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Constructing Relative Effect Priors for
Research Prioritization and Trial Design:
A Meta-epidemiological Analysis

David Glynn , Georgios Nikolaidis, Dina Jankovic , and Nicky J. Welton

Background. Bayesian methods have potential for efficient design of randomized clinical trials (RCTs) by incorporat-

ing existing evidence. Furthermore, value of information (VOI) methods estimate the value of reducing decision

uncertainty, aiding transparent research prioritization. These methods require a prior distribution describing current

uncertainty in key parameters, such as relative treatment effect (RTE). However, at the time of designing and com-

missioning research, there may be no data to base the prior on. The aim of this article is to present methods to con-

struct priors for RTEs based on a collection of previous RCTs. Methods. We developed 2 Bayesian hierarchical

models that captured variability in RTE between studies within disease area accounting for study characteristics. We

illustrate the methods using a data set of 743 published RCTs across 9 disease areas to obtain predictive distributions

for RTEs for a range of disease areas. We illustrate how the priors from such an analysis can be used in a VOI analy-

sis for an RCT in bladder cancer and compare the results with those using an uninformative prior. Results. For most

disease areas, the predicted RTE favored new interventions over comparators. The predicted effects and uncertainty

differed across the 9 disease areas. VOI analysis showed that the expected value of research is much lower with our

empirically derived prior compared with an uninformative prior. Conclusions. This study demonstrates a novel

approach to generating informative priors that can be used to aid research prioritization and trial design. The meth-

ods can also be used to combine RCT evidence with expert opinion. Further work is needed to create a rich database

of RCT evidence that can be used to form off-the-shelf priors.

Highlights

� Bayesian methods have potential to aid the efficient design of randomized clinical trials (RCTs) by

incorporating existing evidence. Value-of-information (VOI) methods can be used to aid research

prioritization by calculating the value of current decision uncertainty.
� These methods require a distribution describing current uncertainty in key parameters, that is, ‘‘prior

distributions.’’
� This article demonstrates a methodology to estimate prior distributions for relative treatment effects (odds

and hazard ratios) estimated from a collection of previous RCTs.
� These results may be combined with expert elicitation to facilitate 1) value-of-information methods to

prioritize research or 2) Bayesian methods for research design.
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Empirical research provides the scientific foundation for

modern medicine and must be carefully designed so that

it yields valid results. Transparent research prioritization

is also necessary, as budgets to fund research are limited.

In recent decades, Bayesian methods have been devel-

oped to aid study design and research prioritization as

well as overcome limitations associated with frequentist

approaches.1,2 Value-of-information (VOI) methods have

been developed in the economic evaluation literature also

to aid study design and research prioritization.3,4 VOI

methods calculate the value of reducing or eliminating

decision uncertainty in a particular clinical decision. As a

starting point, VOI methods require a decision model

that incorporates the best available evidence (with uncer-

tainty) into a probabilistic mathematical model. This

model can then be used to predict outcomes with differ-

ent treatment options in addition to the uncertainty in

these predictions. VOI metrics are based on Bayesian

decision theory and are calculated by estimating the

expected consequences of making an incorrect decision

with current evidence.5,6

Bayesian methods typically require probability distribu-

tions, which represent beliefs on the parameters of interest

prior to collecting further evidence. These distributions are

referred to as priors. In data analysis, ‘‘noninformative’’

(or ‘‘flat’’ or ‘‘vague’’) priors can be adequate to implement

Bayesian methods.4 Noninformative priors will rarely be

accurate representations of beliefs in clinical contexts

because they ascribe probability across an arbitrarily large

range of parameter values. In data analysis, this will be

inconsequential if there are sufficient data to dominate the

posterior distribution. However, in the context of VOI

methods, priors must reasonably represent beliefs in order

to generate meaningful results.

The key parameter that clinical research is designed

and commissioned to inform is the relative treatment

effect (RTE), such as odds ratios, hazard ratios, or mean

difference. Randomized controlled trials (RCT) are

required to gather reliable information on RTEs as they

allow for the comparison of treatments while controlling

for selection effects and confounding more generally. In

the VOI literature, previous RCTs answering the clinical

question of interest are often used to inform priors for

the RTE.3,7 In this approach, a distribution on an appro-

priate scale (log, logit, or natural) is constructed based

on the published confidence interval or standard error to

represent the uncertainty around the RTE.8 These

metrics may come from a previous study or a meta-

analysis or from expert elicitation.

As discussed above, to use VOI for research prioritiza-

tion requires a decision model. Ideally, all of the inputs to

this model would be based on a large number of relevant

high-quality studies. However, it has been found in prac-

tice that at the time of research prioritization decisions,

there are often few if any previous studies that can be

meta-analyzed to inform an appropriate RTE prior.9–11

This should not be surprising, as research is often required

because there is a lack of good-quality research addressing

a specific question. Therefore, if VOI is to be used routi-

nely by research prioritization bodies to make decisions, it

will be necessary to make some judgment about RTE

priors. Because of the decision context, this prior will

necessarily be imperfect. Therefore, a model incorporating

such a prior may be appropriate for research prioritiza-

tion decisions but not appropriate for reimbursement

decisions until further evidence has been collected and

used to inform the RTE parameter.

Noninformative priors could be used for RTEs; how-

ever, as discussed above, these priors are arbitrary and
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unlikely to represent beliefs about the plausible distribu-

tion of RTE values. More sophisticated methods are

available for this task. These methods are described in

more detail in Appendix 1. Briefly, these include 1) struc-

tured expert elicitation, which is a process used to for-

mally capture the beliefs of individuals identified as

experts in a particular area12; 2) sharing information

from indirectly related evidence, which is the process of

combining evidence relating both directly (on the exact

population and treatments of interest) and indirectly (on

related populations or treatments) to a research question

to predict outcomes in the context of interest13 and; 3)

meta-epidemiological analysis.

Murad and Wang14 stated that meta-epidemiological

studies ‘‘adopt a systematic review or meta-analysis

approach to examine the impact of certain characteristics

of clinical studies on the observed effect and provide

empirical evidence for hypothesized associations. The

unit of analysis in meta-epidemiological studies is a

study, not a patient.’’ A meta-epidemiological approach

can be used to from RTE priors by exploring results from

RCTs across a range of disease areas to obtain a realistic

distribution for the likely values that RTEs may take in

the context of interest. The intuition for this approach is

that it is possible to learn about the plausible range of a

RTE in a new trial by principled analysis of RTE in pre-

vious trials in similar disease areas. It would be unlikely

for a new RTE to be much bigger than that seen in previ-

ous RCTs, unless there was a substantial advance in the

mechanism of action of the new treatment.

Aim of This Article

RTE priors are necessary for VOI to be used in applied

research prioritization. The literature on constructing

these priors using expert elicitation is well established,

and work is emerging on indirect information sharing,

but there is limited research on the meta-epidemiology

approach. The aim of this article is to provide a novel

methodological framework to construct priors for RTEs

based on meta-epidemiological analysis. We illustrate

the methods by analyzing the database of RCTs used in

Djulbegovic et al.,15 to construct a set of priors for

RTEs.

We demonstrate how such priors can be used to com-

pute VOI for a case study of high-grade non–muscle-

invasive bladder cancer and compare our results with the

VOI estimated when using noninformative priors. The

‘‘Discussion’’ section outlines a number of ways priors

may be used and combined with other methods. We also

discuss the data sets required to produce more appropri-

ate prior distributions.

Methods

This section outlines a meta-epidemiological approach to

estimating predictive distributions that can be used as

informative priors for the RTE of a future trial.

Deriving a reasonable prior for a new study requires 2

steps. First, the observed results in a representative data

set of historical RCTs were modeled using a hierarchical

model to estimate the distribution of RTEs based on the

existing evidence. In the second step, the RTE in the new

RCT was predicted from the hierarchical model fitted to

the historical RCTs. This assumed that the true effect in

the new RCT was exchangeable with those seen in the

historical data set after accounting for any covariates

included in the model. This assumption is reasonable if

covariates that may modify the RTE have been

accounted for and we do not have further reason to

expect that the true effect in the new trial will be system-

atically different from the true effects observed in the set

of past trials.4 If the exchangeability assumption holds,

then the predictive distribution from the hierarchical

model can be used as an informative prior for the true

effect in a new study.4

Hierarchical Statistical Models

We present 2 hierarchical statistical models. Model 1

allowed for a separate mean effect for each disease area

and disease area–specific between-study variances. Infor-

mation sharing was permitted between both means and

between-study variances. Model 2 extended this to take

account of covariate effects for comparison type (i.e.,

active v. active or active v. inactive treatment).

Model 1: Hierarchical model for disease-specific means

and between-studies variances. We assumed that each

study i reports a summary treatment effect estimate yi
and a standard error sei. Following Djulbegovic et al.,15

we pooled data for log odds ratio and log hazard ratio

summary treatment effects. We assumed that the study

samples are sufficiently large so that the likelihood can

be considered approximately normal, such that

yi ; N ui, se
2

i

� �

where ui denotes the study-specific true effects. Since our

data set comprises studies in several different disease

areas and the distribution of true relative effects of RCTs

may differ across disease areas, we allowed for ui to

accommodate the hierarchical structure of our data such

that

Glynn et al. 3



ui;N mA, t2A
� �

mA ; N (M , h2)

t2A ; p (k, n)

where A indexes the disease area and mA and t2A denote

the disease area–specific true effect means and between

studies variances, respectively. We assumed that the dis-

ease area–specific means are exchangeable and come

from a normal distribution of disease area mean effects

with an overall mean across disease areas M and a

between disease areas variance h2. This model therefore

borrowed strength across disease areas by shrinking the

estimates toward the overall mean M .

Similarly, we also enabled information sharing across

disease areas on the heterogeneity parameters by letting

t2A follow a distribution p(:) parametrized by k and n.

Three alternative distributions p :ð Þ were explored,

namely, a log-normal (model 1a), a Gamma (model 1b),

and a half-normal (model 1c).

Noninformative priors were assigned to M ; N

(0, 10002), h; Unif (0,5), and the parameters of p(:).

For the log-normal, mean; N (0, 10002) and sd ; Unif

(0, 5); for the Gamma, shape; Unif (0, 50) and scale;

Unif (0, 50); and for the half-normal, mean ; Half

�Normal (0, 10002), truncated at the 0 to 100 range, and

sd ; Unif (0, 5).

Tailored predictive distributions for the disease areas

included in our data set were derived as shown:

upred;N mA�, t2A�

� �

which captured the uncertainty in disease-specific mean

true effect and disease-specific between-trials variance.

To model a disease area that was not included in our data

set, 3 levels of prediction were required: 2 levels to predict

the parameters (mean and variance) of the predictive dis-

tribution of the true effects and a final level for the pre-

dictive distribution of the true effects, so that

mpred ; N (M , h2)

t2pred ; p (k, n)

upred;N mpred , t2pred

� �

Model 2: Hierarchical model incorporating covariate

effects. Here, we extended model 1 to include a covariate

that captures whether an RCT compares 2 active treat-

ments or an active with an inactive treatment so that

ui;N mA + bAX , t2A
� �

mA ; N (M , h2)

t2A ; p (k, n)

bA = B

where X is a binary covariate that takes the value of 0

when an active treatment is compared with an inactive

one and the value of 1 when an active treatment is com-

pared with another active treatment. If sufficient data

were available, then separate (or exchangeable) effect

modification coefficients could have been estimated for

each disease area. However, in our data set, there were 5

or fewer observations of active versus inactive compari-

sons for all disease areas except oncology; as such, we

assumed that the effect modification coefficients were

common across disease areas, and this implies that the

estimate of B was primarily based on the evidence in

oncology. A noninformative prior was assumed for B,

that is, B ; N (0, 1000
2). As for model 1, 3 specifica-

tions were tested for p (:), resulting in models 2a, 2b,

and 2c.

Model 2 allowed us to derive more tailored predictive

effects in a new RCT conditional on both the disease area

and the comparison type:

Active vs Inactive comparisons : upred;N mA� , t2A�

� �

Active vs Active comparisons : upred ;N mA� + B, t2A�

� �

For disease areas not represented in our data set, 3 levels

of predictions were again required:

mpred ; N (M , h2)

t2pred ; p (k, n)

Active vs Inactive comparisons : upred;N mpred , t
2

pred

� �

Active vs Active comparisons : upred;N mpred+B, t2pred

� �

Data Sets for Constructing Priors

Desirable Attributes of a Data Set and

Domain of Applicability

The quality and domain of applicability of a set of meta-

epidemiological priors will depend on the quality and

4 Medical Decision Making 00(0)



nature of the data used to construct them. This can be

assessed using the criteria below, which are listed in no

particular order.

Similarity: the studies included in the data set should

be similar to the studies for which priors are required, in

the sense that the RTEs can be considered to have been

drawn from a common distribution (i.e., exchangeabil-

ity).4 The more similar the studies in the dataset are to

the trials of interest, the more reasonable the exchange-

ability assumption. This aspect covers a number of

potentially overlapping criteria a selection of which are

discussed here: disease area, outcomes may systemati-

cally differ across disease areas; date of publication,

trials which are more recent will better reflect contempo-

rary trial proposals; type of interventions, e.g. trials of

pharmaceutical interventions will be more similar to

those of complex interventions; funding source, priors

for publicly funded studies should ideally be derived

from publicly funded trials; country, results within coun-

tries may be more similar and; trial design, aspects such

as comparator and sample size should be similar in the

dataset and the contemporary trial proposal.

The number of studies in the data set is another con-

sideration. All else equal, a larger number of trials

included in the data set will facilitate more precise esti-

mation of parameters, which will allow for more accu-

rate prior distributions with less uncertainty. Relatedly,

larger samples will support fitting a larger range of

models.

Minimizing the degree of bias in the included studies

is important to producing reliable results. This may be

publication bias, which arises when studies with a posi-

tive outcome are more likely to be published than those

that are less positive.16 It may also be bias arising from

other issues with study size, design, or execution. Bias

adjustment methods may be useful in accounting for

this.17,18

A rich set of RCT characteristics (i.e., covariates)

should be recorded. It is a necessity that there is informa-

tion on which treatment is the comparator, which is the

experimental treatment, and the interpretation of the

treatment effect (is a larger value an improvement or

deterioration?). A large set of characteristics will allow

for more complex meta-epidemiological models, which

can produce priors more tailored to specific contexts.

This may include information on the treatments (e.g.,

treatment class), the participants (e.g., average age), and/

or the trial design (e.g., number of trial arms). In princi-

ple, controlling for these trial-level covariates may be

used to mitigate data set limitations, as defined in the

‘‘similarity’’ criterion described above.

Illustrative Data Set

This article demonstrates meta-epidemiological methods

using a data set resulting from a Cochrane review con-

structed and shared by Djulbegovic et al.15 This review

was carried out to assess the effectiveness of new treat-

ments compared with established treatments. To mini-

mize publication bias, the authors searched for

uninterrupted series of RCTs, which were registered

before or at the beginning of the study. Studies were

included regardless of publication status. Full informa-

tion on review methodology and selection criteria is pro-

vided in the article.15 The data set met the necessary

criterion in that it compared new treatments against

standard treatments, with a decrease in outcome defined

as an improvement.

The authors identified 4 cohorts of studies, 2 of which

were in oncology,19,20 1 in neurology,21 and 1 in an

assortment of diseases.22 The data set included 743

RCTs, published between 1955 and 2009, involving a

total of 297,744 patients. Some trials assessed more than

2 treatments in separate arms, resulting overall in 877

primary outcome data points. To maximize sample size

and following the original analysis by Djulbegovic

et al.,15 our analysis pooled log odds ratios and log

hazard ratios (a sensitivity analysis investigated the

impact of this; see Appendix 7). Continuous outcomes

were excluded due to low numbers of observations.

Table 1 shows the distribution of data points across dis-

ease areas. Outcomes pertained to a range of disease

areas although were predominately from oncology

(87.6%). It was decided that disease areas with fewer

than 5 observations should be removed from the data

set. This cutoff was chosen because 5 is a recognized rule

Table 1 Description of the Illustrative Data Set Used to

Construct Meta-epidemiology Priors

n %

Total number of comparisons 828
Types of comparator in oncology
Placebo or no treatment 131 15.8
Active 697 84.2

Disease areas
Circulatory system 22 2.7
Digestive system 5 0.6
Musculoskeletal system 9 1.1
Nervous system 19 2.3
Health status and contact with health services 12 1.4
Injury, poisoning or other external cause 6 0.7
Mental health and behavioral 16 1.9
Obstetrics and gynecology 14 1.7
Oncology 725 87.6

Glynn et al. 5



of thumb to estimate between-trial heterogeneity in con-

ventional meta-analysis.23 After removing observations

that did not have data on disease area, 828 data points

remained. Table 2 assess this data set against the desir-

able attributes listed above, describing its strengths and

limitations.

Implementation of Statistical Model

All synthesis models were implemented in WinBUGS.24

All models were run using 3 Markov chain Monte Carlo

chains with different starting values and compared based

on residual deviance and the deviance information criterion

(DIC). Estimates were obtained from 150,000 iterations

(following 50,000 burn-in iterations). Convergence was

checked using the Gelman-Rubin diagnostic and visually

by assessing the history, chains, and autocorrelation.

Results

Estimated Priors for Research Prioritization

All models gave a similar fit to our illustrative data set

according to DIC values (see Appendix Table 1). Also,

most models resulted in very similar estimates for the

predictive distributions (see Appendix Tables 2–4).

Although the models that accounted for comparison

type (models 2a, 2b, and 2c) may provide more tailored

predictive distributions, we highlight that their effect

modification coefficient was predominantly based on the

available evidence on the oncology disease area. Hence,

the estimated covariate effect (�x = 0.035, SE = 0.032)

may not be representative of other disease areas.

Table 3 presents the predictive distributions produced

by the model that resulted in the lowest DIC (i.e., model

1b). To provide more tailored predictive distributions,

we also report separate predictive distributions for active

versus active and active versus inactive comparisons only

for oncology (this is based on model 2b). The results in

Table 3 may be interpreted and operationalized as infor-

mative priors by plugging in the appropriate mean and

standard deviation into a log-normal distribution. These

results are illustrated on the odds/hazard ratio scale in

Figure 1.

Note that the mean of the predictive distribution is

negative for all disease areas except ‘‘nervous system’’

and ‘‘mental health and behavioral.’’ A negative predic-

tive mean indicates that new treatments are expected to

be more effective than their comparators on average. In

this analysis, new nervous system and mental health and

behavioral interventions are expected to be less effective

than their comparators on average. However, the predic-

tive intervals in all cases span zero, indicating consider-

able variation in results.

Table 2 Quality Assessment of the Illustrative Data Set Used to Construct Meta-epidemiology Priors and

Their Domain of Applicability

Criteria Djulbegovic Data Set

Number of studies Total number of data points (n = 828) is medium in size; however, 87.6% of these are in oncology,
and so estimation outside of oncology may be imprecise.

Bias Publication bias should be low, as the review informing the data set was designed to minimize
publication bias. Sets of consecutively conducted RCTs were analyzed regardless of publication
status. Other forms of bias were not formally assessed.

Similarity Disease area: the data set is heterogeneous in disease area, which means modeling is required to adjust
for this.
Date of publication: publication dates ranged from 1955 to 2010, meaning their relevance to
contemporary trials is unclear.
Type of interventions: there was a broad range of intervention types, including service delivery,
pharmaceuticals, surgery, psychological therapy, and complementary therapy.
Funding source: all studies were publicly funded RCTs, which defines the domain of applicability of
the resulting priors.
Country: all studies were carried out in either the United States or United Kingdom.
Trial design: primarily 2-arm RCTs, with a mix of active and passive comparators and a broad
range of sample sizes.

Trial characteristics A broad set of trial characteristics was recorded covering type of publication, disease area,
comparator type, sample size. However, no information on intervention type or treatment classes
was captured.

RCT, randomized controlled trial.

6 Medical Decision Making 00(0)



Case Study: High-Grade Non–muscle-invasive

Bladder Cancer

VOI Methods

Here we demonstrate how the meta-epidemiological

priors estimated can be used by analysts to calculate the

VOI of funding a bladder cancer trial. We also show

how results differ compared with using a ‘‘noninforma-

tive’’ prior.

VOI methods use the results of a decision model to

calculate the expected health consequences of the

uncertainty surrounding a particular parameter or set of

parameters.3 These health consequences can be con-

verted into monetary terms and used to understand the

health benefits that could be gained from commissioning

research to resolve parameter uncertainty. Expected

value of sample information (EVSI) is a VOI method in

which the monetary value of further research is esti-

mated taking account of the study design (including

sample size).6 As sample size increases, more uncertainty

is resolved, resulting in a higher monetary value of

research.

Case Study Model

We obtained a decision model previously employed to

inform research prioritization in the United States. This

model was developed by Carlson et al.9,10 according to

minimal modeling principles. Briefly, a Markov model

was built to model the disease process of patients with

high-grade non–muscle-invasive bladder cancer. In this

model, patients either remained recurrence free, had a

recurrence (failure), or died. Recurrence affected mortal-

ity rate, quality of life, and health care costs. The trial

planned to compare standard care with standard care in

addition to priming with intradermal Bacillus Calmette-

Guérin Tokyo strain 100 mL (0.5 mg/mL). The primary

outcome was the rate of recurrence in each arm. The

inputs to the decision model are summarized in Table 4.

Also included are the trial details including sample size,

length of follow-up, and the time during which the infor-

mation is expected to be valuable.

Table 3 Priors for the Relative Effect in a Future Randomized Controlled Trial according to Disease Area and Comparison

Typea

Disease Area

Predictive Distribution

�x s 95% Predictive Interval

1.Circulatory system 20.046 0.47 20.967, 0.875
2. Digestive system 20.033 0.317 20.654, 0.588
3. Musculoskeletal system 20.209 0.457 21.105, 0.687
4. Nervous system 0.108 0.636 21.139, 1.355
5. Health status and contact with health services 20.379 0.999 22.337, 1.579
6. Injury, poisoning, or other external causes 20.584 0.578 21.717, 0.549
7. Mental health and behavioral 0.12 0.381 20.627, 0.867
8. Obstetrics and gynecology 20.2 0.46 21.102, 0.702
9.1. Oncology (model 1b) 20.086 0.24 20.556, 0.384
9.2. Oncology (model 2b)
Active v. active comparison 20.081 0.24 20.551, 0.389
Active v. inactive comparison 20.115 0.241 20.587, 0.357

Other/unknown disease area 20.147 0.641 21.403, 1.109

aAll estimates are from model 1b, except for oncology, which reports results from both model 1b and 2b. All distributions are reported as

normal distributions, (s) on the log scale.

Figure 1 Priors for the relative effect in a future randomized

controlled trial according to disease area and comparison type.

All estimates are from model 1b and are on the odds/hazard

ratio scale.
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The annual probability recurrence in the control arm

was 25% and assumed known, but recurrence in the treat-

ment arm was uncertain. The aim of the trial was to

resolve this uncertainty; however, there were no previous

studies to do this. Two approaches were taken to charac-

terize this uncertainty in the treatment arm. First, a ‘‘non-

informative’’ prior was used. This was gamma distributed

with a shape and rate of 1. This was considered noninfor-

mative, as it results in an approximately uniform distribu-

tion when transformed to a transition probability. Second

was a meta-epidemiological prior from Table 3. The most

appropriate estimated prior for this case study was the

oncology active versus inactive prior (model 2b). This

implies a normally distributed prior for the log hazard

ratio with a mean 20.115 and standard deviation 0.241.

This was applied to the baseline rate of recurrence, and

then a gamma distribution was fit to this distribution to

match the model structure (shape = 17.3, rate = 66.1).

EVSI was estimated using a Monte Carlo method. One

thousand outer simulations were used to reflect the para-

meter space of the prior distributions, and 1,000 inner

probabilistic simulations were used to reflect nonlinearities

in the decision model. It was assumed that only the rate of

recurrence would be updated as a result of the trial; this

was done using a conjugate Poisson-gamma pair.

Results

The noninformative prior resulted in an estimate of

$44,230 per person and $3.8 billion at the population

level. For the estimated prior, the total value of the pro-

posed research was estimated to be $24,109 per person

and $2.1 billion for the population, almost half the non-

informative estimate.

Combining Meta-epidemiological Priors

with Other Methods

There are approaches other than meta-epidemiology to

inform an appropriate prior in the absence of sufficient

data, namely, structured expert elicitation and sharing

information from indirectly related evidence. These

methods are not mutually exclusive, these other methods

can improve meta-epidemiological analysis, and vice

versa.

Perhaps the most appropriate approach to combining

expert elicitation and meta-epidemiology is to integrate

meta-epidemiological evidence into expert elicitation

exercises. For example, experts may be shown meta-

epidemiological evidence to help them form their

judgements. This approach is in keeping with the princi-

ple of providing experts with all relevant background

information.12

An alternative approach is to quantitatively combine

the results from each method. If it is possible to consider

expert elicitation priors and meta-epidemiological priors

as independent sources of information, then they may be

combined using classical Bayesian updating.4,30 How-

ever, there is a risk of double counting if the experts

Table 4 Inputs Used in the Bladder Cancer Markov Model and EVSI Calculation Reported in Carlson et al.10

Parameter
Value

Source(SE or 95% CI)

Trial inputs
Sample size of trial 616 Proposal
Average age of the eligible population 68 Proposal
Length of accrual 3 y Proposal
Length of follow up 2.5 y Proposal

Decision model inputs
Expected 1-y failure-free survival rate for the control arm (exponential model) 0.75 Proposal
Overall 5-y disease-specific survival after treatment failure 79% Huguet et al.25

Additional costs for the experiment arm per year $147.18 CMS26,27

Annual health care (surveillance) costs (failure-free patients) $5,585 (1,117) Avritscher et al.28

Annual health care costs of treating bladder cancer (recurrent patients) $17,727 (3,545) Avritscher et al.28

Health-related quality of life, failure-free patients 0.997 (0.05) Kulkarni et al.29

Health-related quality of life, recurrent patients 0.96 (0.192) Kulkarni et al.29

Willingness to pay for 1 quality-adjusted life-year $150,000 Proposal
Population projection inputs
Size of patient population 25,900 Proposal
Time horizon for information (i.e., length of time trial results inform treatment decisions) 10 y Assumption
Discount rate 3% Assumption

CMS, Center for Medicare & Medicaid Services; EVSI, expected value of sample information; SE, standard error.
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considered studies in meta-epidemiology database when

forming their judgments.

Another quantitative approach is to use pooling

methods. These are common when aggregating the opi-

nions of multiple experts.31 It allows for quantitatively

combining expert opinions without increasing certainty

as more experts are included. In this case, the meta-

epidemiological prior is treated as if it is another expert,

which may be weighted to increase or decrease its influ-

ence on the overall pooled judgement. A limitation of

this approach is that the weighting chosen is somewhat

arbitrary.

When combining priors from indirect information-

sharing methods and meta-epidemiology, classical Baye-

sian updating may be the most appropriate approach on

the condition that the data sets used do not contain com-

mon studies.

Discussion

VOI can be used to make research prioritization more

transparent and accountable.5,32 At the time of research

prioritization decisions, there will be few if any previous

studies that can be analyzed to inform an appropriate

RTE prior. Therefore, if VOI is to be used routinely by

research prioritization bodies to make decisions, it will

be necessary to make some judgment about RTE priors

in the absence of directly relevant evidence. In this arti-

cle, we outline a novel method to help inform these judg-

ments. This is the meta-epidemiological framework,

which combines the results of RCTs from a variety of

disease areas to form predictive distributions that can be

used as priors, adjusting for different study characteris-

tics. We have outlined how these priors may be inte-

grated with expert elicitation and methods based on

sharing indirect evidence.

We have illustrated this methodology using a data set

of 743 trials and synthesized their outcomes with hier-

archical models that borrowed strength across disease

areas.15 This illustrative data set had a number of limita-

tions that limits the validity of our results (these are sum-

marized in Table 2).

There was only a small number of observations in

some disease areas. This was partly addressed by using a

hierarchical model that shared information across all dis-

ease areas.30,33 This hierarchal model also enabled us to

generate predictions in new disease areas where there

was no prior evidence. As larger databases are devel-

oped, this step may not be necessary.

There was also limited study-level information

included in the data set, and where this information

existed, there was limited variation in some disease areas.

Priors could not be tailored further than by disease area,

and the difference between active versus inactive com-

parators was estimated using primarily evidence from

trials in oncology.

Following Djulbegovic et al., log odds and log hazard

ratios were pooled to avoid limiting sample size. The jus-

tification for this is that the range of RTEs for these out-

comes tend to be similar. We explored this in a sensitivity

analysis and found that survival outcomes may demon-

strate, on average, lower RTEs than studies reporting

binary outcomes (see Appendix 7).

To further tailor the analysis, it may be important to

include other covariates that capture differences in

mechanism of action, treatment class, and outcome

type.23,34 Finally, the most recent observations in the

data set were from 2009. If the true effects in clinical

trials are expected to have changed over time, then this is

a challenge to the exchangeability assumption on which

this analysis is based. Although there was no statistical

evidence of a linear time trend in the data (see Appendix

Figure 1), this does not exclude the possibility of more

recent or nonlinear changes.

There may also be an important role for using meta-

epidemiological priors on their own (‘‘off the shelf’’),

where there is no other information available and there

is insufficient resource for an expert elicitation exer-

cise.4,9,10,23 Although we argue that the estimated priors

reported here are superior to noninformative priors, due

to limitations in the data set, caution is required when

applying them in their current form. There is inherent

uncertainty involved when making judgments about

RTE priors in the absence of previous studies. Because

this is inevitable when using VOI in research prioritiza-

tion, best practice may be sensitivity analysis, in which

priors are based on the widest possible range of methods:

meta-epidemiology, noninformative prior, expert elicita-

tion, and indirect evidence.

To remedy the above limitations, larger, richer, more

up-to-date data sets that cover a wider range of disease

areas should be constructed. This would greatly improve

the scope and quality of the results. With richer data,

more complex models considering additional features of

the data will be possible. Then, model 2, which currently

includes only 1 covariate that describes whether the

RCTs compare 2 active treatments or an active and an

inactive treatment, could be extended to include more

covariates that further tailor the resulting informative

prior to the analysis at hand. For instance, the inclusion

of risk of bias indicators as additional covariates, in a

similar fashion to that described by Welton et al.,35 could

potentially alleviate bias considerations and ensure that

Glynn et al. 9



the derived priors are as valid as possible. These models

will be more complex that those reported here, but the

fundamental methodology will be that established in this

article. It is expected that these models could facilitate

the derivation of more tailored informative priors.

In all applications, the limitation of the data set and

the domain of applicability of the priors should be con-

sidered. Table 2 provides an assessment of the priors

reported here and provides a template for reporting in

future studies.

The findings in this article are consistent with the pub-

lished analysis from Djulbegovic et al.,15 in which new

treatments were associated with improved outcomes on

average. However, as shown in Table 3, the priors esti-

mated across disease areas differed in both their means

and standard deviations. Notably, the predictive mean

for nervous system, mental health, and behavioral disor-

ders was positive. This suggested that new treatments in

these disease areas were expected to be slightly worse on

average than their comparators. This reflects the poor

outcomes with new treatments in these disease areas

observed in our data set.

We found that variability in outcomes was larger in

certain disease areas, resulting in larger standard devia-

tions and more diffuse predictive distributions. The dif-

ferences in standard deviations across disease areas

observed in our data set were due to differences in het-

erogeneity of true underlying effects and/or less evidence

due to smaller studies used in some disease areas. There

may also have been other aspects of trial design or con-

duct that differed systematically across disease areas that

were not captured in our analysis.

The case study compared the differences in the value

of additional research resulting from the empirically

derived prior and a noninformative prior. The empirical

prior provided an estimation of research value that was

almost half that of the noninformative prior ($2.1 billion

v. $3.8 billion). This was because the plausible range of

treatment effects was constrained by the empirical prior.

The noninformative prior considered all points between

0% and 100% equally for yearly transition probability

for recurrence in the treatment arm. This compares to

25% probability in the control arm. This does not repre-

sent a reasonable prior as it overstates uncertainty. Con-

sequently, any analysis based on this prior will overstate

the value of further research. By contrast, the empirical

prior had a distribution for recurrence rate of 22% (95%

interval from 15% to 33%). In the absence of any other

evidence, this estimate has greater face validity.

Conclusion

This work can help to increase the applicability and

reliability of Bayesian methods in research design and

prioritization by outlining and demonstrating a novel

methodology to derive informative priors from data sets

of RCT results. Future research is required to improve

the validity of these priors by compiling data sets com-

posed of large numbers of up-to-date, low-bias studies,

across a wide range of disease areas with a rich set of

intervention and study covariates.
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