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Graph Signal Processing for Narrowband Direction

of Arrival Estimation
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Abstract—For direction of arrival (DOA) estimation based on
graph signal processing (GSP), it has been assumed that there
is a phase shift between adjacent snapshots of the received
signals. However, this assumption does not hold for narrowband
signals and thus affects the performance of the corresponding
algorithms. To improve the performance, a new GSP-based DOA
estimation method is proposed. By building a periodic directed
graph based on a graph shift operator and computing the
spectrum using the Kronecker product, the relationship between
the input narrowband signals and the graph adjacency matrix of
different direction coefficients is constructed. Simulation results
show that this method performs better than existing algorithms
based on GSP.

Keywords–Sensor arrays, DOA estimation, graph signal pro-
cessing.

I. INTRODUCTION

Since the introduction of graph signal processing [1], a

large number of studies on various applications of graph signal

processing (GSP) have emerged, especially for massive data

with irregular sensor structures [2]. For example, the filtering

operation in GSP can be applied to smoothing [3], denoising

[4] and classification [5] of irregular signals and the clustering

of graphs can be used to identify weak sources in dense sensor

arrays [6]. The result from the classical signal time-frequency

uncertainty principle was extended to graph signal processing

and the use of eigenvectors of the graph Laplacian matrix is

justified as the base for the graph Fourier transform in [7].

Direction of arrival (DOA) estimation is a classic array

signal processing problem and has been solved by various

methods, such as MUSIC, ESPRIT and sparsity based ones

[8]–[10]. Recently, based on the graph Fourier transform, a

directed graph was built to represent characteristics in the

spatial domain, and the relationship between eigenvectors of

the adjacency matrix and the input angle for DOA estimation

is derived in [11]. On top of this, by adding an adjacency

matrix representing the time domain, the estimation accuracy

is improved by combining signals from different snapshots

[12]. As the Fourier transform can also be used to perform

distance estimation, it is possible to extend the GSP-based

DOA algorithm to two-dimensional estimation by combining

DOA and distance information [13]. In [14], two graph adja-

cency matrices of the signal were formed and spectral peak
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searching was then performed according to the orthogonality

property of its subspaces so that the incoming wave direction

of the target can be obtained with a reduced computational

cost.

Currently, existing works about DOA estimation based on

GSP assume that there is a single-frequency based phase shift

between signals received by the same sensor at different snap-

shots and derive the targeted angle from the graph adjacency

matrix based on this assumption, such as algorithms from [12]

and [14]. However, this assumption does not usually hold for

narrowband signals as we normally work at the baseband and

the delay between adjacent baseband snapshots of the signal

is much higher than the considered delay based on the carrier

frequency, which leads to model mismatch issues and affects

the estimation performance of the derived algorithms. In [15],

the graph shift operator is proposed to represent a periodic

time series signal. Similar to this representation, we use the

Kronecker product to combine the time adjacency matrix

based on this graph shift operator and the space adjacency

matrix based on phase shift between sensors in the same array.

With eigenvalue decomposition (EVD) of the above combined

matrix, we then derive a relationship between its eigenvectors

and received narrowband signals. Simulation results show that

this method improves the accuracy of DOA estimation in

a range of SNR values and different numbers of snapshots,

compared to existing solutions based on GSP.

The rest of the paper is structured as follows. The basics of

DOA estimation and GSP and their relationship are presented

in Sec. II. In Sec. III, the new GSP based DOA estimation

method is introduced. Simulation results are shown in Sec.

VI, and conclusions drawn in Sec. V.

II. PRELIMINARIES

The uniform linear array (ULA) model with M sensors is

shown in Fig. 1.

A. Array Model

Fig. 1. An M -sensor uniform linear array.

Consider a narrowband complex plane-wave signal s(t)ejωt

arriving from angle θ, where θ ∈ [−π
2
π
2 ] is measured from



the broadside, s(t) is a baseband signal, and ω is the carrier

frequency, which is much larger than the bandwidth of s(t).
Assume that the signal received by the first sensor is x0(t) =

s(t)ejωt; then, at the mth sensor the signal is

xm(t) = s(t− τm)ejω(t−τm) ≈ s(t)ejω(t−τm) (1)

for m = 1, ...,M − 1, where τm is the propagation delay for

the signal from sensor 0 to sensor m and is a function of θ.

The approximation s(t− τm) ≈ s(t) is valid since s(t) has

a narrow bandwidth and changes little over the time delay τm.

For a ULA with an inter-element spacing d, we have τm =
mτ1 = m(d sin θ)/c and ωτm = m(2πd sin θ)/λ, which leads

to the following model after removing the carrier:

xm(t) = s(t)e−jωτm = s(t)e−jm(2πd sin θ)/λ (2)

For K impinging signals sk(t) with the same carrier fre-

quency from directions θk, k = 0, ...,K − 1, we have

xm(t) =
K−1
∑

k=0

sk(t)e
−jm(2πd sin θk)/λ (3)

We can arrive now at the following data model

x(t) = As(t) + n̂(t) (4)

where

x(t) = [x0(t), ... , xM−1(t)]
T

s(t) = [s0(t), ... , sK−1(t)]
T

A = [a(ω, θ0), ... , a(ω, θK−1)] (5)

with

a(ω, θ) = [1 e−j(2πd sin θ)/λ ... e−j(m−1)(2πd sin θ)/λ]T (6)

being the array steering vector, and n̂(t) the noise vector with

noise components n̂m(t), m = 0, 1, ...,M − 1.

Thus, there is a phase shift between signals from

different sensors at the same snapshot (e.g., x2(t) =
x1(t)e

−j(2πd sin θ)/λ). However, signals at different snapshots

are independent of this phase shift, since the delay between

adjacent baseband snapshots of the signal is much larger

than the considered delay based on the carrier frequency.

This discrepancy leads to a model mismatch problem in

existing GSP-based DOA estimation algorithms and affects

their estimation performance. We will propose a new solution

based on the narrowband model in Sec. III.

B. Graph Signal Processing

An unweighted graph G = (V,B) is defined as a set of

nodes V connected by edges B. If each node of a directed

graph is connected to only one preceding node and one

succeeding node, then such a graph is said to be a directed

circular graph [16], as shown in Fig. 2(a). For the element Aij

of the graph adjacency matrix, assume that Aij = 0 if nodes

i and j are not connected by edges, and Aij ∈ (0, 1] if nodes

i and j are connected by edges. Then the adjacency matrix of

the graph is shown in Fig. 2(b).

(a) (b)

Fig. 2. Directed circle graph (a) and its corresponding adjacency matrix (b).

The Kronecker product of two graphs G1 = (V1, B1) and

G2 = (V2, B2) produces a new graph G = (V,B), where

V = V1×V2 is the direct product of V1 and V2. The adjacency

matrix A⊗ of the new graph is given by

A⊗ = A1 ⊗ A2 (7)

C. Graph Model for Array Signal Processing

Signals received at the same snapshot from different sensors

are related by e−jσ with σ = 2πd sin θ/λ (Fig. 3).

Fig. 3. Graph representation of signals at different sensors.

Its corresponding space adjacency matrix is given as

As =
1

2









0 ejσ 0 ... 0 ej(M−1)σ

e−jσ 0 ejσ 0 ... 0
0 ... 0 e−jσ 0 ejσ

e−j(M−1)σ 0 ... 0 e−jσ 0









(8)

The zeros on the diagonal ensure that its rank is M , which

is the number of array sensors. Thus, the adjacency matrix

has different eigenvalues and each eigenvector is orthogonal

to the other eigenvectors. The coefficient 1
2 is used to form

the following relationship for the case of one source

x(t) = Asx(t) (9)

where the effect of noise has been ignored. Therefore, the input

signal x is the eigenvector corresponding to the adjacency

matrix As when the eigenvalue is 1.

III. PROPOSED DOA ESTIMATION METHOD BASED ON

GSP

A. Time Adjacency Matrix

For signals received from the same sensor at different snap-

shots, the periodic time series relationship can be represented

by a unit directed cyclic graph [15] as shown in Fig. 4. Its

Fig. 4. Graph representation of signals at different snapshots.



corresponding time adjacency matrix is given by

At =









0 0 ... 1
1 0 ... 0
... ... ... ...
0 ... 1 0









(10)

where At is an N × N matrix, and N is the number of

snapshots. Moreover, At can be seen as a graph shift operator,

and since this is a time series signal of period N , it will return

to the original position after shifting N times. Thus, it will be

a unit matrix after shifting N − 1 times,

AN
t = At × AN−1

t = IN (11)

B. Time-space Adjacency Matrix

The Kronecker product of two disjointed graphs is defined

in Eq. (7). Therefore, the adjacency matrix of the time-space

graph, which is the Kronecker product of the time and space

graphs, is given by

A⊗ = At ⊗ As (12)

Based on Eqs. (8), (10) and (12), the time-space adjacency

matrix is given by

A⊗ =









0 0 ... As

As 0 ... 0
... ... ... ...
0 ... As 0









(13)

where A⊗ is an MN ×MN matrix. Based on Eqs. (11) and

(13), the time-space adjacency matrix after shifting N − 1
times is given by

AN
⊗ =









AN
s 0 ... 0

0 AN
s ... 0

... ... ... ...

0 ... 0 AN
s









= IN ⊗ AN
s

(14)

Assume that the signals received by array sensors at all

snapshots are given by

x = [xT (0) xT (1) ... xT (N − 1)]T (15)

According to Eq. (9), the product of the input signal and

shifted time-space adjacency matrix is given by

x = AN
⊗x (16)

Accordingly, the input signal x is also the eigenvector of the

shifted time-space adjacency matrix AN
⊗ corresponding to the

unit eigenvalue.

C. Spectral Decomposition

Since both As and At are diagonalizable matrices [17],

through eigendecomposition, they can be decomposed into

the product of matrices consisting of their eigenvalues and

eigenvectors, as shown in Eq. (17):

As = VsΛsV−1
s , At = VtΛtV

−1
t (17)

where V is the matrix whose columns represent the eigen-

vectors of adjacency matrix, and Λ is the diagonal matrix

consisting of corresponding eigenvalues.

Based on Eqs. (12) and (17), the spectral decomposition of

the time-space adjacency matrix A⊗ is given by

A⊗ = V⊗Λ⊗V−1
⊗ , with (18)

V⊗ = Vt ⊗ Vs (19)

Λ⊗ = Λt ⊗Λs (20)

As both As and At are normal matrices, AN
⊗ is also

a normal matrix. As a result, for matrix AN
⊗ , eigenvectors

corresponding to different eigenvalues are orthogonal to each

other. In addition, both As and At are of full rank, so AN
⊗ has

full rank as well. Thus, the eigenvalues of AN
⊗ vary and each

eigenvector is orthogonal to the others. Furthermore, since the

input signal x is the eigenvector of AN
⊗ , corresponding to a

unit eigenvalue, x will be orthogonal to other eigenvectors with

non-unit eigenvalues.

D. GSP Applied to DOA Estimation

Similar to the definition of the Discrete Fourier Transform

(DFT), a graph Fourier transform (GFT) is defined as

xf = V−1
N x (21)

where each column of VN is a different eigenvector of AN
⊗ .

Each element of xf is equal to the dot product of each

eigenvector and x. According to Section III-C, x is orthogonal

to the eigenvectors except for itself, which means that all

elements in xf are 0 except for the element corresponding

to the unit eigenvalue.

Since eigenvectors of the matrix AN
⊗ can be changed by

changing the azimuth angle θ, xf of different angles can

be calculated, and when xf satisfies the condition that only

one element is non-zero and the others are all zeros, the

corresponding angle is the desired result.

The absolute values |xfi| of the GFT coefficients obtained

from a 5-sensor ULA with two snapshots is shown in Fig. 5.

As shown in Fig. 5(a), there is only one peak with a large
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Fig. 5. GFT coefficients for (a) correct angle and (b) incorrect angle.

GFT coefficient, while there are several peaks with smaller

GFT coefficients in Fig. 5(b). For eigenvector matrix VN at the

correct angle, the energy will be concentrated on the element

corresponding to unit eigenvalue. For VN at other angles, the

energy will be spread over different elements.



Thus, a cost function can be constructed as

f(θ) =
1

∑

i,i 6=iuni
|xfi|

(22)

where iuni represents the eigenvalue index corresponding

to the unit eigenvalue. The cost function f(θ) achieves its

maximum only if the eigenvector matrix VN corresponds to

the correct angle.

Note that although the above cost function is derived based

on the one source assumption, it is applicable to multiple

sources, as the GFT matrix is independent of source number

and the received data vector x can be decomposed into the

sum of sub-data vectors corresponding to each source (for the

correct DOA angle corresponding to one source, the other sub-

data vectors will simply be treated as noise).

IV. SIMULATION RESULTS

In the following simulations, the number of sensors M =
5, the array element distance d = λ/2, the real angle θr =
−30.3◦ for a single source signal, and θr = −30.3◦, 0◦ for

two source signals; the source signals are random following

the standard normal distribution, and noise n̂(t) is additive

white Gaussian.

The GSP method in [12] uses phase shifts to build up the

time adjacency matrix At, while the improved GSP method

proposed in this work uses a unit directed cyclic graph instead.
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Fig. 6. DOA estimation results with the number of snapshots N = 40 for
(a) a single signal (SNR=5dB) and (b) two signals (SNR=5dB).

As shown in Fig. 6, the performance of our proposed GSP

method is better than that of the method in [12]. With the

white Gaussian noise, some disturbance can be seen in both

methods, but the positions of dominant peaks produced by the

proposed GSP method are a significantly better match to the

true angles of arrival than those for the method in [12].

As shown in Fig. 7 (a) and (b), when the signal to noise

ratio (SNR) is 10 dB, with the increasing number of snapshots

N , the root-mean-square error (RMSE) of the estimated angle

in degrees has been reduced for all three methods considered.

The proposed GSP method performs better than the method in

[12], but still falls short compared to the MUSIC algorithm.

The gap between GSP and MUSIC decreases as N increases.

For N = 40, with increasing SNR, the RMSE decreases for

all three methods. The proposed method shows more accurate

DOA estimation than the method in [12]. MUSIC has an

advantage over the two GSP-based methods for SNRs less
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Fig. 7. RMSE results for a single signal for (a) SNR=10dB and (b) N=40,
and for two signals for (c) SNR=20dB and (d) N=100.

than 5, but when the SNR is greater than 5, the results of the

three methods are almost the same.

As shown in Fig. 7 (c) and (d), for two source signals,

all three methods perform better as the number of snapshots

increases, while the proposed method shows a significant

improvement compared to the method in [12]. With a larger

N , the proposed method narrows the gap between itself and

MUSIC. In Fig. 7 (d), a higher SNR leads to less disturbance

to the array signals, resulting in higher accuracy for all three

methods. With increasing SNR, the proposed method performs

better than the method in [12], while it also has better noise

immunity compared to MUSIC when the SNR equals 0 dB.

This result demonstrates the potential of the proposed method

for applications in noisy and complex environments.

V. CONCLUSION

A new DOA estimation method based on GSP has been

proposed. Using the phase shift caused by the time delay

in propagation, the space adjacency matrix is constructed to

describe the relationship between array sensors; as signals

are not phase shifted between different snapshots, we use

a unit directed cyclic graph to represent this time series

relationship. Then, by calculating the Kronecker product of

the graphs above, we obtain the overall graph A⊗ for array

signals. Exploiting the relationship that the input signal x is

an eigenvector of AN
⊗ corresponding to the unit eigenvalue,

we establish a mapping of the incident angle θ to the GFT

coefficients to estimate DOA. As demonstrated by simulations,

the proposed method outperforms an existing GSP-based DOA

estimation algorithm in various environments for both single

and multiple sources, and it seems to be more robust against

noise than MUSIC when SNR is very low.
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