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Abstract

An equivariant minimal surface in CH
n is a minimal map of the Poincaré disc into CH

n

which intertwines two actions of the fundamental group of a closed surface �: a Fuchsian

representation on the disc and an irreducible action by isometries on CH
n . The moduli space

of these can been studied by relating it to the nilpotent cone in each moduli space of PU (n, 1)-

Higgs bundles over the conformal surface corresponding to the map. By providing a necessary

condition for points on this nilpotent cone to be smooth this article shows that away from the

points corresponding to branched minimal immersions or ±-holomorphic immersions the

moduli space is smooth. The argument is easily adapted to show that for RH
n the full space

of (unbranched) immersions is smooth. For CH
2 we show that the connected components

of the moduli space of minimal immersions are indexed by the Toledo invariant and the

Euler number of the normal bundle of the immersion. This is achieved by studying the limit

points of the C
×-action on the nilpotent cone. It is shown that the limit points as t → 0 lead

only to branched minimal immersions or ±-holomorphic immersions. In particular, the Euler

number of the normal bundle can only jump by passing through branched minimal maps.

Keywords Minimal surface · Higgs bundle · Complex hyperbolic plane · Nilpotent cone

Mathematics Subject Classification (2020) 20H10 · 53C43 · 58E20

1 Introduction

Let � be a closed oriented surface of genus g ≥ 2 and let N be a noncompact irreducible

symmetric space. Denote by G the identity component of the isometry group of N . By an

equivariant minimal surface we mean a minimal immersion f : D → N of the Poincaré

disc D which intertwines the action of a Fuchsian representation c : π1� → Aut(D) with

an irreducible representation ρ : π1� → G. By a theorem of Corlette [5] (generalising a

theorem of Donaldson for N = RH
3 [6]), the triple ( f , c, ρ) is uniquely determined by

the pair (c, ρ), and if one considers that f is essentially unchanged by pre-composition

or post-composition by isometries, then one only needs the conjugacy classes of c and ρ.

B Ian McIntosh

ian.mcintosh@york.ac.uk

1 Department of Mathematics, University of York, York YO10 5DD, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-023-00793-z&domain=pdf
http://orcid.org/0000-0002-2960-1497


56 Page 2 of 19 Geometriae Dedicata (2023) 217 :56

Hence there is a natural way to assign a topology to the set M(�, N ) of equivalence classes

[ f , c, ρ] of equivariant minimal surfaces by embedding it in Tg × R(π1�, G) where Tg is

the Teichmüller space of � and R(π1�, G) is the character variety of G., i.e., the moduli

space of reductive representations of π1� into G up to conjugacy.

This topology for M(�, N ) was first proposed by Loftin and the author in [17] but prior

to this, in [18], we had studied the set M(�, CH
2) and provided parametrisations for certain

subsets which we called “components”, simply to mean “parts whose union is the whole”. We

showed that each parametrisation equipped the component with the structure of a connected

smooth complex manifold, most of which had the same dimension. These parametrisations

exploited the nonabelian Hodge correspondence, through which one can identify an equivari-

ant minimal surface with a PU (2, 1)-Higgs bundle having certain properties. However, since

in [18] we did not equip the total space M(�, CH
2) with a topology a priori, the question

of its connected components had no framework in which to be addressed. One of the aims of

this article is to answer this question now, given the topology described above (in a nutshell,

the components identified in [18] are, with a few exceptions, the connected components).

A key to understanding the connected components lies in having a criterion for points of

the moduli space to be smooth, and this is provided below for M(�, N ) when N is either

CH
n or RH

n . The second aim of this article is to show how these components fit together

inside the larger set M(�, CH
2) obtained by including all branched minimal surfaces. We

show that this is not smooth, since singularities occur where the closures of the connected

components of M(�, CH
2) meet. Note that M(�, CH

2) was the space studied in [18], and

the distinctive role of branched immersions explained here was not at all apparent during the

writing of [18].

To summarise the results below, first recall that a PU (n, 1)-Higgs bundle can be rep-

resented by a pair (E,�) where E → �c is a holomorphic vector bundle of rank n + 1

over the Riemann surface �c ≃ D/c. This has a decomposition E = V ⊕ C, where V is

rank n and C denotes the trivial line bundle. Then � is a holomorphic one-form with values

in Hom(C, V ) ⊕ Hom(V , C). We write � = (�1,�2) to denote the two components. In

general (E,�) corresponds to an equivariant, but possibly branched, minimal surface when

tr(�2) = 0. Zeroes of � are branch points of the minimal surface and therefore we require

� to have no zeroes (i.e., �1,�2 have no common zeroes) to obtain a point in M(�, CH
n).

From [18] we know that one of �1,�2 is identically zero precisely when the minimal immer-

sion is either holomorphic or anti-holomorphic. It is convenient to write M(�, CH
n) as a

disjoint union V ∪ W where W is the subvariety of ±-holomorphic maps and V is the com-

plement. Our first main result concerns V , and in fact applies also to M(�, RH
n) ⊂ V using

the totally geodesic embedding of RH
n into CH

n .

Theorem 1.1 Both V ⊂ M(�, CH
n) and M(�, RH

n) are smooth manifolds. They have

complex dimension (g − 1) dim(G) for G = PU (n, 1) and SO0(n, 1) respectively.

In fact what we prove is that in the nilpotent cone N c (i.e, the locus of tr(�2) = 0 in the

Higgs bundle moduli space H(�c, G) for G = PU (n, 1) or SOo(n, 1)) the regular points of

the Hitchin function tr(�2) are precisely the points for which � has no zeroes when neither

� j is identically zero.

Next we restrict our attention to n = 2. For G = PU (2, 1) the connected components of

R(π1�, G) are indexed by the Toledo invariant, τ . Using Toledo’s convention, as in [18], this

satisfies τ ∈ 2
3
Z and |τ | ≤ 2(g − 1). We denote the subspace of triples [ f , c, ρ] for which ρ

has Toledo invariant τ by M(�, CH
2)τ and it is clear that these are disconnected from each

other. Minimal immersions which are not ±-holomorphic have complex and anti-complex

123



Geometriae Dedicata (2023) 217 :56 Page 3 of 19 56

points (points p ∈ � for which f∗T
1,0
p � is a subspace of either T ′

CH
2 or T ′′

CH
2). These

give effective divisors, D2 and D1 respectively. From [18] their degrees d j = deg(D j ) satisfy

τ = 2
3
(d2 − d1), χ(T �⊥) = 2(g − 1) − d1 − d2, (1.1)

0 ≤ 2d1 + d2 < 6(g − 1), 0 ≤ d1 + 2d2 < 6(g − 1), (1.2)

where T �⊥ is the normal bundle of f , which means the quotient of T D⊥ ⊂ f −1T CH
2 by

the natural action of π1�. The inequalities are necessary and sufficient conditions for the

existence of minimal immersions which are not ±-holomorphic. In particular, the degrees

d1, d2 are equivalent information to the pair τ and χ(T �⊥). For holomorphic immersions

the only topological invariant is the Toledo invariant, which determines χ(T �⊥) through

χ(T �⊥) = − 3
2
τ + 2(g − 1). (1.3)

This follows by taking the quotient of the direct sum of holomorphic bundles f −1T ′
CH

2 =

T 1,0D ⊕ T D⊥ by the π1�-action.

Let V(d1, d2) ⊂ V denote the subset of those immersions whose divisors have these

degrees fixed. It was shown in [18] that each V(d1, d2) can be parametrised by a smooth

connected complex manifold of dimension 8(g−1) (actually in [18] we included the branched

minimal immersions, which occur when D1∩D2 �= ∅, but as these are described by a complex

analytic subvariety removing these does not affect the connectedness of V(d1, d2)). In Lemma

5.1 below we show that the parametrisation in [18] is smoothly compatible with the structure

it inherits from Theorem 1.1. Since V(d1, d2) all have the same dimension they are therefore

the connected components of V . To establish the connected components of M(�, CH
2) it

remains to see how these fit together with points of W . Set Wτ = W ∩ M(�, CH
2)τ for

each τ . We need only consider τ ≥ 0 since M(�, CH
2) carries a natural real involution

[ f , c, ρ] �→ [ f̄ , c, ρ̄] for which τ(ρ̄) = −τ(ρ).

Theorem 1.2 Let M(�, CH
2)τ denote the space of equivariant minimal immersions with

Toledo invariant τ . Then M(�, CH
2)0 has connected components V(d1, d2) for d2 = d1.

For 0 < τ < 2(g −1) the connected components of M(�, CH
2)τ are V(d1, d2) with d1 �= 0

and V(0, d2) ∪ Wτ , while M(�, CH
2)τ = Wτ for τ = 2(g − 1).

In particular, the connected components are indexed by τ and χ(T �⊥): when d1 = 0 the

two equations (1.1) become the single equation (1.3).

This theorem is proved through a complete description of the limit points of the C
×-action

t · (E,�) = (E, t�) on PU (2, 1)-Higgs bundles, for both t → ∞ and t → 0. As well

as proving the theorem, it gives us information about how the closures of the connected

components fit together inside the space M(�, CH
2) which includes all branched minimal

immersions. On the Higgs bundle side this corresponds to the space of all (c, E,�) for which

(E,�) lies in the nilpotent cone N c excluding the locus � = 0 (since this corresponds to

constant maps). Each N c is known to be stratified by the unstable manifolds of the downwards

Morse flow for the Higgs field energy ‖�‖2
L2 : for each connected component C of critical

points these agree with

UC = {(E,�) : lim
t→∞

(E, t�) ∈ C}.

It was conjectured in [18], and is proven below, that except when C consists of local min-

ima (there is precisely one such C for each τ and it equals Wτ ) these unstable manifolds
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correspond to the fibres of the analytic family V(d1, d2) over Tg . We understand how these

fit together by examining the limit in the opposite direction, as t → 0. It is well-known that

when E is semi-stable (as a vector bundle) the limit limt→0(E, t�) must have � = 0 and

therefore this can only occur when τ = 0. When E is strictly unstable (and assuming τ ≥ 0

without loss of generality) we show that either (E,�1) is a Hodge bundle, in which case

this is limit, or the limit is determined by the maximal destabilizing line subbundle of V and

always corresponds to a branched minimal immersion.

Thus we have the the following geometric picture of how these pieces fit together. Each

fibre over c of the space M(�, CH
2)τ is a union of these unstable manifolds, and their clo-

sures intersect either at branched minimal surfaces or at ±-holomorphic surfaces. Removing

these leaves a disjoint union of components V(d1, d2), one for each critical manifold of

non-minima. In particular, one cannot pass from one component V(d1, d2) to another in

M(�, CH
2) without forcing the minimal immersion to branch somewhere. Another way of

saying this is that χ(T �⊥) can jump but only by passing through branched maps.

2 Definitions

Let C
n,1 denote C

n+1 equipped with the pseudo-Hermitian inner product characterised by

〈u, u〉 = |u1|
2 + . . . |un |2 − |un+1|

2.

Let e1, . . . , en+1 denote the standard basis vectors for C
n+1. We model CH

n on the space

of lines in CP
n generated by a negative definite vector and fix a base point o = [en+1].

Throughout this article we set G = PU (n, 1), the group of orientation preserving isometries

of CH
n , and let H ≃ U (n) denote the maximal compact subgroup which fixes the base point

o. The Lie algebra g = su(n, 1) of G has Cartan decomposition g = h ⊕ m corresponding

to the decomposition of elements

(

A u

u† a

)

=

(

A 0

0 a

)

+

(

0 u

u† 0

)

(2.1)

where A ∈ u(n), a = − tr(A), u ∈ C
n and u† is the Hermitian transpose.

Let � be a closed oriented surface of genus g ≥ 2 and let D denote the Poincaré disc

thought of as the universal cover of � (note that D ≃ CH
1). A Fuchsian representation

c : π1� → PU (1, 1) equips � with a complex structure which will be denoted �c. We will

assume this complex structure is compatible with the orientation of � and hence the set of

conjugacy classes of such Fuchsian representations can be identified with the Teichmüller

space Tg of �. An equivariant minimal surface in CH
n is the equivalence class [ f , c, ρ]

of a triple consisting of a Fuchsian representation c, an indecomposable representation ρ :

π1� → G and a minimal immersion f : D → CH
n which intertwines the actions of c and

ρ, i.e.,

f ◦ c(δ) = ρ(δ) ◦ f , ∀δ ∈ π1D.

Equivalence is with respect to the action of PU (1, 1) × G by conjugation on (c, ρ) and the

corresponding natural action on f . Indecomposability of ρ means exactly that its image does

not lie in a proper subgroup of G. By the same argument as [17, Lemma 2.3] it is equivalent

to the condition that f is linearly full (i.e., its image does not lie in a totally geodesic copy

of CH
k for k < n).
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Remark 2.1 We could also say ρ is irreducible in its standard real representation on C
n,1,

although there is the potential for confusion with other meanings of irreducibility (say, for

the adjoint representation of the complexification GC).

We use M(�, CH
n) to denote the set of equivariant minimal surfaces and give it the

topology of its natural embedding

F : M(�, CH
n) → Tg × R(π1�, G); [ f , c, ρ] → [c, ρ], (2.2)

into the product of Teichmüller space with the character variety R(π1�, G) of reductive

representations of π1� into G modulo conjugacy. This map is injective by Corlette’s unique-

ness theorem for equivariant harmonic maps under these conditions [5]. We will denote by

M(�c, CH
n) the fibre over fixed c ∈ Tg .

Recall that, for each choice of c, non-abelian Hodge theory provides a homeomorphism

between R(π1�, G) and the moduli space H(�c, G) of polystable G-Higgs bundles over

�c (and this homeomorphism is analytic away from singularities). Indeed, for any simple

noncompact G there is a homeomorphism between Tg ×R(π1�, G) and the universal Higgs

bundle moduli space H(Cg, G) over Tg [1, Thm 7.5] (here Cg denotes the universal Teich-

müller curve over Tg). This is a complex analytic space for which the fibre over c ∈ Tg

is biholomorphic to H(�c, G). This homeomorphism is smooth about smooth points and

therefore we obtain an embedding

F
′ : M(�, CH

n) → H(Cg, G), (2.3)

when G = PU (n, 1). This equips M(�, CH
n) with a complex analytic structure.

We can easily characterise the image of F ′. Recall that in the projective equivalence

class of the G-Higgs bundle (E,�), E can be taken to have the form V ⊕ C where V is a

holomorphic rank n bundle over �c and C denotes the trivial line bundle. The Higgs field �

satisfies

� ∈ (Hom(C, V ) ⊕ Hom(V , C)) ⊗ K ,

and we will write � = (�1,�2) to indicate the two components for this decomposition. It is

well-known that the harmonic map corresponding to (E,�) is weakly conformal (therefore

branched minimal) when tr(�2) = 0. The branch points correspond exactly to the zeroes of

�. Consequently we have the following elementary observation.

Lemma 2.1 The pair (E,�) lies in the image of F ′ if and only if it is stable (hence indecom-

posable) with tr(�2) = 0 and � having no zeroes.

Each equivariant minimal surface ( f , c, ρ) has associated to it the Toledo invariant τ of

ρ and we denote the subset of triples with fixed τ by M(�, CH
n)τ . Our convention will be

that τ = − 2
n+1

deg(V ) so that |τ | ≤ 2(g − 1): this matches Toledo’s original definition and

is the one used in [18].

We will also write M(�, CH
n) as a disjoint union V ∪ W where W consists of all ±-

holomorphic immersions and V is the complement. Each of these has its subsets Vτ , Wτ

containing those elements with fixed Toledo invariant. We note that under the non-abelian

Hodge correspondence elements of W correspond to Higgs bundles with �2 = 0 for τ > 0

or �1 = 0 for τ < 0. Since we always have � �= 0 we know W0 = ∅. Note that Wτ

corresponds to the length two Hodge bundles [18], which are the minima of the Higgs field

energy ‖�‖2
L2 [4].
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From [18] we know that when n = 2 the space V is a disjoint union of subsets V(d1, d2),

corresponding to PU (2, 1)-Higgs bundles for which V and � are determined by an exact

sequence [18]

0 → K −1(D1)
�1
→ V

�2
→ K (−D2) → 0, (2.4)

where d j = deg(D j ) satisfy the inequalities (1.2). There is a one-to-one correspondence

between Higgs bundles of this type and data (c, D1, D2, ξ) where ξ is the extension class

of this extension: this was used in [18] to give each V(d1, d2) the structure of a complex

manifold of dimension 5(g − 1).

Finally, we will want to consider the strictly larger space M(�, CH
2) which includes

additionally the branched minimal immersions. Under F ′ it maps to the locus tr(�2) = 0

excluding the Higgs bundles with � = 0. We will write V̄ and W̄ when we extend V and W to

include branched minimal immersions of the respective types. The total space is disconnected

into Toledo invariant pieces M(�, CH
2)τ and for τ �= 0 each of these is connected. This

follows from the fact that for τ �= 0 each fibre over c ∈ Tg agrees with the component N c
τ of

the nilpotent cone in Toledo invariant τ , and these are connected by the downwards Morse

flow. For τ = 0 this fibre is N c
0 without the locus � = 0. Since this locus is the critical

manifold of minima we can no longer use the Morse flow argument, and an understanding

of the connected components would require a different approach.

3 Smooth points ofM(6,N)

For N = CH
n or RH

n let V ⊂ M(�, N ) denote the subvariety of points where neither � j is

identically zero. For RH
n this is the whole space while for CH

n it consists of the equivariant

minimal surfaces which are not ±-holomorphic. Because we assume ρ is indecomposable

there are no singular points of Tg × R(π1, G) in V .

Recall thatCg denotes the universal Teichmüller curve overTg . If we denote by H0(Cg, K 2)

the bundle over Tg with fibre H0(�c, K 2) then the map

I : H(Cg, G) → H0(Cg, K 2); (c, E,�) �→ (c, tr(�2)),

is complex analytic. We will denote its zero locus (i.e., the preimage of the zero section of

H0(Cg, K 2)) by N : for real rank one groups like PU (n, 1) and SO0(n, 1) this is the union

∪c∈Tg N
c of all nilpotent cones.

Let N o ⊂ N denote the open subvariety for which � vanishes nowhere and neither � j is

identically zero. Then N o is the image of V in H(Cg, G) and Theorem 1.1 is the statement that

N o is smooth. We will prove this by showing that points of N o are regular points of I. Since

I maps H(�c, G) to H0(�c, K 2) it suffices to show that each point of (N c)o = N o ∩ N c

is a regular point of Ic, the restriction of I to the fibre over c. We do this by generalising an

argument used by Hitchin for SL(2, C)-Higgs bundles [12] to compute the rank of dIc. For

this we must recall the hypercohomology description of the tangent space to H(�c, G) [3].

Let P → �c denote the principal HC-bundle whose associated bundle is E , and let

P(hC), P(mC) denote the holomorphic hC and mC bundles associated by the adjoint action

of HC on these subspaces of gC. One knows from [3] that when (E,�) is stable the tangent

space at this point is isomorphic to the first hypercohomology H
1(A∗) of the complex

A
0 ad �

→ A
1 → 0 → . . . (3.1)
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where A0 is the sheaf of local sections of P(hC) and A1 is the sheaf of local sections of

P(mC) ⊗ K . As Hitchin [12] points out, by considering the “second” spectral sequence for

the hypercohomology of A∗ (i.e., the spectral sequence for the filtration by the degree of

Cech cochains) one obtains an isomorphism for H
1(A∗) involving the kernel and cokernel

sheaves

0 → Ker → A
0 ad �

→ A
1 → Coker → 0, (3.2)

namely,

H
1(A∗) ≃ H1(Ker) ⊕ H0(Coker). (3.3)

Now let B denote the Killing form on gC, specifically B(η, ξ) = tr(ad η ad ξ). By adjoint

invariance B(�, ad �(η)) = 0 for all η, so that we have a well defined map of sheaves

B(�, ·) : Coker → K 2; η �→ B(�, η), (3.4)

and an induced map from H0(Coker) to H0(K 2). When pre-composed with the projection

of H
1(A∗) onto H0(Coker) from (3.3), at a stable point (E,�), this induced map agrees

with dIc [3, Remark 2.8(iv)]. Hence the rank of dIc at (E,�) equals the rank of B(�, ·) on

H0(Coker).

Lemma 3.1 Suppose ad � has corank 1, i.e., Coker is a rank 1 sheaf. Then dIc has maximal

rank if and only if � has no zeroes.

Proof When Coker is rank one B(�, ·) vanishes precisely at the zeroes of � with the same

divisor of zeroes, D, and hence Coker ≃ K 2(−D). Thus the induced map H0(Coker) →

H0(K 2) is maximal rank, and hence dI has maximal rank, if and only if � has no zeroes. ⊓⊔

Now our aim is to show that ad � has corank 1 for points of V . First we do the case

N = CH
n .

Lemma 3.2 For G = PU (n, 1), when neither � j is identically zero the map ad � has corank

one.

Proof Following [18], since tr(�2) = 0 we have �2 ◦ �1 = 0, and so we have a sequence

0 → K −1(D1)
�1
→ V

�2
→ K (−D2) → 0, (3.5)

where D j is the divisor of zeroes of � j . About each point p ∈ � we can choose a local

holomorphic chart (U , z) and a local holomorphic frame σ1, . . . , σn for V over U satisfying

�(σ0) = zkσ1dz, �(σn) = zldz, �(σ j ) = 0 for j �= n.

Here k, l are, respectively, the degrees of D1 and D2 at the point p and σ0 denotes a local

trivialising section of the trivial bundle. With respect to this frame � is represented as a local

section of End(E) ⊗ K by

ξ =

⎛

⎜

⎜

⎜

⎜

⎝

0 . . . 0 zk

0
. . . 0

...
...

0 . . . zl 0

⎞

⎟

⎟

⎟

⎟

⎠

dz =

(

0 zke1

zlet
n 0

)

dz, (3.6)
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where in the second expression the standard basis vectors e1, . . . , en for C
n have been used

to write the matrix in block form. Let χ be a local holomorphic section of P(hC), identified

with a locally holomorphic hC-valued function. We compute

[ξ, χ] =

[(

0 zke1

zlet
n 0

)

dz,

(

A 0

0 a

)]

=

(

0 zk(aIn − A)e1

zlet
n(A − aIn) 0

)

dz, (3.7)

a = − tr(A). Hence [ξ, χ] = 0 holds over U when the 2n equations

(A + tr(A))e1 = 0, (At + tr(A))en = 0,

hold. In components these equations are

2A11 +

n
∑

i=2

Ai i = 0, A j1 = 0, Ank = 0, 2Ann +

n−1
∑

i=1

Ai i = 0,

for 2 ≤ j ≤ n and 1 ≤ k ≤ n − 1. We see that this gives 2n − 1 independent equations since

An1 = 0 appears twice. Hence ad ξ has rank 2n − 1 = dim mC − 1. ⊓⊔

Now we deal with the case N = RH
n and follow the description of the Higgs bundles

for this case given in [17]. These have the form E = V ⊕ C where V has det(V ) = C and

carries a non-degenerate quadratic form QV . In this case �2 = �⊤
1 where the transpose is

with respect to QV . It follows that for f to be an immersion both � j vanish nowhere so both

divisors D1, D2 are trivial. As a smooth bundle V splits into a direct sum K −1 ⊕ W ⊕ K

and with respect to this splitting we can write

QV =

⎛

⎝

0 0 1

0 QW 0

1 0 0

⎞

⎠ . (3.8)

Then � is represented by ξ in (3.6) with k = l = 0. For the Lie algebra we use

so(Q, 1) =

{(

A u

vt 0

)

: At Q + Q A = 0, Qu = v

}

≃ so(n + 1, C),

where A ∈ End(Cn), u, v ∈ C
n , Q is (3.8) with QW = In−2, and the transpose is the

usual matrix transpose. The appropriate (complexified) symmetric space decomposition is

obtained from the Cartan decomposition (2.1) above:

so(Q, 1) = hC

Q ⊕ mC

Q, hC

Q = so(Q, 1) ∩ hC, mC

Q = so(Q, 1) ∩ mC.

Lemma 3.3 For G = SO0(n, 1) the map ad � has corank one.

Proof Following the same arguments as for CH
n above but applied to so(Q, 1) it suffices

to show that the map ad ξ : hC

Q → mC

Q has corank 1. Using the equations (3.7) but with

χ ∈ mC

Q we we see that the image of ad ξ is isomorphic to

{Ae1 : At = −Q AQ} ⊂ C
n .

The symmetry At = −AQ A implies that An1 = 0 and this is the only condition Ae1 must

satisfy. Therefore im(ad ξ) has codimension one in mC

Q . ⊓⊔
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To complete the proof of Theorem 1.1 we note that at regular points the dimension of

I−1(0) is

dim H(Cg, G) − dim H0(�c, K 2) = dim(Tg) + dim(R(π1�, G)) − dim H0(�c, K 2)

= dim(R(π1�, G)).

Here dim(R(π1�, G)) means the dimension of the smooth open subvariety of indecompos-

able representations. This has real dimension (2g − 2) dim(G).

Remark 3.1 Theorem 1.1 fills a small gap in the proof of Theorem 4.4 of [17], which gives

a smooth parametrisation of the connected components of M(�, RH
4). The proof that the

parametrisation is a local diffeomorphism needs the fact the M(�, RH
4) is non-singular.

4 Limit points of theC
×C
×

C
×-action for n = 2

It is well-known that C
× acts on G-Higgs bundles by t · (E,�) = (E, t�), t ∈ C

×, and that

the fixed points of this action are Hodge bundles, i.e., one can write E = ⊕m
j=1 E j so that

� : E j → E j+1 ⊗K with Em+1 = 0. The integer m is called the length of the Hodge bundle.

It is also well-known that these fixed points are exactly the critical points of the Higgs field

energy E(E,�) = ‖�‖2
L2 . Given one of the connected components C of C

×-fixed points

define

SC = {(E,�) : lim
t→0

(E, t�) ∈ C}, UC = {(E,�) : lim
t→∞

(E, t�) ∈ C}.

By a theorem of Kirwan these agree with, respectively, the stable and unstable manifolds

of C along the downwards Morse flow (gradient flow of − grad E). One knows that ∪CSC

equals H(�c, G) while ∪CUC equals the nilpotent cone N c.

Our aim in this section is to identify the limit points as t → ∞ and t → 0 inside

M(�, CH
2).

First we note that if � j = 0 for either j = 1 or j = 2, the pair (E,�) is plainly a Hodge

bundle of length 2, hence a C
×-fixed point. So our interest is when neither � j vanishes

identically. In this case, using (2.4), as a C∞-bundle

V ≃C∞ K −1(D1) ⊕ K (−D2). (4.1)

The ∂̄-operator for the holomorphic structure of V can be written with respect to this smooth

splitting as

∂̄V =

(

∂̄1 β

0 ∂̄2

)

, (4.2)

where β is a smooth (0, 1)-form taking values in Hom(K (−D2), K −1(D1))): its Dolbeault

cohomology class [β] corresponds to the extension class in H1(K −2(D1 + D2)) which

determines the extension (2.4). When [β] = 0 it is easy to check that this gives a Hodge

bundle [18], which we will denote by (E∞,�∞). Here E∞ = V ∞ ⊕ C where V ∞ is the

holomorphically split bundle (4.1) and

�∞
1 : K −1(D1) → V ∞, �∞

2 : V ∞ → K (−D2),

are the natural inclusion and projection respectively. Notice that �∞ = � as a map on

smooth bundles.
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Lemma 4.1 For (E,�) ∈ V , limt→∞(E, t�) = (E∞,�∞).

The proof is essentially the same as the proof of Prop. 4.9 in [17].

Proof We perform a gauge transformation. Set

gt =

⎛

⎝

t 0 0

0 t−1 0

0 0 1

⎞

⎠ . (4.3)

Then gt�g−1
t = t� while

g−1
t ∂̄E gt =

⎛

⎝

∂̄1 t−2β 0

0 ∂̄2 0

0 0 0 ∂̄

⎞

⎠ . (4.4)

Let E t denote the holomorphic bundle for this ∂̄-operator. Then (E, t�) ≃ (E t ,�) hence

lim
t→∞

(E, t�) = lim
t→∞

(E t ,�) = (E∞,�∞).

⊓⊔

Recall that in [18] the data (c, D1, D2, [β]) is used to parametrise the component V(d1, d2)

by fixing the degrees of the divisors. Let V(d1, d2) denote the closure of this in V , i.e., where

D1, D2 can have points in common. By [18] this is a complex analytic family over Teichmüller

space: let Vc(d1, d2) denote the fibre over c ∈ Tg . The previous lemma shows that, under

the map from Vc(d1, d2) to Higgs bundles over �c, (c, D1, D2, [t
−2β]) maps to (E, t�)

and therefore the limit as t → ∞ is given by the trivial extension for V . Given that this

parametrisation of Higgs bundles is smooth (which is proved in Lemma 5.1 below) we have

the following corollary, which was conjectured in [18].

Corollary 4.2 Vc(d1, d2) is diffeomorphic to the unstable manifold UC where C is the critical

manifold of Hodge bundles for which V = K −1(D1) ⊕ K (−D2) (i.e., the trivial extension).

Now we turn to limits as t → 0. For a stable Higgs bundle (E,�) with Toledo invariant

τ with E = V ⊕ C we note that τ = − 2
3

deg(V ) in our convention. Since the dual Higgs

bundle has opposite Toledo invariant we may assume that τ ≥ 0.

Proposition 4.3 Let (E,�) be a stable Higgs bundle with τ ≥ 0 and let (E0,�0) =

limt→0(E, t�). Suppose (E,�) is not a Hodge bundle and therefore is given by a non-

trivial extension of the form (2.4) for effective divisors D1, D2. Then exactly one of the

following holds:

(i) E is a semistable bundle, in which case τ = 0 and (E0,�0) = (Gr(E), 0), where

Gr(E) is the associated graded bundle arising from a Jordan-Hölder filtration of E.

(ii) τ > 0 and every line subbundle L of V satisfies deg(L) < 1
3

deg(V ), in which case

(E0,�0) = (E,�1) is a length two Hodge bundle.

(iii) τ > 0, and the maximal destabilizing line subbundle L of V has deg(L) = 1
3

deg(V ).

In this case there is a positive divisor D for which L ≃ K (−D2 − D), V /L ≃

K −1(D1 + D) and (E0,�0) is the polystable Higgs bundle

(K −1(D1 + D) ⊕ C, ϕ) ⊕ (K (−D2 − D), 0), (4.5)

where ϕ is the projection of �1 : C → V ⊗ K to the quotient.
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(iv) τ ≥ 0, V is unstable and its maximal destabilizing line subbundle L has deg(L) >
1
3

deg(V ). In this case there is a positive divisor D so that L, V /L have the isomorphisms

in (iii) but now (E0,�0) is a length three Hodge bundle of the form

(K −1(D1 + D) ⊕ K (−D2 − D) ⊕ C,�0), (4.6)

where �0
1 is the projection of �1 to (V /L) ⊗ K , and �0

2 is the restriction of �2 to L.

In case (i) the limit corresponds to a constant harmonic map. In all other cases except (ii)

with d1 = 0 (i.e., �1 has no zeroes) the limit corresponds to a branched minimal surface. In

case (iii) these are branched holomorphic maps to a totally geodesic CH
1 in CH

2.

Proof (i) If E = V ⊕C is a semistable bundle then 0 = deg(C) ≤ 1
3

deg(V ). By assumption

τ ≥ 0, hence τ = 0. Now (E, 0) is S-equivalent to (Gr(E), 0) [20], which is polystable and

hence the limit in moduli space. In particular, note that either V is polystable and E = Gr(E),

or V is strictly semistable and a non-trivial extension of its maximal degree line subbundle L of

degree 0. Then a Jordan-Hölder filtration for E is L ⊂ L⊕C ⊂ E and Gr(E) = L⊕C⊕V /L .

(ii) In this case write the holomorphic structure and Higgs field for (E, t�) in block decom-

position with respect to E = V ⊕ C:

∂̄E =

(

∂̄V 0

0 ∂̄

)

, � =

(

0 t�1

t�2 0

)

.

A simple computation shows that for

gt =

(

t IV 0

0 1

)

we have

lim
t→0

g−1
t ∂̄E gt = ∂̄E , lim

t→0
g−1

t t�gt =

(

0 �1

0 0

)

.

This represents the limit provided (E,�1) is stable as a Higgs bundle. The �1-invariant

subbundles of E are C ⊕ im �1, V and any line subbundle of V . Since (E,�) is stable

as a Higgs bundle and deg(V ) < 0 the first two already satisfy the slope inequality, as

does im �1. So the additional condition is that every other line subbundle L of V satisfies

deg(L) < 1
3

deg(V ). Note that the case τ = 0 is covered by part (i).

(iii) First we note that (V /L⊕C, ϕ) is a stable Higgs bundle, since V /L is the only ϕ-invariant

proper subbundle and deg(V /L) = 2
3

deg(V ) < 0 hence deg(V /L) < 1
2

deg(V /L). Also
1
2

deg(V /L) = deg(L) hence (4.5) is a polystable Higgs bundle. We also note that the

restriction of �2 to L is a holomorphic section of L−1 ⊗ K (−D2) and this must have

zeroes otherwise the extension (2.4) splits. Let D > 0 be the divisor of these zeroes, then

L ≃ K (−D2 − D) and since det(V ) ≃ O(D1 − D2) it follows that V /L ≃ K −1(D1 + D).

Now V can be written as an extension of the form

0 → L → V → V /L → 0. (4.7)

This gives a C∞-isomorphism E ≃ V /L ⊕ L ⊕ C. With respect to such a decomposition

we can write
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∂̄E =

⎛

⎝

∂̄V /L 0 0

β ∂̄L 0

0 0 ∂̄

⎞

⎠ , � =

⎛

⎝

0 0 φ13

0 0 φ23

φ31 φ32 0

⎞

⎠ .

Using the gauge transformation

gt =

⎛

⎝

t 0 0

0 1 0

0 0 1

⎞

⎠ .

a straighforward calculation gives

g−1
t ∂̄E gt =

⎛

⎝

∂̄V /L 0 0

tβ ∂̄L 0

0 0 ∂̄

⎞

⎠ , g−1
t (t�)gt =

⎛

⎝

0 0 φ13

0 0 tφ23

t2φ31 tφ32 0

⎞

⎠ .

Setting t = 0 gives (4.5). Note that ϕ = ϕ13 is the projection of �1 : K −1(D1) → V onto

V /L and has divisor of zeroes D1 + D since it vanishes when either �1 = 0 or at the support

of im �1 ∩ L . But �2 ◦ �1 = 0 so the support of D is all the points at which im �1 is not

zero but lies in L .

(iv) As in the previous case we first show that the proposed limit (4.6) is a stable Higgs

bundle. Since the only proper �0 invariant subbundles are V /L and V /L ⊕ C, and since

deg(V ) ≤ 0, the stability condition is the single inequality 1
2

deg(V /L) < 1
3

deg(V ), i.e.,

deg(L) > 1
3

deg(V ). Just as in part (iii) we note that L ≃ K (−D2 − D) where D > 0 is the

divisor of zeroes of �2 restricted to L . Hence V /L ≃ K −1(D1 + D).

Now to show this gives the limit we use the same argument as part (iii) but with

gt =

⎛

⎝

t2 0 0

0 1 0

0 0 t

⎞

⎠ .

In this case

g−1
t ∂̄E gt =

⎛

⎝

∂̄V /L 0 0

t2β ∂̄L 0

0 0 ∂̄

⎞

⎠ , g−1
t (t�)gt =

⎛

⎝

0 0 φ13

0 0 t2φ23

t2φ31 φ32 0

⎞

⎠ .

Setting t = 0 gives (4.6) with �0
1 = ϕ13, the projection of �1 onto (V /L)⊗K , and �0

2 = ϕ32,

the restriction of �2 to L . The latter has zeroes D2 + D by definition, and the former has

zeroes D1 + D for the same reason as in part (iii). ⊓⊔

Note that this argument works perfectly well even when D1, D2 already have points in

common (although D will not be the full branch point divisor in that case), and it tells us

something about singularities of the nilpotent cone. When C consists of length three Hodge

bundles UC is smooth and of dimension 5(g − 1): this follows either from the Morse index

calculation of Gothen [9, Prop 3.2] or the dimension count in [18] for Vc(d1, d2), given

Corollary 4.2. Any point on C which is a limit point as t → 0 (i.e., from some UC ′ for

C ′ �= C) lies on both the stable and unstable manifolds of C , which are transverse, and

therefore the tangent space at this point has dimension greater than UC . Thus such limit

points are singular points of the nilpotent cone. We can ask whether every length three

Hodge bundle of the form (4.6) (i.e., with common divisor D) is such a singular point. The

answer is no: by the following result there are many such Hodge bundles which are not limit
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points. Recall from [18] that the necessary and sufficient conditions for (4.6) to give a stable

Higgs bundle are the inequalities

0 ≤ 2d ′
1 + d ′

2 < 6(g − 1), 0 ≤ d ′
1 + 2d ′

2 < 6(g − 1), (4.8)

where d ′
j = deg(D j + D).

Proposition 4.4 Let D1, D2, D be effective divisors, D > 0, set D′
j = D j + D and suppose

their degrees d ′
1, d ′

2 satisfy d ′
1 ≤ d ′

2 and d ′
1 + d ′

2 < 2(g − 1). Then the Hodge bundle with V

given by (4.6) does not lie at the limit as t → 0 of a C
×-orbit in a different unstable manifold.

Proof First, the two inequalities imply that (4.6) corresponds to a stable Higgs bundle with

τ ≥ 0. By Prop. 4.3 such a limit can only be obtained from case (iv), where V has unique

maximal destabilizing line subbundle L ≃ K (−D′
2) and V /L ≃ K −1(D′

1). The existence

of this requires

1 ≤ dim H1(K 2(−D′
1 − D′

2)) = dim H0(K −1(D′
1 + D′

2)),

using Serre duality. But the right hand dimension is zero whenever deg(K −1(D′
1 + D′

2)) < 0,

i.e., when d ′
1 + d ′

2 < 2(g − 1). ⊓⊔

5 Connected components ofM(6,CHCHCH
2)

Our aim is to prove Theorem 1.2. First we must recall some more facts from [18]. From

[18] V is a disjoint union ∪(d1,d2)V(d1, d2) where the non-negative integers d1, d2 satisfy

the inequalities (4.8). Points of V(d1, d2) are parametrised by the data (c, D1, D2, ξ) where

D1, D2 are effective divisors of degree d1, d2 and ξ denotes the extension class for the exten-

sion (2.4). This class can be freely chosen in H1(�c, K −2(D1+D2)) and this parametrisation

gives V(d1, d2) the structure of a complex analytic family over c ∈ Tg . The fibre over c ∈ Tg ,

which we will denote by Vc(d1, d2), is the holomorphic vector bundle over

{(D1, D2) ∈ Sd1�c × Sd2�c : D1 ∩ D2 = ∅}

with fibre H1(�c, K −2(D1 + D2)).

We need to show first that this parametrisation is smooth with respect to the smooth

structure of M(�, CH
2) given above, which uses its embedding in Tg × R(π1�, G). Since

we are always dealing with points which are smooth in the latter we can use the nonabelian

Hodge correspondence to identify the smooth locus of R(π1, G) with the smooth locus of

Higgs bundle moduli space H(�c, G). It therefore suffices to prove the following lemma.

Lemma 5.1 For each fixed c ∈ Tg we get a holomorphic embedding

Z : Vc(d1, d2) → H(�c, G),

by assigning to (D1, D2, ξ) the Higgs bundle (E,�) for which E = V ⊕ C where V and �

arise from the extension ξ using (2.4).

We know from [18] that Z is one-to-one, so it suffices to show that it is a holomorphic

immersion.

Before we begin the proof we need to fix a convention for which way to represent 1-

cocycles with values in a vector bundle. For a vector bundle F with model fibre A and

local transition relations ψi = ai jψ j between local trivialisations ψi over a Leray cover
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{Ui }, let (ξi j , Ui , U j ) be a 1-cocycle for a class in H1(F), i.e., ξi j ∈ Ŵ(Ui ∩ U j , F) satisfy

ξi j + ξ jk = ξik . Then we choose to represent this by the local functions

ci j = ψi (ξi j ) : Ui ∩ U j → A,

and the 1-cocycle conditions are equivalent to

ci j + ai j c jk = cik .

Note that the opposite convention, to use ψ j (ξi j ) instead, is used in Gunning [11]. In what

follows we need this for H1(A0) and H1(K −2(D1 + D2)).

Proof To describe the map Z concretely about a point (D1, D2, ξ), let P1, . . . , Pd be the

points in the support of D1 + D2 and let U0, . . . , Ud be the Leray cover of �c for which

each U j for j ≥ 1 is an open disc about Pj , with U j ∩ Uk = ∅ for j �= k, and U0 ∩ U j is an

annulus excluding an open disc about Pj . Since V is determined by the extension class ξ , V

has 1-cocycle g = {(g0 j , U0, U j ) : 1 ≤ j ≤ d} given by

g0 j =

(

α0 j λ0 j

0 β0 j

)

(5.1)

where

α0 j = z−n j
dz0

dz j

, β0 j = z
m j

j

dz j

dz0
, λ0 j = β0 jξ0 j dz2

0.

Here, for j ≥ 1, z j is a local parameter in U j centred at Pj and n j is the degree of D1 at Pj

while m j is the degree of D2 at Pj . By dz0 we simply mean a non-vanishing holomorphic

1-form on U0. By ξ0 j we mean the local section of K −2(D1 + D2) over U0 ∩ U j which

comprises a 1-cocycle representing the extension class ξ .

The 1-cocycle g determines a trivialisation χ j of V , and dual χ∗
j of V ∗, over U j . When

we think of the Higgs field components as �1 ∈ H0(V ⊗ K ) and �2 ∈ H0(V ∗ ⊗ K ) these

satisfy

χ0(�1) =

(

dz0

0

)

, χ∗
0 (�2) =

(

0 dz0

)

,

and for j ≥ 1

χ j (�1) =

(

z
n j

j dz j

0

)

, χ∗
j (�2) =

(

0 z
m j

j dz j

)

. (5.2)

An open neighbourhood around D1 ∈ Sd1�c (respectively D2 ∈ Sd2�c) is determined by

collection of monic polynomials z
n j

j +u j (z j ) (respectively z
m j

j +v j (z j )) whose zeroes lie in

U j . Note that if Pj is not in the support of D1 then n j = 0 and u j is the zero polynomial (and

likewise for m j , v j when Pj is not in the support of D2). The coefficients of the polynomials

u j (z j ), v j (z j ) provide a local chart about (D1, D2). At a pair (D′
1, D′

2) in this neighbourhood

of (D1, D2) any ξ ′ ∈ H1(K −2(D′
1 + D′

2)) can be represented by a 1-cocycle {(ξ ′
0 j , U0, U j )}.

The map Z maps (D′
1, D′

2, ξ
′) to the Higgs bundle constructed as above but with z

n j

j replaced

by z
n j

j + u j (z j ), z
mk

k replaced by z
mk

k + vk(zk), and ξ0 j replaced by ξ ′
0 j . It is easy to see that

smooth variations of these parameters result in smooth variations of the Higgs bundle.

Our aim now is to show that dZ has trivial kernel at each point. First we describe the tangent

space to Vc(d1, d2) at a given point. Since Vc(d1, d2) is a vector bundle over Sd1�c × Sd2�c
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we can fix a local trivialisation over a neighbourhood of (D1, D2, ξ) and identify the tangent

space at that point with

TD1 Sd1�c ⊕ TD2 Sd2 ⊕ H1(K −2(D1 + D2)).

We will write elements of this in the form (w, y, η). Further, the vector w (and similarly y)

can be described as follows. It is well-known that

TD1 Sd1�c = ⊕ j (mPj
/m

n j +1

Pj
),

where mPj
⊂ OPj

is the maximal ideal of locally holomorphic functions about Pj which

vanish at Pj . We will identify

mPj
/m

n j +1

Pj
≃ {z jw j (z j ) : w j ∈ C[z j ], deg(w j ) ≤ n j − 1},

and therefore write w ∈ TD1 Sd1�c as a tuple w = (w1, . . . , wk) of polynomials. This is

tangent to the curve D1(t) on Sd1�c for which D1(t) is the divisor of zeroes given by the

locally defined polynomial z
n j

j + tw j (z j ) in U j (for t sufficiently close to zero).

Given such a tangent vector (w, y, ξ), let (D1(t), D2(t), ξ(t)) be the curve it is tangent to,

obtained as above using u j = tw j , v j = t y j and ξ(t) = ξ + tη (using the local trivialisation

of Vc(d1, d2)). Let Z(t) = (E(t),�(t)) denote the image curve, with E(t) = V (t)⊕C, and

let g0 j (t) denote the transition functions for V (t), in the form (5.1). These have entries

α0 j (t) =
1

zn j + tw j

dz0

dz j

, β0 j (t) = (zm j + t y j )
dz j

dz0
, λ0 j (t) = β0 jξ(t)0 j dz2

0.

In particular, χ0(�1), χ∗
0 (�2) are time-independent. The derivative Z ′(0) is represented by

a hypercohomology class in

H
1(A∗) ≃

{(A, B) ∈ C1(A0) ⊕ C0(A1) : δA = 0, δB = [�, A]}

{(δC, [�, C]) : C ∈ C0(A0)}
,

following [3]. Specifically, it is the class of a pair (A, B) for which A is represented by the

1-cocyle

g′(0)g−1 =

(

α′(0)α−1 −λα′(0)α−1β−1 + λ′(0)β−1

0 β ′(0)β−1

)

(5.3)

where we have dropped the Cech cocycle subscripts for notational simplicity. If we write

B = (B1, B2) where B j = �′
j (0) then explicit calculation gives

χ0(B1) =

(

0

0

)

, χ∗
0 (B2) =

(

0 0
)

,

χ j (B1) =

(

w j dz j

0

)

, χ∗
j (B2) =

(

0 y j dz j

)

. (5.4)

If Z ′(0) = 0 there must exist C ∈ C0(A0) for which A = δC and B = [�, C]. We may

assume C is represented by an upper triangular 0-cocycle of the form

(

a j b j

0 c j

)

,
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where the entries are holomorphic functions in U j . The Lie bracket [�, C] corresponds to

the pair (−C�1,�2C) and calculation gives

χ j (C�1) =

(

a j z
n j dz j

0

)

, χ∗
j (�2C) =

(

0 c j z
m j dz j

)

.

Comparing this with (5.4), since deg(w j ) < n j and deg(y j ) < m j it follows that B = [�, C]

if and only if both sides are zero, i.e., a j = 0 = c j and w j , y j are both identically zero. This

in turn means that the 1-cocycle in (5.3), which represents A, is

(

0 η0 j dz2
0

0 0

)

.

Now A = δC is the condition that the 1-cocycle η ∈ H1(K −2(D1 + D2)) is trivial. Thus

the kernel of dZ is trivial. ⊓⊔

It follows that each V(d1, d2) is smooth and connected as a submanifold of V , and each

is open since they have the same dimension. Thus we conclude:

Lemma 5.2 The smooth submanifold V ⊂ M(�, CH
2) is a disjoint union of connected

components V(d1, d2).

To complete the proof of Theorem 1.2 we need two more lemmas. Both concern τ > 0.

The first says that V(d1, d2) is disconnected from Wτ when d1 �= 0. The second says V(0, d2)

is connected to Wτ .

Lemma 5.3 For τ > 0, V(d1, d2) ∩ Wτ = ∅ when d1 �= 0.

Proof It suffices to prove that this is true for each fixed conformal structure c. So fix c and

τ > 0, and let C be the critical manifold of minima for the Higgs field energy E = ‖�‖2
L2

for this value of τ . Let C0 ⊂ C be the open subset of Higgs bundles for which � has no

zeroes. Let C ′ be the critical manifold of E for which Vc(d1, d2) corresponds to UC ′ , the

closure of the unstable manifold of the downward gradient flow of E (equally, the unstable

manifold for the C
×-action). The assertion is that UC ′ ∩ C0 = ∅ whenever d1 �= 0. Suppose

(E,�) ∈ UC ′ ∩ C0, then it is the limit of a sequence (Ek,�k) of Higgs bundles in UC ′ . We

may assume without loss of generality that each ‖�k‖
2
L2 lies below the penultimate critical

value of E, and therefore all (Ek,�k) lie in the stable manifold SC . Taking the limit as t → 0

is a continuous map (since π : SC → C is a vector bundle) and therefore

(E,�) = lim
k→∞

(E0
k ,�0

k),

where (E0
k ,�0

k) = limt→0(Ek, t�k). By Prop. 4.3 each �0
k has zeroes unless d1 = 0.

Therefore (E,�) lies in the closed subset C \ C0. ⊓⊔

Lemma 5.4 For every choice of 0 < d2 < 3(g−1) there is a Higgs bundle (E,�) in V(0, d2)

for which limt→0(E, t�) lies in Wτ for τ = 2
3

d2.

Proof Since d1 = 0 the Higgs bundle (E,�) must correspond to an extension of the form

0 → K −1 �1
→ V

�2
→ K (−D2) → 0,
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where deg(D2) = d2. By Prop. 4.3(ii) it suffices to show we can find such an extension for

which V is a stable bundle. This is equivalent to the existence of an extension

0 → C → λ → K 2(−D2) → 0,

for which s(λ) = deg(λ) − 2 max deg(L) ≥ 1, where the maximum is taken over all line

subbundles of λ. Note that such extensions are parametrised by the space H1(K −2(D2)) ≃

H0(K 3(−D2))
∗. Such a situation is covered by [15, Prop 1.1]. Specifically, define d =

deg(K 2(−D2)) = 4(g − 1) − d2 and let s = 1 when d is odd and s = 2 when d is even.

This satisfies the conditions 4 − d ≤ s ≤ d required to apply [15, Prop 1.1] (in particular

note that the critical case 4−d = d can only occur for d = 2, in which case 4 −d = s = d).

Then by [15, Prop 1.1] s(λ) ≥ s if and only if the secant variety

Sec 1
2

(d+s−2)
(�c) ⊆ PH0(K 3(−D2))

∗,

is a proper subvariety. Since deg(K 3(−D2)) > 2(g − 1) the Riemann-Roch theorem gives

the dimension of PH0(K 3(−D2))
∗ as 5(g − 1) − d2 − 1 = d + g − 2. By [13] this secant

variety has dimension d + s − 3 ≤ d − 1 is therefore a proper subvariety for g ≥ 2. ⊓⊔

6 Open questions

Now that we understand the overall structure of M(�, CH
2) there are some important

questions which deserve attention. I want to focus mainly on those that come from considering

the natural projection

F2 : M(�, CH
2) → R(π1�, G); [ f , c, ρ] �→ ρ. (6.1)

The domain and codomain have the same “typical” dimension. Goldman and Wentworth

[8] proved that the image contains all convex cocompact representations, and for PU (2, 1)

convex cocompact is equivalent to (complex hyperbolic) quasi-Fuchsian (equally, quasi-

isometric embedding; equally, Anosov embedding [10]). These representations are interesting

because they act properly discontinuously on CH
2, so that in our context taking the quotient

by this action produces a compact minimal surface in a locally symmetric space.

In general the set of Anosov representations is open [14, Thm 2.1], but very little is

known about the structure of the set quasi-Fuchsian representations for PU (2, 1), aside from

Toledo’s proof that all representations with maximal invariant are actually C-Fuchsian (they

factor through PU (1, 1) → PU (2, 1)). For non-maximal Toledo invariant:

(i) The Hodge bundles with d1 = 0 = d2 correspond to totally geodesic Lagrangian

embeddings: these lie at the “top” of V(0, 0) with respect to the downwards Morse

flow. Under F2 they map to so-called R-Fuchsian representations, those which factor

through SO(2, 1) ⊂ PU (2, 1). In a open tubular neighbourhood of these lie the almost

R-Fuchsian minimal surfaces of [18] whose representations were shown to be quasi-

Fuchsian. The map F2 is invertible on this open neighbourhood. Parker & Platis [19]

also constructed an open neighbourhood of quasi-Fuchsian representations around the

R-Fuchsian representations using a different construction.

(ii) Goldman et al. [7] constructed quasi-Fuchsian representations for every even value of

the Toledo invariant by glueing together disc bundles to construct the quotient spaces

of CH
2. Anan’in et al. [2] constructed different hyperbolic disc bundles for every non-

maximal value of the Toledo invariant, which they conjecture possess holomorphic
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(therefore minimal) sections. The corresponding representations are discrete and faith-

ful.

With these facts in mind, the main questions are:

(i) What properties of an equivariant minimal immersion ensure that the representation is

quasi-Fuchsian? One expects that it must be a proper embedding, but is this sufficient?

(ii) When does F2 fail to be injective, and what characterises the condition dF2 = 0?

(iii) For the hyperbolic disc bundles in [2, 7] we are told their Toledo invariant and Euler

number. Each admits at least one equivariant minimal immersion: how is χ(T �⊥)

related to that Euler number? One expects them to be equal.

(iv) Does the image of every connected component of M(�, CH
2) contain a quasi-Fuchsian

representation?

(v) Are there any quasi-Fuchsian representations which only admit branched minimal sur-

faces?
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