
This is a repository copy of Towards the development of Machine Learning tools for blast
load prediction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199175/

Version: Accepted Version

Proceedings Paper:
Dennis, A., Stirling, C. and Rigby, S. orcid.org/0000-0001-6844-3797 (2023) Towards the
development of Machine Learning tools for blast load prediction. In: Proceedings of the 6th
International Conference on Protective Structures (ICPS6). 6th International Conference
on Protective Structures (ICPS6), 14-17 May 2023, Auburn, AL, United States.
International Association of Protective Structures .

© 2023 The Author(s). For reuse permissions, please contact the Author(s).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

6th International Conference on Protective Structures (ICPS6)

14 – 17 May 2023, Auburn University USA

TOWARDS THE DEVELOPMENT OF MACHINE LEARNING TOOLS

FOR BLAST LOAD PREDICTION

Adam. A. Dennis

Department of Civil & Structural Engineering, University of Sheffield,

Mappin Street, Sheffield, S1 3JD, UK. aadennis1@sheffield.ac.uk (corresponding author)

Christopher. G. Stirling

Viper Applied Science (www.viper.as), Glasgow, United Kingdom

Samuel. E. Rigby

Department of Civil & Structural Engineering, University of Sheffield,

Mappin Street, Sheffield, S1 3JD, UK.

ABSTRACT

As explosive events are inherently unpredictable, probabilistic approaches featuring large batches of models

with varying input conditions are becoming more prominent in risk assessments and design. Computational

fluid dynamics (CFD) allows for the direct solution of blast wave propagation in complex geometries.

However, the parameter-rich calculation process can result in prohibitively high computation times, or the

need to analyse only a subset of the problem space, making the development of rapid analysis tools

essential. This article presents a new analysis approach that leverages the computational benefits from two

studies conducted by the author and colleagues to highlight developments made towards this aim. Starting

with the Branching Algorithm (BA), informed data mapping reduces the required computation time of a

batch of similar explosive scenarios by determining when each model’s parameter field would deviate from
the others in the CFD process. Thus requiring fewer models to run from birth to termination. The dataset

being generated by the BA is then used to incrementally train the Direction-encoded Neural Network

(DeNN), a novel approach for peak parameter predictions in complex domains, in series. Once the DeNN

reaches a prescribed performance threshold, it replaces the CFD models for the remainder of the required

batch. Together, these approaches allow for robust assessments of varied geometries to be generated with

a reduction in computation time of 80%, and average percentage errors of 10.46%, when compared to using

CFD models exclusively for a batch of 20 models.

Keywords: Artificial Neural Network; Machine Learning; Computation time; Batch.

ICPS6, Auburn University, May 2023

INTRODUCTION

Rapid analysis tools provide a means of investigating the consequences of variability in explosive events

by enabling users to simulate tens, or hundreds of unique domains with limited computational effort when

compared to parameter-rich numerical solvers. However, this is often achieved by compromising predictive

accuracy and/or tool versatility. For example, the well-established Kingery and Bulmash method provides

accurate predictions based on semi-empirical equations, but for a limited number of free air scenarios [1].

An alternative would therefore be required when exploring the variability and risk posed to a complex

internal environment or city street, where wave interaction effects will change the topology of the pressure

distribution throughout any given domain.

Machine learning (ML) tools, such as Artificial Neural Networks (ANNs), have been tested for use in blast

engineering with various studies reporting high prediction-target correlations, low absolute errors, and fast

computation times behind blast barriers, along city streets and in internal environments [2]–[5]. Additional

studies have also proved that performance can be improved when using transfer learning, or physics guided

networks [6], [7]. However, for each application, the developed ANNs receive a series of inputs that are

often specific to a select number of scenarios, limiting their applicability for probabilistic assessments. For

instance, Dennis et al. [5] provide their ANN with the location of the charge and each prediction point based

on a user-defined origin with Cartesian coordinates when predicting peak specific impulse. This results in

the tool being useless when alternative domain shapes and sizes require simulation, or when obstacles in

the domain need to be repositioned.

The ‘Direction-encoded ANN’ (DeNN) presented by [8] averts these issues by considering how the blast

wave travels to each point of interest, referencing the surroundings instead of the domain itself on a point

by point basis. This novel approach enables the developed ANN to be used with various geometries,

allowing the user to add, remove or reposition objects. It is therefore well suited to the analysis of

probabilistically-derived models that may feature unique geometries or varying charge locations.

Despite this, as with all ML tools, performance is dictated by quality and quantity of data in a training

dataset that is used by the ANN to understand the problem being modelled. It is common for numerical

models to be used when compiling these datasets [9], [10] due to the expense and cost associated with

physical experiments. Thus, reintroducing the need to simulate many domains with potentially prohibitively

large computation times. The ‘Branching Algorithm’ (BA) introduced in [11], provides an approach to

reduce this requirement by removing repeat analysis steps from batches of numerical models through

informed data mapping so that only one model runs from birth to termination.

The paper summarises the BA and the DeNN before introducing the Direction-encoded Neural Network in

series (DeNNIS) training process that utilises both method’s advantages when conducting probabilistic

assessments. It is shown that by incrementally training the DeNN with outputs from models in the

simulation framework produced by the BA, computation time can be saved when analysing a batch of

similar domains.

ICPS6, Auburn University, May 2023

THE DIRECTION-ENCODED NEURAL NETWORK

Introduction to Artificial Neural Networks (ANNs)

Artificial neural networks used for regression analyses typically comprise of three types of layers, each

containing a number of neurons. An input layer contains predefined variables related to the problem being

modelled. Then, a number of hidden layers, with hidden neurons, process this information before the output

layer is reached to provide the network’s predictions.

Fully connected networks include connections between every neuron on one layer, with all neurons in the

layers one step in front, and one step behind. In the forward pass through the network, each neuron processes

its input information (𝑥𝑖) by summing each input, multiplied by a connection weight (𝑤𝑖), with a predefined

neuron-specific bias (𝑏). The sum is then evaluated with an activation function (𝐾) to form the neuron’s
output (𝑦) that is passed along the next connection, or output as a model prediction. This process is

summarised by Equation 1 for a neuron in the hidden layer.

 𝑦 = 𝐾(𝑏 + ∑ 𝑤𝑖𝑥𝑖𝑖) (1)

Where 𝑖 is the number of inputs to the neuron.

The weights and biases are iteratively updated to improve the predictive performance of the ANN through

a process of backpropagation using an optimiser algorithm. This is most commonly achieved in a supervised

learning process whereby a training dataset is formed with known input-output combinations. A trained

ANN is able to generalise problems with multiple variables to provide predictions for inputs that were not

included in the training dataset. They require little computational effort and can generate prediction in less

than a second, hence making them a useful tool for the rapid analysis of complex problems.

Application of the Direction-encoded Neural Network (DeNN)

The Direction-encoded ANN is a novel approach to machine learning for complex blast scenarios whereby

each point of interest is translated to the network via inputs associated with its surroundings [8]. This differs

from previous articles studying ANNs where the domain is referenced instead. Therefore the key

contribution of this approach was that the DeNN could be used for domains of any shape or size with

movable objects, whereas previously a new network would have to be developed and trained for each new

scenario.

Figure 1 provides a summary of the DeNN showing that the fully connected network includes 16 directional

lasers as inputs to the model along with the blast wave’s shortest travel distance to the point of interest
(POI). The rosette of lasers is rotated such that direction 1 faces the charge directly, ignoring any obstacles

in the domain, and the magnitude for all directions is calculated using a bespoke wave reflection equation.

Peak overpressure is calculated as the single output to the model at a fixed height of 1.5 m above a rigid

reflecting floor. This corresponds to a 1kg spherical TNT charge, also at height of 1.5 m. An example of

how the directional lasers are applied is shown in Figure 2.

This network structure was shown to effectively predict the effects of shielding, clearing and pressure

amplification in front of rigid obstacles following a training process that utilised a dataset formed from 25

randomised domains [8]. It was noted by the authors that even with average absolute errors of ~5 kPa for

unseen inputs, it is possible that prediction accuracy could be improved if the network was tailored to

specific types of structural arrangements. This would require compiling a training dataset of domains that

ICPS6, Auburn University, May 2023

are similar to the ones that need to be modelled, thus ensuring that the intrinsic processes occurring for

those domains are well understood by the machine learning tool.

Figure 1. Schematic of the ‘Direction-encoded Neural Network’, adapted from [8]

Figure 2. Example input arrangement for the DeNN. Only 8 of the 16 directional lasers shown for

brevity. Values in square brackets indicate the laser number.

This paper will explore this hypothesis through incremental training of the DeNN with training data taken

from a batch of similar domains with the Branching Algorithm being used to save computation time in

developing this dataset. The next section summarises how this algorithm is applied before a combined

analysis approach is presented.

…

Peak

overpressure

(kPa)

Direction 1

…

…

…

Direction 16

Wave travel

distance (m)

…
 …

 …
 …

With,
• Direction 1 being projected towards the charge.

• Obstructions caused by ambient boundaries providing an input of 0.

• Directional inputs = max(Wave travel distance – Obstruction distance , 0)

• Predictions not formed within 1.5 m of the charge centre.

2 3
4 5

6 7

8

1

P

Directional inputs

9

10 11

12 13
14 15 16

…
 …

 …
 …

…
 …

 …
 …

[1] [5] [4]
[9]

[8]
[12]

[13] [16]

x

y

Charge location
Prediction point, P

Directional laser
Ambient boundary

Shortest wave travel path
Rigid object

ICPS6, Auburn University, May 2023

THE BRANCHING ALGORITHM (BA)

A summary of the BA is provided in Figure 3. For a batch of models, informed data mapping enables repeat

simulation steps to be removed from the calculation process [11]. This is achieved by determining when

the parameter field of each model in the batch would diverge from the others. A ‘trunk’ model is identified
as the only model that is required to run from birth to termination. All others benefit from data mapping to

reduce computation time.

Seeing as the DeNN operates on a 2D plane, the adaption of this approach for this article differs slightly

from the 2D application given previously by the authors. Here, the calculation of the wave travel distance

to each POI uses a discretised domain and all points are included in the influence table when determining

the locations where parameter fields diverge. Previously, points were only included for each panel face and

object vertex. However, implementing a more rigorous process ensures robustness in the calculation of

these parameters that are essential for determining the deviation locations.

Figure 3. Example mapping stages for a batch of models that has been evaluated by the Branching

Algorithm. Grey images indicate saved simulation steps.

Data map

Data map

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

ICPS6, Auburn University, May 2023

DIRECTION-ENCODED NEURAL NETWORK IN SERIES (DeNNIS)

Figure 4. DeNNIS procedure allowing for incremental training.

Define batch of models

Process batch with the Branching Algorithm and

store DeNN inputs for all models

Select and simulate validation

models in the numerical solver

Process complete

Simulate Trunk model

in the numerical solver

Create training dataset

with Trunk model output

Create validation dataset

with validation models

Train DeNN with early stopping

monitoring validation loss

Evaluate validation performance

against user-define accuracy target

Simulate remaining models

using the trained DeNN
Is accuracy

acceptable?

No

Yes

Simulate next model in the BA

framework in the numerical solver

Add output data to

the training dataset

Have all models

been simulated?

Yes

Process complete

No

ICPS6, Auburn University, May 2023

Incrementally training the DeNN using data from the BA simulation framework combines the

computational benefits of both approaches. This Direction-encoded Neural Network in series (DeNNIS)

procedure, shown in Figure 4, removes the need to simulate entire domains using computational fluid

dynamics (CFD) if the performance of the tool surpasses a user-defined target before additional training

data is required. The performance comparison is made by evaluating a validation dataset that is formed

using values that are independent of the training process and the target performance could be related to

various parameters including the average absolute error, the average percentage error, or the overall

correlation coefficient of the validation data.

Once the required performance is achieved by the DeNN, it replaces the chosen numerical solver to evaluate

the remaining models in the batch. Hence, reducing the required computation time. Furthermore, both the

BA and the DeNN require shortest path analysis following discretisation of each domain in the batch.

Combining both approaches with DeNNIS training therefore also reduces the number of calculation steps

compared to running each method independently, since the ANNs inputs can be extracted and stored during

the BA sorting process.

PROBLEM SCENARIO AND SIMULATION

Figure 5 presents the batch of domains that will be used to highlight the benefit of the method introduced

in this paper. Four unique geometries and five independent charge locations are included to form a batch

of 20 models. All domains are the same size with equivalent charge positions.

In each geometry, the charge positioned at (11, 1) corresponds to the first model of that arrangement. This

progresses up the y axis to the fifth domain for each geometry corresponding to a charge at (11, 7). The

study aims to replicate the detonation of an explosive along a road next to a building entrance being

protected by various structural forms.

Table 1. Viper::Blast input parameters

Charge material: TNT Mapping: 1D – 3D

Charge mass: 1 kg CFL, 1D: 0.5 𝜌0: 1600 kg/m3 CFL, 3D: 0.4 𝐸0: 4.52 × 106 J/kg Cell size, 1D: 0.001 m

Detonation model: Ideal Gas Cell size, 3D: 0.02 m

Ambient pressure: 101325 Pa Termination time: 50 ms

Ambient temperature: 288 K

ICPS6, Auburn University, May 2023

Figure 5. Four geometries and five independent charge locations creating 20 models in the batch.

Model numbers are as follows:

domain A (1 – 5), domain B (6 – 10), domain C (11 – 15), domain D (16 – 20).

Each domain is simulated using Viper::Blast, version 1.20.6a, by a computer utilising a NVIDIA T1000

dedicated graphics card, 16 GB of system RAM and an Intel Core i7-10700 processor with the setup

parameters shown in Table 1. This allows for performance comparisons between the DeNN and an

established numerical solver.

The DeNN comprises of two independent networks. One used to predict POIs that are unobstructed by an

obstacle, hence having a direct line of sight to the charge, and another for obstructed points. The

hyperparameters and input variables that were determined partially through a tuning process in [8] are

adopted for this study and shown in Table 2.

1.5

1

1

1.5

1.5

1.5

1

1.5

x

y
Charge location Rigid object Ambient boundary

All dimensions in meters. All rigid objects are 0.5 m wide.

1

1.5

1.5

1.5

2 2 2 5 1

3

3

0.5

2

2

1.5

2

4

2

4

2

2

Edge of road

(A) (B)

(C) (D)

2 2 2 5 1

ICPS6, Auburn University, May 2023

Table 2. Direction-encoded Neural Network variables

Variable ANN–1 (Unobstructed points) ANN–2 (Obstructed points)

Neuron structure 17 – 550 – 900 – 550 – 800 – 1 17 – 800 – 650 – 950 – 600 – 1

Learning rate 0.0170 0.0033

Dropout rate 0.0290 0.0139

Activation function ReLU (linear at output)

Loss function Mean squared error (MSE)

Optimiser AdaGrad

Batch size 100

Regularisation L2

Weight initialiser Glorot Normal

Bias initialiser Zeros

RESULTS

For this analysis the target performance metric was defined as a mean absolute error (MAE) of 3 kPa for

both ANN–1 and ANN–2. Incremental training therefore stopped once both networks forming the DeNN

achieve a MAE below 3 kPa when evaluating the validation dataset. Here, this dataset is formed using two

(i.e. 10% of the batch) randomly selected models.

Figure 6 presents the computation times required for the two analysis options explored in this study.

Exclusively using Viper::Blast requires 41825 seconds, whereas the DeNNIS requires only 8217 seconds

to evaluate all 20 models. This corresponds to an 80% saving in computation time. Prepossessing of the

Viper::Blast models, and DeNN inputs are omitted as they are dependent on the expertise of the user.

Model 13 was defined as the trunk model that formed the initial training dataset when analysing the batch

with the BA. Models 5 and 18 were then selected at random to form the validation dataset. During the

DeNNIS training process Model 1 was simulated to expand the training dataset so that the desired

performance level could be achieved. This rapid training process, requiring only two sets of outputs from

CFD models, highlights how the use of similar domains allows the DeNN to learn the wave coalescence

effects that are present in the batch with less computational effort when compared to using a dataset formed

from randomised models.

Furthermore, the reported saving of 80% relates to this batch of 20 models only. For larger batches, the

saving is expected to increase significantly, particularly as the total number of unique domains and model

complexity increases. For example, now that the DeNN is trained and validated for the problem scenarios

ICPS6, Auburn University, May 2023

provided in Figure 5, the analysis could be expanded to explore 5 additional charge locations in each of the

four geometries. Use of a numerical solver would require each model to be simulated from birth to

termination, taking around 2000 seconds per model. Whereas the DeNN can form predictions in less than

a minute for each new arrangement.

Figure 6. Computation time required by the incremental training process, utilising the DeNNIS,

compared to if a numerical model was used to evaluate the entire batch.

Table 3 shows the MAE, Young’s correlation coefficient, 𝑅𝑡2, and the average percentage error for two

models and the batch average. These two models relate to the best and worst domain predictions by the

DeNN. The batch average metrics are closer to the performance evaluated for model 8 seeing as four models

are simulated using CFD in the combined analysis approach, and so the metrics associated to each of these

are assumed to have no errors. It should be noted that this assumption, and the performance of the trained

DeNN, relies on the accuracy of the chosen numerical solver as training exclusively uses data from

simulations using that tool.

Table 3. Example incremental training performance metrics and average from the batch.

Model num. Sim method MAE (kPa) 𝑹𝒕𝟐 Avr%E

8 DeNN 2.18 0.9978 9.47

20 DeNN 3.49 0.9904 18.05

Batch average DeNN & Viper::Blast 2.17 0.9963 10.46

Figure 7 provides heat maps of models 8 and 20, showing that the DeNN has qualitatively captured the

distribution of peak overpressure in both cases. Model 8’s predictions account for shielding and clearing
around the central panel, and the pressure build up around the object at (6, 8) is well represented. A similar

conclusion can be formed for model 20 in this region, however, channelling is not accurately predicted

between the two central panels. Nevertheless this is a known issue of the DeNN [8], and the method is still

able to provide good representation of the domain with limited computation effort.

Incremental

training

Viper::Blast

Computation time (s)

40000 5000 10000 15000 20000 25000 30000 35000 45000 0

1 2 3 4 20 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

13 5 18 1 DeNN training and predictions

8217 s

41825 s

ICPS6, Auburn University, May 2023

Figure 7. Heat maps showing the peak overpressure distribution for models 8 and 20, simulated

using Viper::Blast and the DeNNIS. Grey regions are not predicted, either due to being within rigid

obstacles or the 1.5 m exclusion zone around the charge.

CONCLUSIONS

This paper has presented a new methodology that combines the benefits of two previously published

approaches to work towards the development of machine learning tools that enable the rapid assessment of

various explosive events. It is shown that computational savings of up to 80% are possible, when compared

to exclusively using CFD analysis, by incrementally training the Direction-encoded Neural Network in

series with the executing the simulation framework produced by the Branching algorithm for a batch of 20

models.

Use of a training dataset related to the scenarios requiring simulation enabled the DeNN to achieve an

average absolute error of 2.17 kPa, compared to ~5 kPa when randomised training data was used. Training

also required fewer data points seeing as the wave coalescence effects that the DeNN was required to learn

were similar among all domains.

ICPS6, Auburn University, May 2023

This presents a key opportunity for the DeNNIS to be used in probabilistic risk assessments of explosive

events, exploring the influence of various uncertainties such as charge location and structural arrangements,

with computation times that enable a large number of unique domains to be evaluated.

ACKNOWLEDGMENTS

Adam A Dennis gratefully acknowledges the financial support from the Engineering and Physical Sciences

Research Council (EPSRC) Doctoral Training Partnership.

REFERENCES

[1] C. N. Kingery and G. Bulmash, “Airblast parameters from TNT spherical air burst and
hemispherical surface blast, Technical Report ARBRL-TR-02555,” Aberdeen Proving Ground,
Maryland, 1984.

[2] B. Bewick, I. Flood, and Z. Chen, “A neural-network model-based engineering tool for blast wall

protection of structures,” Int. J. Prot. Struct., vol. 2, no. 2, pp. 159–176, 2011, doi: 10.1260/2041-

4196.2.2.159.

[3] A. M. Remennikov and T. A. Rose, “Predicting the effectiveness of blast wall barriers using
neural networks,” Int. J. Impact Eng., vol. 34, no. 12, pp. 1907–1923, 2007, doi:

10.1016/j.ijimpeng.2006.11.003.

[4] A. M. Remennikov and P. A. Mendis, “Prediction of airblast loads in complex environments using
artificial neural networks,” WIT Trans. Built Environ., vol. 87, pp. 269–278, 2006, doi:

10.2495/SU060271.

[5] A. A. Dennis, J. J. Pannell, D. J. Smyl, and S. E. Rigby, “Prediction of blast loading in an internal

environment using artificial neural networks,” Int. J. Prot. Struct., vol. 12, no. 3, pp. 287–314,

2021, doi: 10.1177/2041419620970570.

[6] J. J. Pannell, S. E. Rigby, and G. Panoutsos, “Application of transfer learning for the prediction of

blast impulse,” Int. J. Prot. Struct., vol. 0, no. 0, pp. 1–21, 2022, doi:

10.1177/20414196221096699.

[7] J. J. Pannell, S. E. Rigby, and G. Panoutsos, “Physics-informed regularisation procedure in neural

networks: An application in blast protection engineering,” Int. J. Prot. Struct., 2022, doi:

10.1177/20414196211073501.

[8] A. A. Dennis and S. E. Rigby, “The Direction-encoded Neural Network: A machine learning

approach to rapidly predict blast loading in obstructed environments,” Submitted for publication,

Int. J. Prot. Struct., 2023.

[9] L. Chen, H. Hassan, T. N. Tallman, S. S. Huang, and D. Smyl, “Predicting strain and stress fields
in self-sensing nanocomposites using deep learned electrical tomography,” Smart Mater. Struct.,

vol. 31, no. 4, 2022, doi: 10.1088/1361-665X/ac585f.

[10] M. Momeni, M. A. Hadianfard, C. Bedon, and A. Baghlani, “Damage evaluation of H-section

steel columns under impulsive blast loads via gene expression programming,” Eng. Struct., vol.

219, no. June, 2020, doi: 10.1016/j.engstruct.2020.110909.

[11] A. A. Dennis, D. J. Smyl, C. G. Stirling, and S. E. Rigby, “A branching algorithm to reduce
computational time of batch models: Application for blast analyses,” Int. J. Prot. Struct., pp. 1–33,

2022, doi: 10.1177/20414196221085720.

