security mechanisms due to a sudden surge. Those

sort of attacks have been called load changing Distributed DoS or Grid-Shock [10],

and they can cause damage to machinery, power cut-outs and (consequently) huge

monetary loss (another name for this sort of attack is Flash Attacks [15]).

In CPS, in order to replace the need for user intervention and regulate power

more reasonably, load balancing algorithms are used instead. Load-balancing al-

gorithms distribute resources based on expected energy usage to optimise the con-

sumption, focusing on delivering energy more efficiently. However, if massive un-

expected spikes are triggered as a consequence of a botnet, it can cause waste of

resources and even a scarcity of power for essential functions and real users.

Load-Changing attacks are not only pertinent to power-grids, it is becoming

6 T. Birdsong and G. Davis. Updated blackenergy trojan grows more powerful, McAfee Labs,
Mar 2018, Available Online at: https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/
updated-blackenergy-trojan-grows-more-powerful/
7 K. Zetter. Inside the cunning, unprecedented hack of Ukraine’s power grid. Wired, Jun 2017, Available
Online At: https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
8 BBC News. US and Russia clash over power grid ’hack attacks’. BBC News, Jun 2019, Available Online
At: https://www.bbc.co.uk/news/technology-48675203
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more common for smart infrastructures, such as smart buildings and smart cities.

The core idea is to have self regulating power supplies that adjust energy levels due

to expected consumption and loads. What this means is that a targeted attack

could be aimed at a specific company or location to turn off power and overpower

the load management system. What is made evident by these examples [10,31], is

that this threat is no longer a far-fetched scenario, but rather, a very real likelihood.

As a response to such challenges in power related research we have created a

stochastic model that can be used by smart infrastructure managers to evaluate

the threat on this system and devise countermeasures to tackle disruptions. Our

proposed modelling approach observes the impact on security of different control

mechanisms of a CPS grid under a botnet attack. In particular, we show the

likelihood of the success under different setups: a detailed analysis is presented in

Section 5.

2.1 Related work

DoS attacks have long been one of the most common and dangerous threats in

many computer networks. Their detection [9] is therefore the first step required

to perform an effective response. These attacks become even more dangerous as

the IoT spreads across a vast amount of spectra and parts of life. The literature on

security concerns highlights similar scenarios of DoS attacks against IoT systems and

CPS [3,18,28,8] With the ever changing Internet landscape, attackers have started

to focus on specific vulnerabilities of systems to optimise their attacks. Liang et

al. [18], showed a simple Distributed DoS attack on an IoT scenario, however, they

have demonstrated that the result of an attack, if propagated to a CPS, could be

massively impactful. In their work, Roman et al., 2013 [28] mention key features of

how the way these type of systems are setup can cause security concerns. The unique

characteristics present in smart infrastructures may render it vulnerable to new

avenues of attack such as battery drain and new types of DoS. These new challenges

raise concerns for security professionals such as what security vulnerabilities their

specific system could be subject to, and what impact it might have.

Load changing attacks were mentioned in Dabrowski et al., 2017 [10]. In their

work the authors have discussed a simulation concerning the impact that load chang-

ing has on power management. Their attack is based on the fact that when op-

erating a power grid, providers have to continuously maintain a balance between

supply (i.e., production in power plants) and demand (i.e., power consumption) to

maintain the power grid’s nominal frequency of 50/60 Hz. Their Matlab simula-

tions show that this balance can easily be broken through a botnet attack. Through

their power analysis, they also estimate the number of devices needed to disrupt a

country’s power grid. This work is one of the first to show that a potential attack

can be staged against a power plant without the need for manipulating the controls

itself, but just by external device activity. Our proposed approach takes inspiration

from this external influences, but scales it to the representation of any power grid.

Also, rather than using simulation, our model uses model checking features present

in Markovian solvers (PRISM tool) to evaluate the impact these attackers have on
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the modelled system.

Another work which studied coordinated attacks by botnets and disruptions to

the power grid was done by Soltan et al., 2018 [31]. Their work introduces the

concept of Manipulation on Demand via IoT (MADIoT), through simulations they

show how external influences of high power devices can cause disruptions and power

outages. They have demonstrated the interdependence between supply of power and

the demand, and how this can be exploited to cause disruptions. These types of

attack are the core focus of our work, however, Soltan and his colleagues focused

on simulations of attacks. In contrast, it is our wish to quantify what these attacks

mean from the perspective of a potential supplier. Through model checking we

could investigate how the attacks affect the power system, and we can adapt it to

better adjust, prepare, or respond to these attacks.

Continuous Time Markov Chains (CTMC) models have been successfully used

to simulate attacks on a variety of systems [2]. Baumann et al., 2012 [5], make

use of CTMCs to model Flooding DoS on a theoretical network. Through their

models they were able to show the impact of the attacks on the systems throughput

and evaluate its effects. They could also perform security checking for different

DoS rates and scenarios. In Arnaboldi & Morisset, 2017 [2], this notion is taken

a step forward to model a CTMC capturing DoS attacks on IoT Systems. The

model presented were able to quantify several impacts of the DoS attacks including

how they influenced other components in the system as well as suggesting optimal

system setups. Both these works demonstrate the flexibility of CTMCs for mod-

elling attacks on systems of devices. Our proposed modelling methodology uses a

similar approach to modelling systems of devices and observes the impacts of the

attacks, but rather than focusing on general flooding of messages looks at the spe-

cific problem of load balancing and power management. Previous work in this area

by Norman et al. 2005 [22] used PRISM to observe runtime strategies in order to

achieve a trade-off between the performance and power consumption of a system.

Our approach extends this to look at the influence of an attacker on these balancing

strategies

Specific to the context of coordinated cyber-attacks on smart grids, Moya &

Wang, 2018 [20] have developed correlation indices suitable for identification of

these disruptions. Sun et al., 2016 [34] have proposed a Coordinated Cyber Attack

Detection System (CCADS), strongly inspired in IDS concepts as well as its benefits

to cyber security efforts to mitigate the effects of such disturbances in smart grids.

2.2 Threat Model

We are working on the assumption that our designed adversary has gained illicit

access to a large number of IoT devices and formed a botnet. Using this botnet,

our envisioned attacker targets a smart grid infrastructure through excess energy

usages and causes a spike which damages the load controller. When a power plant

experiences very high load, it will employ one out of three mitigation controls,

primary, secondary or tertiary [10,31].
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(i) Primary Control distributes the load to other power-plants in the vicinity.

(ii) Secondary Control makes an assessment to return to normal operation if cri-

teria is met.

(iii) Tertiary Control frees up resources from previous Primary and Secondary con-

trols.

The most damaging target is Primary Control, as switching on and turning off

further plants is expensive and time intensive. The objective of the attack is to

continuously trigger the Primary control and consequently cause the most damage,

including potential damage to turbines and machinery caused by the strain.

Further to this consideration, power suppliers are constantly balancing the fre-

quency of the supply. Sudden spikes may affect the frequency significantly enough

to activate security mechanisms of power plants for which they detach themselves

from the grid. This may lead to blackouts and disruptions. A smart intruder who

has gained access to a botnet can choose when to turn them all on synchronously.

If she controls enough devices, she may induce a spike and make suppliers detach.

In order to inflict the highest damage, the attacker needs to make sure that she will

cause a spike; however depending on current usage, this may or may not happen.

If the attacker controls a fraction of the devices and turns them all on, but these

devices are already operational due to expected daily usage, the spike may not trig-

ger. Perhaps counter-intuitively, depending on the daily usage, it might be a lot

more damaging to trigger the spike at a lower usage time such as mid afternoon to

cause the most disruption.

The effectiveness of a spike will also depend on the type of supplier providing

the energy. Whilst if a nuclear supplier is spiked it might take a very long time

to recover, gas power plant have a much higher adjustment rate and are therefore

more resilient to these attacks. In our model we mimic the response behaviours of

hydro, gas and nuclear power. We model the demand borrowing real values 9 in the

UK, which we scale down to limit the number of power suppliers in the model. The

attacker is modelled at every hour of the day (with the mean power usage at that

time), and we calculate the success and impact rate of the attacks.

3 Model

Markov Chains (MC) are a powerful modelling formalism to describe behavioural

properties of systems with simple primitives [23] proposed in the early 20th century

by the mathematician Andrey Markov. However, they do not appear in the context

of time shared systems if not by mid 1960 for scalability purposes [29,32]. The

idea behind MC is to abstract a system using only states, transitions and rates or

probabilities to model behaviour. Solutions of Markovian based systems usually

employ direct or iterative solvers, yielding state permanence probabilities. It is

possible to model situations where randomness representation is important; this

has been successfully applied throughout the years in different domains such as

9 The demand across the UK of the 27 September 2019.
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economy, music composition, information retrieval and ecology.

Despite their strength, a known problem affecting MC based approaches con-

cerns how easy one could end with an intractable model having millions of states.

This problem is known as state space explosion, where even small systems (for

example, systems having a couple of limited capacity queues) may show an un-

manageable number of states. One way to mitigate state explosion is to resort to

structured alternatives that still work with an underlying MC, profiting from its

modelling strength and operating with larger models. Examples of formalism em-

ploying reduction strategies are Queueing Networks (QN) [33], Stochastic Petri Nets

(SPN) [19] as well as more modular ones such as Performance Evaluation Process

Algebra (PEPA) [14], Superposed Generalized Stochastic Petri Nets (SGSPN) [12],

and Stochastic Automata Networks (SAN) [26], to name a few examples. It is worth

mentioning that some approaches share many constructs among each other such as

the concept of modules, e.g., processes in PEPA or automata in SAN (in a very

abstract perspective).

The present work aims to model a CPS based environment under attack employ-

ing reactive modules [1], a modelling approach used in the PRISM tool [16]. The

software is a Probabilistic Model Checker used in verification, where modellers are

able to choose from different types of probabilistic models such as Continuous Time

Markov Chains (CTMC), Discrete Time Markov Chains (DTMC), Probabilistic

Automata (PA), Probabilistic Timed Automata (PTA), and Markov Decision Pro-

cesses (MDP) with extensions to models with costs and rewards. A graphical user

interface guides the modeller when building and analysing models, with interesting

features such as path analysis, system properties, computation of steady and tran-

sient state probabilities, and a simulator used for model debugging. It also allows for

the definition of symbolic variables combined with experiments that operate under

intervals and steps, easing analysis. Internally, it employs solution methods such as

Power, Jacobi, Gauss-Seidel methods (among others) for CTMCs and DTMCs. For

more information we refer to PRISM’s website 10 . For the set of modelling possi-

bilities stated earlier, PRISM allows straightforward model decomposition into so

called modules, where users employ primitives such as global variables, state transi-

tions with associated rates, formulas assigned to states (e.g. functions that observe

local states in other modules or other desired behaviour), among others.

3.1 Continuous Time Markov Chains

A CTMC is a stochastic process having the Markov property [23], also known as

memoryless property, that is usually defined as:

P [X(tk) = sk |X(tk−1) = sk−1, . . . , X(t0) = s0] = P [X(tk) = sk |X(tk−1) = sk−1],

where { X(t) | t ∈ R�0 } are random variables, X(t) are observations at time t (e.g.

X(t) corresponds to the system at time t). The memoryless property addresses the

notion that in a given state, the decision of visiting a next state must not take into

10PRISM: Probabilistic Symbolic Model Checker, online at https://www.prismmodelchecker.org
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account the set of prior visited states, e.g, the past up to this point is irrelevant. A

CTMC shows similarities with a Labelled Transition System (LTS), but it is different

as its transitions are decorated with exponentially distributed (memoryless) delays

or rates instead of labels. Another difference is that in LTS (also known as Kripke

structure or Finite Automata) the labels on transitions allow the modelling of non-

determinism, being a powerful formalism used in formal verification due to its high

scalability and applicability [13].

A CTMC assumes enumerable states where time evolves continuously according

to the chosen values for the set of rates [16]. Formally, a CTMC consists of a tuple

(S, s0, R, L) where

• S is the state space of the problem, i.e., the finite set of states modelled by the

user,

• s0 ∈ S is the initial state,

• R : S × S → R�0 configures the transition rate matrix of the model, and

• L : S → 2P are label mapping states to atomic propositions in P .

If multiple states have ongoing transitions with different rates, i.e. R(s, s′) > 0,

then a race condition occurs, where the transition with the least value (according

to the exponential distribution of the rate) is triggered first. The time spent in

a state is drawn from the exponential distribution given by E(s) =
∑

s′ R(s, s′),

where E(s) is the exit rate of the state s and the probability of leaving a state s

within [0, t] equals to 1− e−E(s)t.

A CTMC encloses a discrete time counterpart termed the Embedded DTMC,

computed using the transition rate matrix elements and E(s), i.e. dividing each cell

element by E(s). The so called infinitesimal generator Q of a CTMC is a matrix

S×S whose non-diagonal entries are the same as in R, and the diagonal entries are

defined in such a way that the sum of each row of Q equals 0.

Q(s, s′) =

⎧

⎪

⎨

⎪

⎩

R(s, s′) s �= s′

−
∑

s �=s′

R(s, s′) otherwise .

This concerns the representation of CTMCs and its operational meaning. In terms

of solution, it corresponds to multiplying an initial probability vector (it could

start with equiprobable values) π by Q until the balance is reached, i.e., πQ = 0.

If the system has reached convergence, it presents the steady state of the model,

otherwise, it diverged, and other techniques such as transient analysis should be em-

ployed instead. The steady state yields the permanence probabilities for each state,

representing the system’s behaviour after a long run, i.e., its stationary behaviour.

As stated earlier, PRISM is inspired by the formalism of reactive modules as

the decomposition approach to modelling. It consists on devising smaller CTMCs

for each module and then define transition functions using formulas, as well as

synchronisation among modules. For solution, it combines the local state spaces for

all modules (e.g. Cartesian product). PRISM is equipped with several numerical

methods (Power, Jacobi, Gauss-Seidel, and many others), simulation or, depending
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on the tractability of the model (due to state space explosion), through model

verification of properties or probabilistic model checking.

3.2 Problem formalisation

We demonstrate our main idea through the definition of a small order CTMC that

will guide our process when we extend it to the set of power plants, load controller

and botnets. We are working here with a very reduced state space, explaining our

initial state, some possible transitions and what we actually mean by an attack.

In a simplistic view of our model, we have a single power generator (PG) that

can be in three states SPG: (i) available (a), ready to supply but not yet generating

energy to the grid, (ii) generating (g), currently providing energy to the grid, or

(iii) restart (r), detached from the grid, not generating, nor supplying, and in the

need of a restart. The states in SD model the demand D loading the grid at the

average expected level m (for medium) plus or minus small deltas, modelled by two

additional states l (for low) and h (for high). The attacker B is a botnet controlling

a large amount of infected devices. Its states in SB are modelled as simply 0, when

the infected controlled devices are all off, or 1 when those devices are switched on.

In summary we have the following states

SPG = {a, g, d}

SD = {l,m, h}

SB = {0, 1}

Following the notation introduced in Sec. 3.1, the CTMC relating to this sim-

plistic model is defined as a tuple (S, S0, R,L) where S = SPG × SD × SB, and

s0 = (a,m, 0). The rate matrix R is a square matrix of dimension |S| whose entries

are zeros apart from those corresponding to the transitions we modelled. So for

example, given two states si and sj , then the transition rate rij is the mean per

time unit that we expect the transition from si to sj to happen. The labels in

L associate valid proposition to states: we associate them to desirable properties.

In particular, we label all states where the current demand in the system is above

the current supply as “overDemand”, for example (d,m, 1), where if the PG is de-

tached it cannot match the demand m. As the reader may notice, the controller of

the power generator does not appear among the states. This is not because there is

a single PG, but by modelling choice that needs to refer to a more complex system

with multiple PGs to be illustrated.

The basis for our model is presented in Fig.1. It is our intention to model a

botnet (B) influencing the setting of power generators to let them go off, or detached.

In the normal operative state of the system, PG is available, then generating, or

disconnected. The demand operates at the medium value m, for some time going

to low demand or high demand. A controller dictates the response of the grid in

case there is an excess of demand. It is a deterministic transition attempting to

create an equilibrium in the grid. In a system without an attacker, two different

controllers may behave in the same exact manner, however under an attack the
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Fig. 1. The controller and the attacker role in our problem formalisation fine grained to the transitions of
a PG (a) and coarse grained to the whole system with multiple PGs (b). We remark that the attack is not
directly done to the power generator transition from generating to off, but the attack indirectly causes it
through spike over-demand.

control strategy determines how effectively the load is re-balanced. We define the

optimum controller strategy as that one which minimises the time where a system

is in a state of over supply or over demand. What dictates the effectiveness of the

controller is the responsiveness of the PGs, i.e the controller decides that a PG

needs to be turned on to meet the demand, if the PG is a very slow one, this will

lead to large amounts of time offline. By modelling different controller strategies,

one can easily envision that an optimal controller can be selected against a specific

attack and under a specific load. The less trivial research question is whether an

optimal strategy can be found to optimise the power supply for a specific grid or

CPS. We investigate this problem by modelling the power supply in Sec. 3, and look

at the way three different controller strategies impact the effectiveness of a spike

Botnet attack. We could potentially have a set of PG to work with (Nuclear, Gas,

Electricity, Wind, and so on) where the Spike Botnet engages in an attack-defence

game to roughly estimate the state of the controller to direct decisions on when to

switch devices on or off.

3.3 Energy Supply Demand Trade-off Model

Our work focuses on modelling the balance of energy supply and demand. To do

so we have created three entities: i) suppliers, power generators mimicking different

types of plants typically attached to the grid, ii) consumers, modelled as average

values of energy demand per hour, they also are subject to positive and negative

variations across time, and iii) spike botnets, a large quantity of compromised IoT

devices, they might be thought as high wattage devices such as water heaters or air

conditioners that can be synchronously turned on or off, they produce sudden spikes

or drops of energy that unbalance the grid and trigger the automatic security dis-

connection mechanism of the PGs from the grid. One way to mitigate disturbances

is to employ load shedding or tie-line tripping, techniques employed to disregard

incoming requests in order to maintain integrity and avoid breakages [11].

The way the demand supply trade-off is modelled is as following: the consumers
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will have a certain energy requirement and the suppliers will need to be turned on

to meet the demand. However if the Botnet is successful in taking down a PG,

there will be a temporary situation of under supply. To meet the demand, more

PGs need to supply energy. Their responsiveness is subject to several limitations.

First, a PG requires some time to be fully functional, especially if it gets suddenly

detached from the grid; some are quite fast, while others are expected to be much

slower, like nuclear power plants. Second, the amount of PGs is finite; if the botnet

takes down enough PGs whilst they are unable to reattach themselves to the grid,

there will be no way for the suppliers to meet the demand. Third, independently of

how many PGs are taken down, at peak demand, the power grid might have very

few spare resources, so if one PG is taken down at 18:00 during dinner time the

impact might be a blackout for the whole grid.

We show this balance in a toy example with two scenarios, Scenario A and

Scenario B in Fig. 2, whose behaviour is as expected. In this case study we show

the impact of two different factors, responsiveness to the demand and magnitude

of the demand, each placed in a low demand scenario and a high demand scenario.

Both scenarios are initially capable of meeting the demand, as there are plenty of

available PGs; however, they react differently to the load caused by botnets’ attack.

Table 1
How the PG’s interact with the attacker in Scenario A-(1/2). The States are: A - Available, S - Serving,
and D - Disconnected. Sup, is the supply of a single PG out of four and Att is whether the Spike Botnet is
on or not. The Demand is fixed at 120 units. The values represent the rate at which a state transitions

from a state to another (if 0 the transition doesn’t exist).

PG Slow
Transitions

Sup Att PG Fast
Transitions

Sup Att
A S D A S D

A – 0.50 0 0 Off A – 1200 0 0 Off

S 0.50 – 0 50 Off S 1200 – 0 50 Off

D 0.25 0 – 0 Off D 600 0 – 0 Off

A – 0.50 1200 0 On A – 1200 120000 0 On

S 0.50 – 1200 50 On S 1200 – 120000 50 On

D 0.25 0 – 0 On D 600 0 – 0 On

In Scenario A, we model two systems A-1 and A-2 under a high load. A-1 has

very responsive PGs (such as gas plants), and A-2 has less responsive PGs. We

showcase that in the system with faster response rate the time in which the system

is in over demand is much lower. On the other hand, due to slow startup times, in

the second system the time in over demand will be much higher.

In Scenario B, we model two more systems, B-1 and B-2, each of the systems

shows the same number of PGs, but while the demand of B-1 is high, the demand of

B-2 is low. We show that when the system is in a high demand period, an attacker is

much more likely to disrupt the powergrid than if under a low demand period. The

scenario matches the values for Scenario A-1, but the demand is altered between B-1

and B-2 from 50 to 100. This case highlights the different situations that can take

place if a Spike botnet were to target the power grid, in our in depth experiments

mimicking the power usage of real world scenario we take this a step further and

examine it on various different types of PG such as gas and solar plants.
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Fig. 2. Powergrid reaction to botnet spikes in our case study scenarios

3.4 Power–Energy considerations

In energy terminology, Unit Commitment (UC) [24] tries to find the least-cost dis-

patch of available generation resources to meet electrical loads. In the past, dif-

ferent strategies were conceived to deal with UC related issues such as simulated

annealing [30], dynamic programming optimisation [25], particle swarm [35], genetic

algorithms [36,21] or combination of those and other techniques. UC is a relevant

problem in energy as the demand/supply requirements are usually uncertain.

We are interested in working here with UC in an abstract way, representing

supply and demand for CPS or smart grids. There are several generating resources

available for use by energy managers such as nuclear, thermal (using fossil fuels such

as coal, natural gas or oil), or other biomass. When deciding which power plant

to turn on, several decision variables come into play such as generation level (in

Megawatts, MW) and number of generating units that must be turned on. A power

plant employs different technologies to generate energy, for instance, nuclear based

have to be turned on and then cooled down, tasks that usually take considerable

time. Other sources such as solar panels on the other hand have different mainte-

nance peculiarities than those of, for example, wind turbines. Lastly, when broken,

each system would involve different resources and equipment, which translates to

greater time not producing energy which impacts the grid in its entirety.

Another source of concern is directed towards hourly fluctuations (used inter-

changeably here as either surges or peaks) that may be present in a day. These

differences in demand-supply, if greater or lower than specific thresholds (defined

by energy operators) may cause severe damage to the grid and or its turbines (if

used), even sometimes causing permanent damages which impact projected energy

yield. Our model captures the so called sudden surges to the energy grid, where

infected high-wattage appliances synchronise their operations to trigger disruptions.

Fig. 3 shows the daily energy usage for the United Kingdom scaled down to roughly

its 1% (e.g. Glasgow’s population) with noticeable peaks in demand according to
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specific times of a given day 11 . We remark that we scaled down the data to allow

for smaller state space in the model.

on 27 September 2019
scaled down to roughly 1% to simplify the model

Fig. 3. Usage data for the UK, scaled down to about 1%, in MW, across 24 hours on Friday 27 September
2019 – data obtained from Balancing Mechanism Reporting Service (BMRS) [6]

Fig. 3 highlights an expected usage trend, with more power demand at times

such as breakfast and dinner and a sharp decrease when (the most) people are asleep.

These are known trends and therefore power supplies are build to cater to them.

It is noticeable that the load is distributed in a way that if there is a reasonably

expected raise in consumption at any point along the line the load controller will

be able to handle it. This tolerance value is what the attacker has to outmatch in

order to cause the disruption, perhaps unexpectedly, this means unexpected above

normal usage is much more damaging than just mass usage. Through our model we

highlight this by showing that the most impactful attack times (varying with the

different power plants), may not be the ones of most usage.

In our setting we are dealing with a load-balancing system that tries to maintain

the equilibrium to keep the frequency to 50 MHz; this is done balancing the demand

(produced by users turning on their devices whichever they are) and the supply

(the set of power generators required to meet the demand). We are combining

this balance with a control strategy, where we mimic the manager’s decisions as to

which power generator should be prompted at specific times to cope with demand.

These decisions address the fact that under surges or spikes it could be possible to

increase the security level if the right measure is taken at the right time, working

as a protection against those sorts of disruptions. There are many ways to find

reasonable forms of mixing which power to be switched on or off at any moment,

and a common strategy is to use greedy algorithms for selection. At the core of these

algorithms it resides the fact that a prompt reaction should be deployed as soon as

possible, so the next available power plant should be turned on adding power to the

infrastructure so it can handle the demand accordingly.

11Original data is available online from the balancing mechanism reporting service in the UK [6].
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4 Cyber security model applied to CPS

In previous sections we discussed the problem from a general perspective. For our

experiment we focused on a scenario involving somehow realistic implementations

of power generators and we adopt the real demand on a specific day in the UK. For

the model discussed here, we are interested in using CTMCs due to the required

dynamics for our cyber-security problem. Our modules are illustrated in Fig. 4:

they consist of power generators PG (nuclear N, hydro H, and gas G), the demand

D, modelling the supported threshold to try to withstand disruption case demand

≈ supply, a controller C, greedily selecting which power generator to use priori-

tising next according to design decisions, and finally the set of IoT devices I (the

Spike Botnet in the figure), symbolising infected high-wattage components under

the control of adversaries. These choices were made to highlight a variety of setups

mimicking a modern smart grid.

We are considering that each PG has its distinctive design possibilities, usually

dealing with high loads of energy in different ways. For our specific case study

we are interested in how the different prioritisation of PGs could potentially affect

the availability to cope with attacks. In Fig. 4, we adopt a tailored notation to

represent our modelling choices, for instance, initial states are marked with a small

dot whereas rates are shown as textual descriptions decorating some transitions

(e.g. slow, fast and so on).
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Fig. 4. Model and PRISM modules, representing Nuclear, Hydro and Gas power; the demand, along with
and variations from the expected value; and our designed attacker controlling a percentage of the systems
devices.

All PGs start in available state when ready to supply, in the generating state

when supplying to the grid, or in off state when offline. We have added a module

Controller to cope with the supported variation, parameterised to withstand incre-

ments or decrements of ±1%W . Finally, the infected devices (botnets) are either on

or off, modelling either an attack in place or inactive, respectively. In our model,
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the Botnets are composed by unique devices that are only controlled by the Botnet

and do not represent daily usage. The state delays (they will be converted to rates

due to our CTMC representation) for the model are shown in Table 3.

Table 2
Parameters for the model in PRISM and total of instances for every PG.

PRISM Module Observation # of instances

Nuclear (N)

Generates

40MW each 4

Hydro (H) 20MW each 5

Gas (G) 10MW each 6

Controller (C) ±1% tolerated deviation from normal –

IoT Devices (I) up to 30% expected wattage –

Total: 320MW

We changed the PGs characteristics through fixed parameters that map their

behaviour. We assume that the power generators’ capacity does not depend on the

hour of the day, even if it may not be the case, i.e. in night hours we obviously expect

solar generator to have reduced supply capacity. This can anyways be modelled,

as we run experiments by per hour, and this time can be reduced to be more fine

grained. The Table 2 shows the parameters we used, where the number of module

instances mimic the specific scenario of matching the power supply for a location

populated roughly as much as Glasgow is. We do not realistically refer to Glasgow’s

power plan scenarios, only to the expected demand of roughly its population. The

supply will always cater to the daily demand, however the IoT devices may still

cause spikes to offset the load management and break PGs. It is reasonable to

consider that attackers may select regions where the difference between supply and

demand are close. In low consumption regions (in Fig. 3 they correspond to early

morning) or high (start of the day at 8:00 and then at 20:00), the power plants

are taking decisions as whether to increase or reduce the power supply to meet

the demand. Our modelling approach focus on closely inspecting those time spans,

aiming to evaluate which power plant configuration would be best suited to be

adopted in case the infrastructure was to be targeted for attacks.

We are considering the following scenarios for our analysis:

(i) NO-ATTACK: normal grid operation. It is expected to be in over supply

state most of the time;

(ii) ATTACK: in this scenario we are modelling the coordinated effort to dis-

rupt the grid. The attackers could profit from the peak hour knowledge to

direct their efforts. We are varying Controller to prioritise which PG would be

triggered first to investigate the possible mitigation strategies as follows:

(a) ATTACK-N: Controller prioritises first on Nuclear, then Hydro, then
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Gas.

(b) ATTACK-H: Priority on Hydro, then Nuclear, finally Gas.

(c) ATTACK-G: For this one, first turn on Gas, then Nuclear, finally Hydro.

For our four experiments we have instantiated a total of 17 modules, addressing

in terms of PG a total of 320 MW. This power corresponds to a grid that could be

deployed in a region to serve the power needs of the whole of Glasgow (population

≈ 598, 830 people). The reachable state space of our NO-ATTACK model is around

≈ 300.000 whereas in the ATTACK-* models, it sums to 57 million (with the

modified Controller policy and attack botnets). We computed the model properties

related to the probabilities of the system being over supply, in equilibrium and over

demand. In terms of rates, we are considering the values of Table 3.

Table 3
Parameters of individual modules used in the model (time scales in minutes (m) or seconds (s).

Module
State

Time
From To

Nuclear

Available Serving 30s

Serving Available 40m

Serving Offline <1s

Gas

Available Serving <1s

Serving Available 30s

Serving Offline <1s

Hydro

Available Serving <1s

Serving Available <1s

Serving Offline <1s

Offline Available 20m

Demand

Normal Negative 5m

Negative Normal 1m

Normal Positive 5m

Positive Normal 1m

IoT Devices Off On 1m

Spike Botnet On Off 1m
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5 Results

Among the several interesting analysis that could potentially be performed using

our model, we direct the focus to the probability for the over demand when a spike

is successful. In such a case, we consider an attack successful if the spike makes a

PG go offline, after having caused an excess in demand. The controller prioritises

the order of activation of PGs (we assume all are under its control). If all preferred

controllers are on, an alternative type will be activated.

Our results show key times in which the demand may exceed the current supply,

attackers may use those ranges as clear opportunities for disruptions. We have

four main scenarios (NO-ATTACK, ATTACK-N, ATTACK-H and ATTACK-G) as

described in the previous section, each one comprising one hour of a day, totalling

4 × 24 = 96 PRISM models 12 . The attack scenarios resulted in a state space of

an average of 57, 264, 556 million states, so the experiments were run in parallel on

a multi-core server with 16 processing units. The model parameters were tuned

to represent the daily energy usage of an area populated roughly as much as 1%

of the UK (like a big city such as Glasgow in Scotland), with mean usage and

expected variations at each hour of the day. In our first experiment, we produced

the baseline usage to find the likelihoods of exceeding the demand (compare with

results in Fig. 5), this allowed us to evaluate the expected behaviour of the system

without a spike botnet.

The next three experiments each modelled a different power prioritisation to

meet the demand, this allowed us to investigate which power generator type per-

forms best under the threat of a spike botnet, interestingly there are quite a few

differences as highlighted by Fig. 6.

Fig. 5 shows our demand probabilities for a day. It is noticeable the close relation

of the demand with the daily power consumption of Fig. 3. The difference is that,

with this graph, stakeholders may also inspect the probability that the demand

will exceed and then anticipate load-changing opportunities of attacks. The lowest

probabilities are during early morning (before 6:00) and after 10pm. During the day,

there is a considerable probability (around 40%) of finding the system under high

load whereas the chances increase to approximately 60% by 5:00 to 19:30, slowing

down from then until 23:00.

Fig. 6 shows the results from our attack models. As expected, peak hours are

more susceptible for spike attacks; however, it is possible to infer the probability

of the system where it is in over demand, information that may be used to have

auxiliary power generators readily available to avoid energy interruption in the event

of attacks. The different controllers actually performed significantly differently with

respect to security. Prioritising Hydro led to the scenario where an attack is the

least likely to succeed across the day. Nuclear, on the other hand, performs rather

poorly, this is due to it’s slow transitions from serving to available and due to it’s

inability to recover after a spike attack (within 1 hour). Finally, prioritising gas

shows more areas of attacks than hydro. It also reaches a slightly lower height at

12We have used PRISM version 4.5.
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Fig. 5. Probabilities for demand raising above tolerated values, in a day to day scenario with our PG setup.

peak time of 18:00 (peak time of success for all attack scenarios), rendering it better

over hydro power for that particular time period.

We stress that the numbers we used to model the PGs are partially reflecting

the reality, as we borrowed them from what specifications we could find, but they

may not be as realistic as wanted by experts in real specific domains. Building on

our example, one could always re-run the experiments with different characteristics

and settings, to better reflect their scenarios of interest. It would then be possible

to compute the probability of being under high or low demand given these new

parameters and devise reasonable countermeasures to avoid peak attacks. These

peaks are not necessarily caused by malicious attackers, but may happen due to

other benign factors. In Brazil in 2007, for example, hackers were promptly blamed

as the cause of a major blackout, but further investigation concluded that some

faulty equipment triggered a cascading failure from poorly maintained systems 13 .

Likelihood of successful a�ack

Fig. 6. Likelihood of blackouts caused by spike botnets and different control strategies.

13Official document: http://www.aneel.gov.br/cedoc/adsp2009278_1.pdf
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6 Conclusion & Future Work

The pervasive nature of CPS in real world applications mandate system designers to

address security concerns more deeply. Security related problems directly impact

critical infrastructures, requiring the installation of additional software patches,

inevitably causing monetary losses to stakeholders. Power reliant stations are con-

cerned with the responsible provision of energy to customers, since disruptions may

impact costs and more serious outcomes (human lives). We stress the fact that

properties such as integrity, availability, reliability, dependability [4], plus perfor-

mance, safety and security are crucial quality properties to deliver adequate service

levels and enhance trust to users.

The problem addressed in this work tackled Unit Commitment and presented

models to enhance power plant responses to active attacks targeting the energy

infrastructure. We have built a CTMC mapping to a power grid mixed with a

network of CPS for a set of scenarios. We have considered situations for normal

operation (assuming no attacks) in conjunction with scenarios where attackers act-

ing in coordination could take advantage of infected CPS to cause electric peaks or

surges, which in turn would increase or decrease power consumption in relatively

short time periods. We have also presented scenarios where power managers could

enact mitigation policies, e.g. choosing other power sources or disconnecting parts

of the grid to meet demand. The model described here could also be applied in

another mechanism where managers could differentiate localised abnormal usage

from directed attacks and take measures to avoid grid disruptions more effectively.

Our results show the numerical impact of addressing mitigation strategies to

avoid peaks using CTMCs to capture intricate power related behaviours. We show

how different power generators produce different results under attack and also that

a intelligent controller could be designed to alter the priority of power generation

and somewhat mitigate these kinds of attacks.

As next work, we are envisioning to extend the model to address more attackers

with different patterns of behaviours as well as adding costs and rewards to states

deemed important for later analysis. We could also add extra states to model

the activation of other external power sources such as secondary or even tertiary

mechanisms and their relation to attacks. The model could also be scaled in terms

of different CPS types and wattage needs, where we could evaluate the impact on

new security measures to avoid powering up new plants or blacking out major grid

portions in response.

It is also our intention to work with simulation models mapping and addressing

some of the concerns provided here, where we could enrich it with more fine tuned

behaviours to capture other characteristics of power plants as well as other adversary

profiles. It is also worth mentioning that in the work concerning GridShock [10],

the authors suggest other power plants start up mechanisms in the event of sudden

disconnections, e.g. black restart, where portions of the grid are turned on each

time. We could analyse these procedures in combination with the notion that cyber

attackers may profit from such slow restarts to disrupt the grid and stop energy to
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be distributed over the grid.

Finally, our model could be instantiated with other power sources (e.g. wind

mills or attaching electric vehicles), where we could investigate other relationships

between power plant configuration mixing and cyber-security attacks altogether. In

retrospect, our approach has the potential to suggest means to improve their oper-

ations as well as reasonable design approaches towards more reliable uses of energy

sources as well as mitigation strategies to improve overall operational requirements.
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