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Recent progress in understanding the genomic 
architecture of sexual conflict 
Peter D. Price*, Sylvie M. Parkus and Alison E. Wright*   

Genomic conflict between the sexes over shared traits is widely 

assumed to be resolved through the evolution of sex-biased 

expression and the subsequent emergence of sexually 

dimorphic phenotypes. However, while there is support for a 

broad relationship between genome-wide patterns of 

expression level and sexual conflict, recent studies suggest that 

sex differences in the nature and strength of interactions 

between loci are instead key to conflict resolution. Furthermore, 

the advent of new technologies for measuring and perturbing 

expression means we now have much more power to detect 

genomic signatures of sexual conflict. Here, we review our 

current understanding of the genomic architecture of sexual 

conflict in the light of these new studies and highlight the 

potential for novel approaches to address outstanding 

knowledge gaps. 
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Introduction 
Males and females often experience sex-specific selection 
pressures towards divergent fitness optima across a range 
of traits [1]. However, when the genomic basis of these 
traits is shared between the sexes, intralocus sexual con-
flict can arise, where the trait in males, females, or both 
will be inhibited from evolving towards its fitness optima. 
This conflict has profound implications for multiple as-
pects of genome and trait evolution, including adapt-
ability and levels of genetic variation [2–4]. Sexual conflict 
can ultimately be resolved via a decoupling of genetic 

architectures and subsequent reduction in the intersexual 
genetic correlation (Figure 1a), and the sex-specific loss or 
gain of a trait. Within a species, a single genome can 
encode multiple distinct phenotypes by varying expres-
sion levels of the underlying loci. Given that males and 
females share the majority of their genomes, tran-
scriptomic analyses are increasingly used to study the 
genes that underlie sexual dimorphisms and the selective 
regimes acting on them [5]. In principle, sex differences 
in expression allow the genome to evolve in a sex-specific 
manner as selection can act independently on the sexes, 
circumventing constraints posed by sharing a genome and 
resolving sexual conflict. While some aspects of sexual 
dimorphism do result from genes located on the sex 
chromosomes [6], sex-linked genes are often few or ab-
sent in many species with pronounced sexually selected 
traits. It is therefore clear that the majority of sexual di-
morphisms must arise from differential expression of 
genes present in both sexes. 

To date, there is a large body of evidence in support of 
the relationship between broad, genome-wide patterns 
of expression and proxies for resolved sexual conflict. 
Differential expression both within [7–9] and across 
species [10–12] mirrors phenotypic sexual dimorphism 
with male-biased genes exhibiting greater levels of 
standing genetic variance in expression [13], consistent 
with sexual conflict theory. Male-biased gene expression 
also shows rapid turnover across lineages [14,15], how-
ever, this pattern might also represent relaxed pleio-
tropic constraints [16,17]. Furthermore, targets of 
ongoing sexually antagonistic selection are not typically 
enriched for sex differences in expression [18,19], sug-
gesting that sex-biased genes are the footprint of re-
solved conflict. We also now have several examples 
directly linking sex-biased genes to sex-specific pheno-
types [20]. In many insects, the expression of doublesex 

(dsx), the master regulator of sexual differentiation, is 
central to the evolution of sexually dimorphic traits [21]. 
For instance, its knockdown in male-horned beetles 
(Onthophagus taurus) reduces head horns, but induces the 
development of horns in females [22]. Similarly, in a 
closely related species (Digitonthophagus gazella), dsx ex-
pression is responsible for sex differences in the length 
of the fore tibia, used by males to grasp females during 
mating [23]. Whilst these examples directly link sexually 
dimorphic phenotypes and sex differences in expression, 
there are only a limited number of studies to do so and 
these are restricted to certain taxa, namely insects. This 
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Figure 1  

Current Opinion in Genetics and Development

Detecting the genomic architecture of intralocus sexual conflict. (a) A hypothetical pair of stalk-eyed fly species with a sexually selected trait, eye span, 

that exhibits a shared genomic architecture between males and females. Solid lines indicate the realised trait value, whereas the dotted lines indicate 

the optimal fitness value. The trait may exhibit a unimodal distribution (left) if it is under ongoing, unresolved sexual conflict or a bimodal distribution 

(right) where there is a breakdown of the intersexual correlation (rMF) allowing males and females to evolve towards their fitness optima. (b) To 

accurately describe the molecular basis of ongoing and resolved conflict, it is essential to analyse the genetic basis of the trait at the appropriate 

developmental stage. Although dimorphism may be most striking in the adult phase, its manifestation can occur during development, where each sex 

will be subject to sex-specific selection pressures and exhibit divergent regulatory patterning. For instance, eye-stalks in stalk-eyed flies develop from 

eye-antennal imaginal discs and sexual conflict over cell proliferation likely manifests most strongly during the third-instar larval stage [33,81,82]. (c) 

Traditionally, to determine the molecular basis of such traits, whole tissues will be used to measure gene expression in bulk. This can, however, lead to 

perceptions of differential gene expression that are solely products of differences in the cellular composition of the tissue. This is especially important 

in the case of sexual ornamentation, where sexually selected structures may differ dramatically in size and cellular composition between the sexes. 

Single-cell RNA-seq accounts for this by removing the compounding effect of tissue heterogeneity and allowing the comparison of equivalent cell 

types. (d) Network-based approaches are also critical for studying sex-specific architectures. Grey circles represent loci that can contribute to 

phenotypic variation in eye span. Lines represent loci that do contribute to variation in the trait, and the width of the line corresponds to the size of the 

effect. This could be mediated by distinct male and female genetic architectures that differ in the number and identity of loci (right-hand side), where 

the male architecture includes a greater number or more strongly connected condition-dependent loci (e.g. hormonal and growth pathways) than in 

females.   
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is in part because the functional identification of the 
genetic basis of sex-specific adaptation is challenging, 
especially for more complex phenotypes. 

On the other hand, recent research has shown that the 
genes responsible for some sexually selected traits are 
either not differentially expressed between males and 
females or display subtle patterns of expression change  
[24,25]. For instance, male water striders (Microvelia 

longipes) have exaggerated third legs used to fight and 
dominate egg-laying sites. Despite similar expression of 
Ultrabithorax (Ubx) in both male and female third legs, 
knockdown of Ubx during development results in sig-
nificantly reduced leg length in males, but has only mild 
phenotypic effects in females [25]. This research in-
dicates that the relationship between sex-biased ex-
pression and sexual conflict is complex, and it remains 
unclear what magnitude of sex-biased gene expression is 
necessary to fully resolve sexual conflict. For instance, it 
is possible that subtle expression differences between 
the sexes have large phenotypic effects and this is likely 
to differ on a gene-by-gene basis. Alternatively, sex 
differences in expression might be limited to specific 
cell types and so masked from detection using traditional 
RNA-seq approaches [26,27]. Here, we identify recent 
advances in efforts to study the role of differential ex-
pression in the resolution of sexual conflict, review our 
current understanding of the genomic architecture of 
sexual conflict and identify key outstanding questions 
for the field to address. 

Considering the developmental context of 
sexual conflict 
Many adult sexual dimorphisms are the product of dif-
ferences in growth rate and cell-type proliferation be-
tween males and females through development, 
particularly for exaggerated sexual ornaments [28]. This 
includes rhinoceros beetle horns (Trypoxylus dichotomus)  
[29], stag beetle mandibles (Cyclommatus metallifer) [30], 
weapons in water striders (Microvelia longipes) [25], 
swordtail caudal fins (Xiphophorus) [31,32], and eye- 
stalks in stalk-eyed flies (Teleopsis dalmanni) [33]. 
Therefore, in many cases, we might expect sexual con-
flict to manifest most strongly over growth rates during 
development. For instance, eye-stalks in stalk-eyed flies 
)develop from eye-antennal imaginal discs. Experi-
mental manipulation indicates that these discs are sen-
sitive to changes in hormone signalling during the third- 
instar larval stage [33,34], suggesting that sexual conflict 
over cell proliferation is likely greatest at this point of 
development (Figure 1b). Such sex differences in 
growth and cell proliferation are likely due to differential 
gene expression in males and females, however, these 
changes in expression will not be detected if tran-
scriptomes are measured after development is com-
pleted. This in part, may explain the inconsistencies 

between studies in the relationship between differential 
expression and signatures of sexual conflict. 

An increasing number of studies are incorporating an 
ontogenetic perspective to the study of sexual di-
morphism, either through measuring expression across 
multiple developmental stages [8,35,36] or perturbing 
expression directly during development [23,25]. To-
gether, this research suggests that the magnitude of 
conflict likely varies across different developmental 
stages and strategies. For instance, hemimetabolous 
stick insects (Timema californicum) demonstrate a gradual 
increase in sex-biased expression during development, 
while holometabolous fruit flies (Drosophila melanogaster) 
have a burst of differential expression in the adult stage  
[35]. Patterns of expression in these two species closely 
reflect the development of sexual dimorphism, where D. 

melanogaster has monomorphic larval and pupal stages, 
and sexual dimorphism manifests abruptly after eclosion, 
whereas T. californicum exhibits a gradual increase in 
sexually dimorphic traits after its hatchling stage 
throughout development. Understanding the relative 
contribution of distinct developmental stages to adult 
sexual dimorphisms across species is a key priority for 
pinpointing the genomic architecture of conflict. 

Reassessing how we measure differential 
expression 
Key to studying the genomics of sexual conflict is the 
ability to distinguish whether sex-biased expression is 
due to regulatory differences or developmental changes 
in cellular composition between males and females. This 
is because sexual conflict can be resolved by a decou-
pling of male and female expression via a reduced in-
tersexual genetic correlation, producing sex-biased 
genes. In turn, the resolution of conflict permits the 
evolution of sexual dimorphisms and sex differences in 
cellular composition. Therefore, only sex-biased ex-
pression arising from regulatory differences and not 
variation in cellular composition between males and fe-
males is informative for understanding how selection to 
resolve sexual conflict directly operates. 

Traditional approaches of measuring expression meant it 
was difficult to distinguish between these two scenarios. 
This is because bulk RNA-seq approaches measure ex-
pression in aggregate across tissues or entire organisms, 
which, in practice, represents average expression across 
entire populations of distinct cell types. Therefore, 
samples that vary in tissue composition can produce 
patterns of differential expression that are mistaken as 
evidence of regulatory change or even mask genuine 
regulatory differences [26,27,37,38] (Figure 1c). This is 
especially relevant for sexual dimorphisms, which are 
often complex phenotypes composed of many cell types 
with variable expression profiles and, by definition, vary 
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in size, structure and composition between males and 
females [39]. Significant sex differences in cell type 
abundance seem to be the norm, even for somatic tissues  
[27]. Unfortunately, this makes it challenging to estab-
lish whether sex-biased genes, identified using bulk 
approaches, are products of regulatory change or simply 
sex differences in cellular composition. The problem is 
further confounded if the developmental perspective 
discussed above is not taken, as we might not expect the 
targets of sexual conflict to be expressed in the adult 
phenotype. 

New advances in single-cell transcriptomics (scRNA-seq) 
circumvent issues of tissue composition variation by 
permitting direct comparisons of male and female ex-
pression across equivalent cell types (Figure 1c). To date, 
a handful of studies have employed single-cell approaches 
to test the role of differential expression in the evolution 
of within- [27,40,41] and across-species [42–45] pheno-
typic variation, however, only one explicitly addresses sex 
differences [27]. This study found that single-cell versus 
bulk approaches identify independent sets of sex-biased 
genes in the guppy (Poecilia reticulata) in both somatic and 
reproductive tissue and these distinct groups of genes 
exhibit different patterns of coding sequence evolution. 
Importantly, the exact proportion of genes incorrectly 
identified as differentially expressed is highly tissue- 
specific. This could explain some of the inconsistencies 
across studies in whether sex-biased genes exhibit 
genomic signatures of resolved or ongoing sexual conflict  
[18,19,46–48]. As single-cell approaches are increasingly 
applied to the study of sexual conflict, it will become 
possible to ascertain how many and what type of genes 
are truly differentially expressed, and how this relates to 
proxies of sexual conflict (see Box 1). This is particularly 
relevant for somatic tissues, where males and females are 
expected to contain equivalent cell types in different 
proportions. 

Studying sex differences in gene interactions 
Genes do not operate in isolation, but in multi-
dimensional networks, and there is increasing evidence 
that sex differences in the nature and strength of inter-
actions between loci are common [49–51]. This likely 

explains the growing evidence that loci expressed at si-
milar levels in both sexes can have distinct sex-specific 
effects [25,52–55], consistent with separate male and 
female genetic architectures (Figure 1d). The evolution 
of sex-specific genetic architectures potentially alleviates 
conflict by circumventing constraints imposed by a 
shared genome and facilitates the evolution of sexual 
dimorphism [18]. Therefore, shifting focus to studying 
sex differences in co-expression networks is more in-
formative for understanding how conflict can be resolved 
than current approaches where genes are typically stu-
died independently. Sexual dimorphisms evolve rapidly, 
with frequent losses and gains [56,57], but it remains 
unclear if the underlying loci mirror this pattern. Im-
portant next steps include identifying the underlying 
regulatory networks and loci responsible for male and 
female genetic architectures, establishing how genetic 
architectures evolve from shared to sex-specific and vice 
versa and how frequently (see Box 1). For instance, for 
traits encoded by sex-specific factors expressed during 
the early stages of sex-determination pathways, such as 
the dsx gene, the construction of separate male and fe-
male architectures is relatively straightforward and 
sexual conflict could be easily mitigated. 

Notably, it remains unclear whether convergent patterns of 
sex-specific network rewiring are responsible for conflict 
resolution across distantly diverged species, although the 
repeated involvement of dsx in sexual traits across insects  
[21,22,30,58,59] suggests similar processes might be oper-
ating. dsx, in particular, has distinct sex- and tissue-specific 
target loci due to alternative splicing into male and female 
isoforms. This allows regulation of the same genes in op-
posite directions in males and females in the dung beetle 
(Onthophagus taurus) and likely many other insects [60]. In 
the future, single-cell approaches are particularly important 
to address these questions as differences in cellular com-
position between males and females can affect the mea-
surement of gene co-expression due to key differences in 
gene networks across cell types [61,62]. Unfortunately, 
many of the available methods of regulatory net-
work inference are currently not effective for single-cell 
transcriptome data due to its intrinsic sparsity and high 
technical variation [61,63]. 

Box 1 Outstanding questions  

What magnitude of sex-biased gene expression is necessary to fully resolve sexual conflict, and how does this differ across genes? 

How do genomic architectures evolve from shared to sex-specific, and vice versa, and what are the underlying regulatory networks and loci? 

Are convergent patterns of sex-specific network rewiring responsible for conflict resolution across distantly diverged species? 

Is loss or gain of sexually selected traits more common and how does this manifest in properties of sex-specific regulatory networks? 

How do different types of sexual selection, such as Fisherian runaway selection and ’good genes’ models, alter the genomic outcome of sexual 

conflict? 

When is condition-dependent ornamentation in females a product of signalling and when is it a sign of incomplete conflict resolution?   
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Identifying the evolutionary drivers of sexual 
conflict 
Studies into the genomic basis of sexual conflict typically 
do not consider the mode of sexual selection. However, 
the type of sexual selection has important consequences 
for the strength of sexual conflict and how we expect 
conflict to manifest and be resolved across the genome. 
For instance, under the ‘good genes’ model of sexual 
selection, sexually dimorphic traits are predicted to evolve 
as honest signals of male genetic quality, where only high- 
condition males can afford to invest in elaborate sexual 
ornaments [64,65]. In contrast, under Fisherian runaway, 
sexually selected traits are not linked to individual con-
dition [66]. This distinction is important as, in principle, 
sex-specific condition dependence restricts the expression 
of the costly trait to only those individuals who have 
sufficient resources, serving as a potential mechanism that 
aids in resolving sexual conflict. 

There is now considerable evidence across many or-
ganisms that honest male sexual traits have evolved re-
peatedly in a range of phenotypes [28,67–70] and that 
the genetic architecture of these traits is sex-specific and 
condition-dependent [21], but see Ref. [71]. Recent 
studies have started to elucidate the precise genomic 
and physiological processes that link honest traits to 
condition and nutritional status in a sex-specific manner. 
For instance, conserved growth and hormonal pathways 
have been identified as common mechanisms regulating 
condition dependence of several male sexual traits, such 
as juvenile hormone signalling in stalk-eyed flies (Tele-

opsis dalmanni) [33] and stag beetles (Cyclommatus me-

tallifer) [30], and insulin signalling in several beetle 
species (O. taurus and T. dichotomus) [29,72]. Often, these 
pathways are intrinsically linked to sex-determination 
factors meaning that the male but not the female trait 
can be linked to individual condition [23,30]. 

Recent evidence suggests that exaggerated traits in fe-
males can also be highly associated with individual 
condition [73–75]. If so, this suggests that plastic re-
source allocation [65] in both sexes could be key to al-
leviating sexual conflict for certain traits. However, 
whilst a ‘good genes’ model provides a framework for 
conflict resolution, it is unclear whether occurrences of 
female ornamentation are the active signalling of con-
dition [74], or instead a product of correlated evolution 
arising from incomplete conflict resolution where male 
and female traits exhibit a similar genomic architecture. 
In this instance, high-condition females will pay a 
greater fitness cost [76]. 

Interestingly, in turn, the evolution of condition-de-
pendent genetic architectures that exhibit variable ex-
pression across individuals may actually act to exacerbate 
the strength of sexual conflict [77]. This can be because 
high-fitness males produce low-fitness daughters and 

high-fitness mothers produce low-fitness sons [78,79] or 
because certain environments are more favourable for 
males than for females [80]. This sets the stage for 
a feedback loop, where ‘good genes’ processes might 
only be possible once sexual conflict has been resolved 
via the evolution of condition-dependent traits. 

Together, these results suggest that the genomic archi-
tecture of sexual conflict may vary quite profoundly 
under different modes of sexual selection, however, this 
is rarely considered when testing for signatures of con-
flict across the genome. Establishing specific predictions 
for the types of loci and their interactions responsible for 
conflict resolution under ‘good genes’ versus Fisherian 
models of sexual selection is a major priority for the 
future. 

Conclusion 
The development of novel technologies for measuring 
and perturbing expression has shed new light on our 
understanding of how sexual conflict manifests across 
the genome and whether the differential gene expres-
sion we perceive is a signature of ongoing conflict or 
conflict resolved. It is also now apparent that sex dif-
ferences in the nature and strength of gene interactions 
are key to conflict resolution. However, a number of 
outstanding questions regarding the genomic archi-
tecture of conflict remain unanswered (see Box 1). Sol-
ving these will require the effective integration of single- 
cell approaches across development with phenotypic 
studies that quantify the underlying drivers of conflict. 
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