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Abstract: We study the effect of time-fluctuating social influences on the formation of polarization
and consensus in a three-party community consisting of two types of voters (“leftists” and “rightists”)
holding extreme opinions, and moderate agents acting as “centrists”. The former are incompatible
and do not interact, while centrists hold an intermediate opinion and can interact with extreme
voters. When a centrist and a leftist/rightist interact, they can become either both centrists or both
leftists/rightists. The population eventually either reaches consensus with one of the three opinions,
or a polarization state consisting of a frozen mixture of leftists and rightists. As a main novelty, here
agents interact subject to time-fluctuating external influences favouring in turn the spread of leftist
and rightist opinions, or the rise of centrism. The fate of the population is determined under various
scenarios, and it is shown how the rate of change of external influences can drastically affect the
polarization and consensus probabilities, as well as the mean time to reach the final state.

Keywords: sociophysics; voter models; stochastic processes; polarization; consensus; mean exit time;
fluctuations; noise

1. Introduction

The relevance of parsimonious individual-based models to describe social phenomena
at micro and macro levels has a long history [1–3]. In the last few decades, “sociophysics”
has grown as a research field that aims at studying collective social behaviour, such as
the spread of opinions or the dynamics of cultural diversity, using models and methods
from statistical physics [3–14]. Typical questions in sociophysics concern the conditions
under which consensus, or long-term opinion diversity, emerges in a population of agents
(“voters”) whose states (“opinions”) change as they interact.

The voter model (VM) [15], closely related to the Ising model [16], has been commonly
used to describe how consensus ensues from the interactions between neighbouring voters.
In fact, while the classical two-state VM is arguably the simplest and most popular model
of opinion dynamics, it rests on a number of oversimplifying assumptions: voters are
endowed with only two possible states, they are blind to any external stimuli, have zero
self-confidence and are all identical. In reality, members of social communities respond
differently to stimuli, as they can interact in groups [1,17–19], and are usually characterised
by multiple attributes [20–24]. In light of this, many generalizations of the VM have been
proposed: for instance, “zealotry” was introduced in various forms to endow voters with
different levels of self-confidence [25–36], while group-size influence is notably captured
in the nonlinear q-voter model [37] and its variants [38–46]. It has also been noted that in
many cases only some of the attributes characterising agents are actually compatible for
social interactions [20,24,47–51]. It was thus suggested that agents whose opinions are too
different would not interact, while voters holding close opinions can interact and attain a
global consensus. This motivated the study of multi-state VMs, such as the constrained
three-state voter model (3CVM) of Refs. [52–54], which is a discrete version of the bounded-
compromise model [47–51]. In the 3CVM, incompatible “leftist” and “rightist” voters can
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only interact with “centrists”, and the final outcome is either consensus with one of the
three parties, or a polarized state consisting of mixture of leftists and rightists. In the latter
case, the population is stuck in a frozen state of “polarization” in which leftists and rightists
hold uncompromising opinions.

In addition to interactions among agents, external stimuli or influences, especially
social media and news sources, play an increasingly important role in shaping the social
environment that in turn affects the collective social behaviour [1,55–61]. Yet, with some
recent remarkable exceptions [62–65], the role of social influences is still rarely modelled in
sociophysics. Actually, sources of news play both a crucial, yet complex and multifaceted,
role in influencing public social behaviour. They are typically characterised by opposing
viewpoints, or agenda, that often change over time and can in turn favour consensus
or polarization. It is also worth noting that voter-like models subject to a time-periodic
external field have recently been studied in the context of economic networks [66,67].

How do the opinions of a social community evolve in a volatile and time-fluctuating
environment? Inspired by this question, here, we introduce a generalization of the con-
strained three-state voter model [52–54] in the presence of binary time-fluctuating external
influences. In the same vein as in population dynamics [68–81], for the sake of simplicity,
we assume that the media influences endlessly switch from favouring the spread of po-
larization to promoting centrism, and vice versa. The goal of this work is to determine
the fate of the population under various scenarios, and in particular to study how the
time variation of the external influences affects the probability to reach polarization or a
consensus, as well as the mean time for the population to settle in its final state.

The plan of the paper is as follows: The general formulation of the model is introduced
in the next Section. Section 3 is dedicated to a thorough study of the polarization and
consensus probabilities. Section 4 focuses on the study of the mean exit time. Section 5 is
dedicated to a discussion of the results and to the conclusions. Technical details, includ-
ing useful results in the absence of external influences, and possible generalizations and
applications are discussed in three Appendices.

2. Three-State Constrained Voter Model under Binary Time-Fluctuating Influences

We consider a well-mixed population of N individuals consisting of NR “rightists”,
or R-voters, NL “leftists”, or L-voters, and NC “centrists”, or C-voters, with N = NL +
NR + NC. In the voter model language [7–9,13,15], R and L represent extreme opinions,
while C-voters hold an intermediate opinion. In the three-state constrained voter model
(3CVM) [53,54], an agent selected at random tries to interact with one of its neighbours,
that is any other randomly picked voter, at each microscopic update attempt. When the two
agents hold the same opinion or if it is a pair of leftist–rightist (LR or RL), nothing happens.
However, if the pair is a centrist C and an L or an R voter (LC, CL, RC or CR), the initial
agent adopts the opinion of the neighbour with a probability that depends on the external
influences whose effect is encoded into the random variable ξ(t) that fluctuates with the
time t; see below in this Section and Figure 1. Hence, while the interactions between L
and R voters and centrists C now change in time with ξ, L and R remain incompatible
and the system’s final state is, as in the static 3CVM, either a consensus state or a state of
polarization consisting of a frozen mixture of leftists and rightists [53,54]; see below in this
section.

The main novel ingredient of this study is the modelling of time-fluctuating social
influences by means of the coloured dichotomous (telegraph) noise ξ(t) ∈ {−1, 1} [72–74];
see Figure 1. The process ξ(t) simply encodes all the complex effects of social environment
and external influences in the endless random switching between two states: here, ξ = 1
corresponds to external influences favouring L and R opinions (spread of polarization),
whereas ξ = −1 favours centrism C (compromise between L and R). Here, the dichotomous
noise ξ is always at stationarity, and switches from ±1 to ∓1 according to

ξ −→ −ξ, (1)
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with a rate (1− δξ)ν, where ν is the average switching rate [77], and 1 < δ < −1 denotes
the switching asymmetry. Accordingly, the average time spent in state ξ = ±1 before
switching to −ξ is 1/(1∓ δ)ν (symmetric switching occurs when δ = 0), see Figure 1a–c.
At stationarity, ξ = ±1 with probability (1± δ)/2 [72–74], and its (ensemble-)average is

〈ξ(t)〉 = δ, (2)

while its autocorrelation is 〈ξ(t)ξ(t′)〉 − 〈ξ(t)〉〈ξ(t′)〉 = (1− δ2)e−2ν|t−t′ |.

Figure 1. Illustration of the 3CVM under binary social switching ξ → −ξ at rate (1− δξ)ν (where ν

is the average switching rate and δ the switching asymmetry). (a) ξ(t) versus time t when δ > 0:
most time is spent in social state ξ = 1 favouring polarization. (b) ξ(t) versus t when δ < 0: most
time is spent in social state ξ = −1 favouring centrism. (c) ξ(t) versus t when δ = 0: switching is
symmetric and the same average time is spent in ξ = ±1. (d) When ξ = 1 there is a bias favouring
the spread of L (leftists) and R (rightists): LC → LL and RC → RR are the reactions with the highest
rate, (1 + b)/2 (where b denotes the social influences bias). The social environment ξ = −1 favours
the spread of centrism: the reactions LC → CC and RC → CC have the highest rate, (1 + b)/2, under
ξ = −1. See text for details. In (a)–(c), initially ξ(0) = 1.

The 3CVM switching dynamics is therefore defined by the four reactions: LC → LL
and RC → RR, corresponding to the spread of extreme opinions at rate (1 + bξ)/2, and
LC → CC and RC → CC, with centrists replacing L and R voters at rate (1− bξ)/2. Here,
0 < b < 1 denotes the social influences bias favouring polarization when ξ = 1 and
centrism in the social environment ξ = −1. The 3CVM switching dynamics can thus be
schematically described by the following reactions occurring at each time increment:
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Figure 2. Illustration of the 3CVM dynamics in the simplex `+ r + c = (NL + NR + NC)/N = 1.
Circles show the consensus (absorbing) states all-L (1, 0, 0), all-R (0, 1, 0), and all-C (0, 0, 1), and
the initial condition is (x, y, z). The thick line indicates polarization state (pol-LR) consisting of a
frozen mixture of L and R voters made up of a fraction ` = NL/N of L-voters coexisting with an
incompatible fraction 1− ` of R-voters. Dashed lines are typical trajectories: the dynamics ceases
when the line pol-LR is reached (polarization with probability PLR), or when there is consensus by
reaching one of absorbing states all-L, all-R or all-C (with respective probabilities PL, PR and PC).
Once a trajectory reaches the line ` = 0 or r = 0, the evolution is restricted on ` = 0, r = 0 until there
is a consensus. As ξ(t) varies, the dynamics favours in turn the spread of L and R (ξ = 1) or that of C
(ξ = −1). See text for details.

LC −→ LL rate :
1 + bξ

2
, LC −→ CC rate :

1− bξ

2
,

RC −→ RR rate :
1 + bξ

2
, RC −→ CC rate :

1− bξ

2
,

where ξ and the rates endlessly fluctuates according to Equation (1). The dynamics of the
switching 3CVM is therefore the Markov chain defined by the transition rates (A1) and
master Equations (A2) and (A3) [82]; see Appendix A.1. The 3CVM switching dynamics
is characterised by three consensus/absorbing states NR = NC = 0 (all-L), NL = NC = 0
(all-R), NL = NR = 0, NC > 0 (all-C), and by the polarization state (pol-LR) where
NL + NR = N, NC = 0; see Figure 2. As in the absence of external influences, the final state
of the population is therefore guaranteed to be either one of the consensus/absorbing states
or pol-LR [53,54].

It is worth noting that the approach considered here bears some similarities with the
two-party model of Refs. [62,63]. However, there are also important differences: first, in the
3CVM, the polarization state corresponds to a frozen mixture (while it is an active state
in Refs. [62,63]). Moreover, external influences are here assumed to fluctuate endlessly in
time, rather than by establishing a certain number of connections with voters. It is also
interesting to notice that the effect of an exogenous time-varying influence has recently
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been studied in the context of economic networks [66,67]. The ensuing dynamics derived
also from an Ising-like (voter-like) model subject to a time-dependent external field [66,67]
has been shown to lead to rich dynamics characterized by hysteresis [83], which is not
a phenomemon exhibited by the 3CVM switching dynamics. This stems from the fact
that Equation (A4) differ from those governing the mean-field dynamics in Refs. [66,67]
for not having any non-noisy linear terms, and for the exogenous time dependence being
stochastic (via the multiplicative dichotomous noise ξ(t)) rather than periodic.

3. Final State: Polarization and Consensus Probabilities

In its final state, the population is either in the polarized state pol-LR, or in one of its
three absorbing/consensus states (all-L, all-R or all-C); see Figure 2. Here, PLR denotes
the probability to end up in the polarized final state pol-LR. The probabilities to reach the
absorbing/consensus states all-C, all-L, and all-R are, respectively, denoted by PC, PL and
PR. The density of voters of each type is ` ≡ NL/N, r ≡ NR/N and c ≡ NC/N = 1− `− r,
and initially the population consists of densities x, y, z = 1− x− y of L, R and C voters,
respectively.

In the absence of environmental switching, the probabilities of ending in any of the
absorbing/consensus or polarization states were found to depend non-trivially on the
parameter s ≡ Nb and (x, y, z) [53,54]; see Appendix B. Here, we are interested in finding
how PLR, PC, PL and PR, as well as the final densities (`, r, c) depend on ν under various
scenarios. We consider the same initial density of L and R voters, i.e., 0 < x = y =
(1− z)/2 < 1/2, which suffices for the purposes of this study and simplifies the analysis.
(Only in Appendix C, an example with x 6= y is briefly considered.) By symmetry, x = y
implies PL(ν) = PR(ν), i.e., the probability of L and R consensus is the same. When it
occurs, polarization consists of a fraction 1/2 of L and R voters; see Figure 2. We thus
have: PLR + PC + PL + PR = PLR + PC + 2PL = 1, and therefore focus on studying PLR and
PC as functions of ν for different values of δ and z, treated as parameters, from which we
obtain also the final densities: (`, r, c) = (`, `, 1− 2`) = ((1− PC)/2, (1− PC)/2, PC); see
Appendix A.2.

3.1. Final State in the Regimes ν→ 0 and ν→ ∞

The polarization and consensus probabilities can be computed analytically in the
regimes ν→ 0 and ν→ ∞. For this, we take advantage of the results obtained in the absence
of external influences for the polarization probability PLR, and the probabilities of C, L and
R consensus, respectively, denoted here by PC, PL and PR. In the absence of external
influences, these quantities have been obtained in Refs. [53,54] and are summarized in
Appendix B.1.

3.1.1. Polarization and Consensus Probabilities in the Regime ν→ 0

When ν→ 0, we can assume that there are no switches before attaining polarization
or consensus. In this case, ξ is a quenched random variable, and the kinetics is the superpo-
sition, with probability (1± δ)/2, of the 3CVM dynamics in the stationary environment
ξ = ±1. As a result, the polarization probability when ν→ 0, P0

LR, is the superposition of
PLR(±s, z), obtained in a static external state ξ = ±1, with probability (1± δ)/2:

P0
LR =

(
1 + δ

2

)
PLR(s, z) +

(
1− δ

2

)
PLR(−s, z), (3)

which is readily obtained from Equation (A5) or (A7). Similarly, the consensus probabilities
when ν → 0, are obtained from (A5), with Equations (A6) and (A8), and PL(s, z) =
(1−PLR(s, z)−PC(s, z))/2:

P0
C,L =

(
1 + δ

2

)
PC,L(s, z) +

(
1− δ

2

)
PC,L(−s, z). (4)
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With Equations (A9) and (4), we obtain the final density `0 = r0 of L and R voters
when ν→ 0:

`0 = r0 =
1− P0

C
2

. (5)

3.1.2. Polarization and Consensus Probabilities in the Regime ν→ ∞

When ν → ∞, so many switches occur before polarization or consensus that ξ self-
averages [71,72,75–78]. In this case, ξ is an annealed random variable that can be replaced
by its average: ξ → 〈ξ〉 = δ. The switching dynamics of the 3CVM with ν→ ∞ is thus the
same as in Ref. [54], with s → s〈ξ〉 = sδ. In the limit ν → ∞, the polarization probability,
P∞

LR, is therefore obtained from Equation (A5) or (A7) according to

P∞
LR = PLR(sδ, z). (6)

Similarly, the consensus probabilities under high ν, P∞
C,L, are obtained from Equa-

tions (A6) and (A7):

P∞
C,L = PC,L(sδ, z). (7)

With Equations (A9) and (7), the final density `∞ = r∞ of L and R voters in the regime
ν→ ∞:

`∞ = r∞ =
1− P∞

C
2

. (8)

Since PLR ≈ 1 when s ≡ Nb � 1 and PC ≈ 1 when s < 0 and |s| � 1 [54] (see
Appendix B.1), the focus here is on the regime where the small influences bias affects a
large but finite number of voters, i.e., b� 1 and s� 1, with sδ = O(1). This allows us to
highlight the effect of the external influences.

3.2. Polarization and Consensus Probabilities When δ > 0

When δ > 0, most of the time is spent in the external state ξ = 1, where influences
favour polarization (pol-LR); see Figures 1 and 2.

In fact, as shown in Figure 3a, when z is not too close to 1, PLR > PC for all values
of ν. In this case, PLR increases with ν over a large range of values (for ν & b), with
PLR ≈ P0

LR ≈ (1 + δ)/2 when ν � b and PLR ≈ P∞
LR when ν � b, whereas PC is a

decreasing function of ν, with PC ≈ P0
C ≈ (1− δ)/2 when ν� b and PC ≈ P∞

C � 1 when
ν� b; see Figure 3a. The fact that PLR and PC vary little with ν, and are quite close to P0,∞

LR
and P0,∞

C , indicates that the analytical predictions for P0,∞
LR and P0,∞

C not only apply to the
limits ν → 0, ∞, but are also valid approximations of PLR(ν) and PC(ν) in the regimes of
low and high switching rate (see also Section 4 below). We can also notice in Figure 3a,
that PLR exhibits a weak non-monotonic behaviour, with a “dip” for ν ∼ b. In this setting,
the final fraction of L and R voters, given by ` = r = (1− PC)/2 (see Appendix A.2), is
an increasing function of ν, while the final density of centrists, c = 1− 2` = PC, decreases
with ν; see inset in Figure 3a.

When there is a small initial fraction of L and R voters, with z close to 1, centrism can
prevail over a large range of values of ν: PC > PLR for ν & b, see Figure 3b. The probability
PLR thus decreases with ν, while PC can have a non-monotonic behaviour as in Figure 3b
where it exhibits a “bump” for ν ∼ b. In this case, centrists hold the majority opinion over
an intermediate range of ν: PC > PLR + PL + PR = 1− PC, i.e., PC > 1/2 when ν = O(b);
see inset in Figure 3b.
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Figure 3. PLR (circles), PC (squares), and PL = PR (stars), versus ν for δ = 0.2 and different initial
conditions. Here and in the other figures, symbols are from simulations (averaged over 105 samples).
Thick dashed lines are eyeguides showing P∞

LR (red) and P∞
C (blue), and thick dotted lines are

eyeguides showing P0
LR (red) and P0

C (blue), given by Equations (4), (3), (6) and (7). (a) Initial
condition: x = y = 0.25 and z = 0.5. Inset: final densities ` = r (L/R-voters, stars) and c (centrists,
squares) versus ν. The dashed lines show `∞ = r∞ (red) and c∞ = 1− 2`∞ (blue) from Equation (8),
and the dotted lines show `0 (red) and c0 = 1− 2`0 (blue) from Equation (5). (b) Initial condition:
x = y = 0.06 and z = 0.88. Inset: PC (squares) and 1− PC (diamonds) versus ν: centrism is the
majority opinion in the range of intermediate switching rate, ν ∼ b = 0.1, where PC(ν) > 1/2. The
dashed lines show 1− P∞

C (red) and P∞
C (blue), and the dotted lines show 1− P0

C (red) and P0
C (blue).

In all panels and insets: (N, b, s) = (200, 0.1, 20). See text for more details.
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In Figure 3, the predictions (3), (4), (6) and (7) for P0
LR/C and P∞

LR/C are in good
agreement with simulation data when ν� b and ν� b, respectively. The results reported
in Figure 3 show that when δ > 0 the main effects of the switching external influences is to
tame the bias favouring polarization. PLR and PC can thus increase or decrease with ν, and
even have a local extremum at a nontrivial switching rate. We explain this by solving, at
fixed δ, P∞

LR = P0
LR and P∞

C = P0
C for zLR and zC with Equations (3), (4), (6) and (7):

PLR(sδ, zLR) =

(
1 + δ

2

)
PLR(s, zLR) +

(
1− δ

2

)
PLR(−s, zLR),

PC(sδ, zC) =

(
1 + δ

2

)
PC(s, zC) +

(
1− δ

2

)
PC(−s, zC). (9)

Using (A5) and (A6), these equations are solved for zLR and zC. When z < zLR,
P∞

LR > P0
LR while P∞

LR < P0
LR when z > zLR. Similarly, P∞

C > P0
C when z > zC and P∞

C < P0
C

for z < zC. In the examples of Figure 3, zLR ≈ 0.708 and zC ≈ 0.887, and therefore z < zLR,C
in Figure 3a and zLR < z < zC in Figure 3b, which agrees with P∞

LR > P0
LR and P∞

C < P0
C

reported in Figure 3a, and with P∞
LR,C < P0

LR,C in Figure 3b.
The extrema of PLR and PC in Figure 3 at ν ∼ b can be explained heuristically (and

similarly for those in Figure 4, while there are no extrema in Figure 5; see below). In fact,
when ν→ 0, the population remains in the initial external state ξ(0) until polarization or
consensus occurs. When s� 1 and ν� 1, polarization occurs with a probability close to 1
if ξ(0) = 1 and close to 0 otherwise, and we have PLR(ν� b) ≈ (1 + δ)/2. We argue that
PLR(ν) decreases with ν when this rate is raised from ν→ 0 to ν . b� 1. For the sake of
argument, we focus on the switching rate ν∗ for which there is one external switch before
reaching the final state. As discussed in Section 4.2 below, we have ν∗ . b (see the inset in
Figure 6b), with ξ(t > 1/ν∗) = −ξ(0), and the population settles in its final state after a
time T ∼ (ln N)/b. Hence, if ξ(0) = 1, the final state is polarization if pol-LR is reached in
a time t . 1/ν∗, when still ξ(t) = 1. This occurs approximately with a probability 1/(Tν∗).
On the other hand, if ξ(0) = −1, the final state is polarization if pol-LR is reached after
the external switch, when ξ(t) = 1, i.e., for t & 1/ν∗, and this occurs with an approximate
probability 1− 1/(Tν∗). Hence, we estimate

PLR(ν∗) ≈
(

1 + δ

2

)
1

Tν∗
+

(
1− δ

2

)(
1− 1

Tν∗

)
=

1
2
+ δ

(
1

Tν∗
− 1

2

)
< P0

LR,

which explains that PLR(ν) decreases with ν when ν . b. When ν is increased further
above b, PLR(ν) increases with ν and approaches P∞

LR > P0
LR. This explains qualitatively the

non-monotonic behaviour of PLR(ν) in Figure 3a, with a dip at ν∗ ≈ 0.02, and PLR(ν∗) ≈
0.565 < P0

LR ≈ 0.6 < P∞
L ≈ 0.876, while the rough estimate, with T ≈ 63 (see Figure 6a),

gives PLR(ν∗) ≈ 0.56. Similarly, in Figure 3b, P∞
C ≈ P0

C < PC(ν∗), which results in a “bump”
in PC(ν) at some ν∗ . b.

3.3. Polarization and Consensus Probabilities When δ < 0

When δ < 0, most time is spent in the external state ξ = −1, where influences favour
centrist consensus. Hence, when s = Nb� 1 and z is not too close to 0, centrism prevails
over the other opinions: PC > PLR � PL,R for all values of ν; see Figure 4a. In this case, we
find: PC ≈ P0

C ≈ (1 + |δ|)/2 > PLR ≈ P0
LR ≈ (1− |δ|)/2 when ν� 1, while PC ≈ P∞

C ≈ 1
and PLR ≈ PL,R ≈ P∞

LR ≈ 0 when ν� 1. In Figure 4a, PC increases with ν from (1 + |δ|)/2
to 1, while, PLR decreases from (1− |δ|)/2 to 0 as ν is raised. This results in a final state
consisting of a majority of C voters, whose final density c increases from (1 + |δ|)/2 to
1, and a minority of L and R voters, whose final density ` = r decreases with ν from
(1− |δ|)/4 to 0; see the inset in Figure 4a. However, while all-C is the most likely final state,
there is a finite probability of polarization at low and intermediate switching rate.
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Figure 4. PLR (circles), PC (squares), and PL = PR (stars) versus ν for δ = −0.2, and different initial
conditions. Symbols are results from simulations (averaged over 105 samples). Thick dashed and
dotted lines are as in Figure 3. (a) Initial condition: x = y = 0.25 and z = 0.5. Inset: final densities
` = r (L/R-voters, stars) and c (centrists, squares) versus ν. (b) Initial condition: x = y = 0.47
and z = 0.06. Inset: PC (squares) and 1 − PC (diamonds) versus ν: centrists hold the majority
opinion in the range of low switching rate (ν � b) where PC(ν) > 1/2. In all panels and insets:
(N, b, s, δ) = (200, 0.1, 20,−0.2). See text for more details.

When s � 1 and the initial population consists mainly of L and R voters (z � 1),
polarization is the most likely final state, with PLR > PC > PL,R for ν � b; see Figure 4b.
Centrists thus generally hold the minority opinion when ν � b, while C is the majority
opinion (PC > 1/2) only under low switching rate; see inset in Figure 4b. In the limiting
regimes ν� b and ν� b, PLR and PC, respectively, approach the values of P0,∞

LR , P0,∞
C . Here,

again Equation (9) can be used to determine the initial density zLR, such that P∞
LR > P0

LR
if z < zLR and P∞

LR ≤ P0
LR otherwise, and zC such that P∞

C > P0
C if z > zC and P∞

C ≤ P0
C
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otherwise. In the example of Figure 4, zLR ≈ zC ≈ 0.112. As for δ > 0, in the regime of
intermediate switching, as for δ > 0, PLR and PL,R can exhibit bumps and PC a dip, see
Figure 4b where PLR, PL,R and PC have modest extrema around ν ∼ b.

Figure 5. PLR (circles) PC (squares), PL = PR (stars) versus ν for δ = 0, and different initial conditions
under symmetric switching. Symbols are results from simulations (averaged over 105 samples).
Thick dashed and dotted lines are as in Figure 3. (a) Initial condition: x = y = 0.25 and z = 0.5.
Inset: final densities ` = r (L/R-voters, stars) and c (centrists, squares) versus ν. In the special case
s� 1, δ = 0, z = 2x = 2y, PC(ν) = c ≈ 0.5. (b) Initial condition: x = y = 0.4 and z = 0.2. Inset: PC

(squares) and 1− PC (diamonds) versus ν: under δ = 0, centrists hold the minority opinion when
z < 1/2. In all panels and insets: (N, b, s, δ) = (200, 0.1, 20, 0). See text for more details.

3.4. Polarization and Consensus Probabilities under Symmetric Switching (δ = 0)

When δ = 0, social switching is symmetric, and the same average amount of time
is spent in ξ = ±1. External influences thus favour centrism (ξ = −1) and polarization
(ξ = 1) in turn (see Figure 1c) and all realizations start in either of the external states ξ = ±1
with the same probability 1/2.
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Figure 6. Scaled mean exit time (MET) versus ν: T(ν)/N for different N, δ and z. Symbols are from
simulations (averaged over 105 samples). Dotted and dashed lines show T0/N and T∞/N from
Equations (10) and (11), respectively. (a) (N, b, s, δ) = (200, 0.1, 20, 0.2), with z = 0.5 (black circles)
and z = 0.88 (blue stars). Inset: T(ν)/N for (N, b, s, δ, z) = (500, 0.08, 40, 0.1, 0.5) (red triangles)
and (N, b, s, δ, z) = (200, 0.1, 20, 0.2, 0.5) (black circles). MET scales as T(ν)/N ∼ (ln N)/(Nb) when
ν � b and T(ν)/N = O(1) when ν � b. (b) N = 200, b = 0.1, s = 20, with (δ, z) = (0.2, 0.5)
(black circles), (δ, z) = (−0.2, 0.5) (black crosses), (δ, z) = (0.2, 0.88) (blue stars), and (δ, z) = (0, 0.5)
(red pluses). Inset: average number of switches before reaching the final state versus ν for the same
parameters. Dashed line is an eyeguide of the slope 2Nν. See text for details.

In the regime where ν � b, the final state is reached with a probability close to 1/2
from either external state ξ = ±1. When ξ = 1, polarization is almost certain, whereas there
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is centrist consensus with probability 1 when ξ = −1. Hence, PLR ≈ PC ≈ P0
LR = P0

C = 1/2
and PL = PR ≈ 0 when ν� b. Under low switching rate, ν < b, a small number switches
can occur prior reaching the final state, but switching being symmetric, the net effect mostly
cancels out and PLR = PC ≈ P0

LR = P0
C = 1/2 when s� 1, as in Figure 5a,b.

When ν� b, there are many switches before reaching the final state (see Section 4.2
below). This results in the self-averaging of ξ, yielding ξ → 〈ξ〉 = 0. Hence, when ν� b
polarization and centrist consensus occur with probabilities:

PLR ≈ P∞
LR = 1− 1− (1− z)2√

1 + (1− z)2
and PC ≈ P∞

C = z,

where we have used Equations (6) and (7) with (A7).
We can determine when these probabilities increase with ν by solving Equation (9).

When s � 1, we find zLR = (4−
√

18− 2
√

22)/4 ≈ 0.3621 and zC = 1/2. When s � 1
PLR and PC hence increase with ν when z < zLR and z > 1/2, respectively; see Figure 5.
In the case z < 1/2, PC is a decreasing function of ν and C is generally the minority
opinion (PC < 1/2); see the inset in Figure 5b. As shown in Figure 5a, when z = 1/2 then
P∞

C = P0
C = 1/2, and we find that the probability of centrist consensus remains essentially

constant: PC(ν) ≈ 1/2. When s � 1, δ = 0 and z = 2x = 2y = 1/2, the final densities of
voters are c = PC ≈ 1/2 and ` = r = (1− PC)/2 ≈ 1/4; see the inset in Figure 5a.

4. Mean Exit Time

The mean exit time (MET), here denoted by T(ν), is the average time to reach one
of three absorbing/consensus states (all-L, all-R, all-C) or the polarization line (pol-LR).
The MET hence complements the information provided by the polarization and consensus
probabilities, and is therefore of great interest. Here, we study how the MET varies with ν
for different given values of δ and z.

4.1. Mean Exit Time in the Regimes ν→ 0 and ν→ ∞

The MET is obtained analytically in the regimes ν→ 0 and ν→ ∞ in terms of T (s, z),
its counterpart in the absence of external influences, as discussed in Appendix B.2.

4.1.1. MET in the Regime ν→ 0

When ν→ 0, there are no switches before reaching the final state. The MET, T0, can
thus be obtained by averaging T (s, z) over the stationary distribution of ξ. Since ξ = ±1
with probability (1± δ)/2, in this regime the MET reads:

T0(s, δ, z) =
(

1 + δ

2

)
T (s, z) +

(
1− δ

2

)
T (−s, z). (10)

T0(s, δ, z) and its scaling are thus readily obtained from Equations (A10) and (A11). From
the symmetry T (−s, z) = T (s, 1− z), we have T0(s, δ, 1/2) = T0(s,−δ, 1/2) = T (s, 1/2)
for z = 1/2 (the unwieldy expression of T (s, 1/2) is given in Ref. [54]). From Figure 6, we
find that the predictions of Equation (10) are in good agreement with simulation results
when ν� 1 in all scenarios (δ > 0, δ < 0 and δ = 0).

4.1.2. MET in the Regime ν→ ∞

When ν→ ∞, many external influences switches occur before the population reaches
its final state. This leads to the self-averaging of ξ, which can therefore be replaced by its
average: ξ → 〈ξ〉 = δ. Hence, under high switching rate, the influences bias is rescaled
according to b → bδ, yielding s → sδ, at fixed N. When ν → ∞ the MET, T∞, therefore
satisfies Equation (A10) with s substituted by sδ, and thus

T∞(s, δ, z) = T (sδ, z). (11)
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In this regime, the MET follows readily from the solution of (A10), and its scaling is obtained
from Equation (A11). Using the symmetry of T , we have T∞(s, δ, z) = T∞(s,−δ, 1− z),
which boils down to T∞(s, δ, 1/2) = T∞(s,−δ, 1/2) when z = 1/2. Furthermore, when δ→
0, we obtain T∞(s, 0, z) = T (0, z) = −2N[z ln z + (1− z) ln(1− z)], which is independent
of the influences bias b. In Figure 6, the predictions of Equation (11) are in close to perfect
agreement with the simulation results for ν� 1 in all scenarios (δ > 0, δ < 0 and δ = 0).

4.2. Mean Exit Time as Function of the Switching Rate

We now consider the dependence of the MET under arbitrary ν.
When the switching rate is low, ν� b, it is unlikely that there are any switches before

reaching the final states, and thus T(ν) ≈ T0(s, δ, z); see Equation (10). When b � 1,
1 � s � N, and z is not too close to 0 and 1, then T(ν) ∼ (ln N)/b (see Equation (A11)),
and the average number of switches in this regime prior to reaching the final state is
νT(ν) ∼ (ln N)ν/b; see Figure 6a,b. Hence, when ν ∼ b there are on average O(ln N)
switches before reaching the final state.

Under high ν, the system experiences a large number of switches causing the self-
average of ξ (with ξ(t) → δ). In this regime, T(ν) ≈ T∞(s, δ, z); see Equation (11), with
T(ν) ∼ N. In this case, the average number of switches before reaching the final state is
νT(ν) ∼ νN.

We can therefore revisit and characterise the three switching regimes:
(i) when ν� b, the system is in the regime of “low switching rate” and the final state can
possibly be reached without experiencing any switches;
(ii) when ν ∼ b, the population is in a regime of “intermediate switching rate”, where there
are typically O(ln N) switches before reaching the final state;
(iii) when ν� b, the system is in the regime of “high switching rate”, where the external
noise self-averages, and the number of switches before reaching the final state is O(νN)
and hence grows linearly with νN, where νN � Nb = s� 1; see inset in Figure 6b.

When the switching rate is raised across the above regimes, from ν ≈ 0 to ν � 1,
the MET changes its scaling behaviour. In regime (i), the MET scales as T ∼ (ln N)/b
and therefore T/N � 1 when s � 1, while in regime (iii) the MET scales as T ∼ N, and
therefore T/N = f (z) is a scaling function of the initial fraction z. In the intermediate
regime (ii), when ν ∼ b, the MET increases steeply with ν and interpolates between
T(ν)/N � 1 and T(ν)/N ≈ f (z) as ν sweeps from regimes (ii) into (iii). This picture is
confirmed by the results shown in Figure 6a,b.

Figure 6a,b, illustrates that the initial fraction z has only a marginal effect on the MET
in the limiting regimes ν� b and ν� b, which is well captured by Equations (10) and (11).
Figure 6b shows that, as predicted by Equation (11), the MET at fixed N, b, z is maximum
when δ = 0, with T/N ≈ T∞/N = −2[z ln z + (1− z) ln(1− z)]; see Appendix B.2.
The inset in Figure 6a illustrates that the MET scales linearly with N in the regime (iii),
while N has a marginal effect on T(ν) in the regimes (i) and (ii): When ν � b, we find
T(ν)/N = O(1) as in Ref. [54]. When ν � b, we find that T(ν)/N decreases with N in
agreement with T(ν)/N ∼ (ln N)/(Nb). The inset of Figure 6b confirms that when ν� b,
the average number of switches exhibits the same linear scaling with νN for different
parameter sets.

Here, time-varying external influences are therefore responsible for a drastic change
in the MET scaling: the MET scales as (ln N)/b under low switching rate, while it grows
and scales linearly with N under high switching rate. When s = Nb� 1, reaching the final
state thus takes much longer under ν� 1 than ν� 1.

5. Conclusions

Motivated by the evolution of opinions in a volatile social environment shaped by
time-fluctuating external influences, arising, e.g., from news or social media, we have intro-
duced a constrained three-state voter model subject to randomly binary time-fluctuating
(switching) external influences. The voters of this population can hold either incompatible
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leftist or rightist opinions, or behave as centrists. The changing external influences (social
environment) is modelled by a dichotomous random process that favours in turn the rise
of polarization or the spread of centrism. The fate of this population is either to reach a
consensus with leftists, rightists, or centrists, or to achieve polarization, which consists
of a frozen state comprised of only non-interacting leftists and rightists. By combining
analytical and computational means, we have investigated the effect of the time-fluctuating
external influences on the population’s final state under various scenarios. In particular,
we have studied how the rate of switching, as well as the switching asymmetry and initial
population composition, affect the fate of this population.

Focusing on the interesting case of a small influences bias affecting a finite, yet large,
number of voters, we have shown that the consensus and polarization probabilities can
vary greatly with the rate of change of the external influences: these probabilities can
either increase or decrease with the rate of external variations, and can also exhibit extrema.
Remarkably, when there is a large initial majority of voters holding the opinions opposed by
the external influences, the majority can resist the influences: the opinions supported by the
majority of agents and opposed by the influences are the most likely to prevail over a range
of parameters characterising the external variations. When this occurs, the population
settles in a final state in which a majority of voters holds the opinions opposed by the
external influences, see Figures 3b and 4b. The study has also shown that time-switching
influences are responsible for a drastic change in the scaling of the mean time to reach final
state: the mean exit time is generally much bigger under high switching rate, when it scales
linearly with population size, than under low switching rate.

The goal of this paper is to study how time-varying external influences may affect
the social dynamics of an idealized population. It can be anticipated that the model
analysed here is too simple to realistically capture the various complex effects of social and
news media, and other time-varying external stimuli, on opinion dynamics. It is however
natural to ask how this model can be generalized to become more realistic, and which
kind of practical information it could then possibly provide. These points are addressed
in Appendix C, where a potential application is briefly discussed. In fact, while the direct
applications of the current model are admittedly limited, it is expected to still be useful
since it sheds light on nontrivial effects that exogenous time-fluctuating influences can have
on opinion dynamics. Hence, this work can be envisaged as a step towards more realistic
modelling approaches to this challenging interdisciplinary problem.
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Research Data Leeds Repository [84].
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Appendix A. Master Equation and Mean-Field Limit When N → ∞

In this Appendix, we discuss the master equation (ME) governing the model’s dynam-
ics, and then its description in the mean-field limit when N → ∞.

Appendix A.1. Master Equation

The 3CVM switching dynamics in a finite population is a Markov chain defined by
the transition rates:

W±L (NL, NR, ξ) =
(1± bξ)

2
NL(N − NR − NL)

N(N − 1)
, W±R (NL, NR, ξ) =

(1± bξ)

2
NR(N − NR − NL)

N(N − 1)
, (A1)

such that NL
W±L−→ NL ± 1 and NR

W±R−→ NR ± 1. The associated ME gives the probability
P(NL, NR, ξ, t) to have NL, NR and NC = N − NL − NR voters in the population in the
external state ξ = ±1 at time t [82], and here reads:
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∂P(NL, NR, ξ = 1, t)
∂t

=
(
E−L − 1

)[
W+

L P(NL, NR, 1, t)
]
+
(
E−R − 1

)[
W+

R P(NL, NR, 1, t)
]

+
(
E+

L − 1
)[

W−L P(NL, NR, 1, t)
]
+
(
E+

R − 1
)[

W−R P(NL, NR, 1, t)
]

+ ν[(1 + δ)P(NL, NR,−1, t)− (1− δ)P(NL, NR, 1, t)], (A2)

∂P(NL, NR, ξ = −1, t)
∂t

=
(
E−L − 1

)[
W+

L P(NL, NR,−1, t)
]
+
(
E−R − 1

)[
W+

R P(NL, NR,−1, t)
]

+
(
E+

L − 1
)[

W−L P(NL, NR,−1, t)
]
+
(
E+

R − 1
)[

W−R P(NL, NR,−1, t)
]

+ ν[(1− δ)P(NL, NR, 1, t)− (1 + δ)P(NL, NR,−1, t)], (A3)

whereE±L andE±R are shift operators such thatE±L/R f (NL/R, NR/L, t) = f (NL/R± 1, NR/L, t),
and P(NL, NR, ξ, t) = 0 whenever NL or NR are outside [0, N]. P(NL, NR, 1, t) and
P(NL, NR,−1, t) are coupled, and the last lines on the right-hand-side of (A2) and (A3)
account for the random external switching. We notice that W±L/R = 0 when NL = 0, NR = 0
and NL + NR = N, corresponding to the three absorbing states all-R (NL = NC = 0),
all-L (NR = NC = 0), all-C (NL = NR = 0, NC > 0), and to the polarization state pol-LR
(NL + NR = N, NC = 0); see Figure 2. The multivariate ME (A2) and (A3) can be simulated
exactly by standard methods, such as the Gillespie algorithm [85].

Appendix A.2. Mean-Field Limit When N → ∞

In the mean-field limit where N → ∞ and demographic can be ignored, the equation
of motion of the densities are [54,82]:

d
dt
` = W+

L −W−L = bξ `(1− `− r),
d
dt

r = W+
R −W−R = bξ r(1− `− r), (A4)

where c ≡ NC/N = 1− ` − r is used, and the time dependence is omitted. Here, the
mean-field limit means that the dynamics is aptly described by Equation (A4) where ξ(t) ∈
{−1, 1} is a randomly switching multiplicative noise, see Equation (1). Equation (A4) are
thus two coupled stochastic differential equations that have three absorbing steady states:
(`, r, c) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} associated respectively with the consensus states
all-L, all-R and all-C. Equations (A4) also admit the line of steady states (`, 1− `, 0), with
0 < ` < 1, associated with state of polarization pol-LR; see Figure 2. Equations (A4)
conserve the ratio `/r = x/y, which implies that the final densities satisfy `(ν) = r(ν) and
c(ν) = 1− 2`(ν) when x = y.

It is useful to relate this result with the final densities in a finite population, in the case
where x = y. When N < ∞, the final densities of R and L voters are `(ν) = r(ν) = PL(ν) +
PLR(ν)/2 = PR(ν) + PLR(ν)/2 (as in the absence of external influences [53,54]). The first
term comes from the probability of ending in L or R consensus (with PL = PR). The second
term arises from the fact that, when x = y, the polarization state consists of half L and R
voters. Since PL + PR + PLR = 1− PC and PL = PR, we find `(ν) = r(ν) = [1− PC(ν)]/2,
and the final density of C voters is: c(ν) = 1− 2`(ν) = PC(ν).

When N → ∞, Equations (A4) hold and predict that the densities approach polariza-
tion when ξ = 1 and centrist consensus when ξ = −1 on a timescale t ∼ 1/b. Hence, when
N → ∞, the probability of L and R consensus vanish, PL = PR → 0, and the final densities
thus satisfy `(ν) = r(ν)→ PLR(ν)/2 and c(ν) = 1− 2`(ν)→ 1− PLR(ν).

Appendix B. Polarization, Consensus Probabilities, and Mean Exit Time in the
Absence of Time-Varying Influences

In this Appendix, we reproduce the results obtained in Refs. [53,54] for the polarization
and consensus probabilities in the absence of external influences, and used in Sections 3.1
and 4.1.
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Appendix B.1. Polarization and Consensus Probabilities in the Absence of Time-Varying Influences

In the realm of the diffusion theory [68,69,82], when N � 1, s ≡ Nb 6= 0 and
x = y = (1− z)/2, the polarization probability, here, denoted by PLR is [54]:

PLR(s, z) =
esz√1− z

2

∞

∑
k=0

(−1)k(4k + 3)
(2k + 1)(k + 1)

(2k + 1)!!
(2k)!!

I2k+3/2(s(1− z))
Ik+3/2(s)

, (A5)

where Ik(·) denotes the modified Bessel function of first kind and order k, and we used
the property P1

2k+1(0) = (−1)k(2k + 1)!!/(2k)!! of the associated Legendre polynomials,
Pm

l (x) (with the convention 0!! = 1). When s < 0 and |s|(1− z)� 1, Equation (A5) can be
approximated by PLR ≈ (e2|s|(1−z) − 1)/(e2|s| − 1); see Ref. [54]. This simplified expression
is particularly useful to approximate P∞

LR when δ < 0; see Equation (6).
In the realm of the diffusion theory, when N � 1, s ≡ Nb 6= 0, the C-consensus

probability, here denoted by PC, is [54]:

PC(s, z) =
e−2s(1−z) − e−2s

1− e−2s . (A6)

When z 6= 0, 1, one has: lims→∞ PLR(s, z) = 1 and lims→−∞ PC(s, z) = 1. In the
considered examples, when s� 1 and z is not too close to 0 or 1, polarization and centrist
consensus are almost certain, i.e., PLR(s, z) ≈ 1 if s > 0 and PC(s, z) ≈ 1 when s < 0 [54].

When b = s = 0, and x = y = (1− z)/2, the probabilities PLR and PC become [53]:

PLR(0, z) = 1− 1− (1− z)2√
1 + (1− z)2

, PC(0, z) = z. (A7)

When x = y = (1− z)/2, the probability PR = PL to end up in an L or R consensus is
thus

PR(s, z) = PL(s, z) =
1−PLR(s, z)−PC(s, z)

2
, (A8)

while there is the same average final fraction ` and r of voters of type L and R, given by

r = ` =
PLR(s, z)

2
+ PR(s, z) =

1−PC(s, z)
2

. (A9)

Expressions (A8) and (A9) hold both when s 6= 0 with Equations (A5) and (A6), and
when s = 0 with Equations (A7).

Appendix B.2. Mean Exit Time in the Absence of Time-Varying Influences

In Refs. [53,54], the (unconditional) mean exit time of the 3CVM in the absence of
time-varying influences, here denoted by T , was shown to satisfy

z(1− z)
2N

[
−2s

dT (s, z)
dz

+
d2T (s, z)

dz2

]
= −1, (A10)

with T (s, 0) = T (s, 1) = 0. (Note a typo in Equation (11) of Ref. [54] where a factor 1/2 is
missing; compare to Equation (A10).)

The symmetry of Equation (A10) under (s, z) → (−s, 1 − z) implies T (−s, z) =
T (s, 1− z) [54]. When s = Nb 6= 0 and |b| � 1, with z not too close to 0 and 1, the MET
scaling is [54,69,86]:

T (s, z) ∼
{

N ln N/|s| when 1� |s| � N
N when |b| � 1 and |s| = O(1),

(A11)
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yielding T (s, z) = O(ln N/b) when |b| � 1 and 1� |s| � N. When b = s = 0, the MET
T (0, z) takes the closed form T (0, z) = −2N[z ln z + (1− z) ln(1− z)] [53], and in this
case, it scales linearly with the population size: T (0, z) ∼ N.

Appendix C. Possible Generalizations and Applications of the Model

This Appendix is dedicated to a brief discussion of some possible generalizations and
applications of the 3CVM with switching dynamics.

It is often hard to map complex real social systems onto idealized theoretical models:
these commonly suffer from a number of limitations that make their use for the practical
characterization of social behaviour difficult. The 3CVM with switching dynamics is no
exception, and among its limitations, we can list the following: (i) it is doomed to end up
in either consensus or L/R-polarization, but never admits the long-lived coexistence of
the three opinions; (ii) the present model formulation assumes that all agents interact with
all others on a complete graph (rather than on a complex dynamic network); (iii) as most
classical voter models, all agents are identical in the 3CVM (there are no “zealots”); (iv)
interactions are pairwise (no group pressure); (v) in many applications, there are more than
three possible opinions/parties.

Since the 3CVM can be generalized to overcome the limitations (i)–(v) at the expense
of its mathematical tractability, it is useful to discuss a possible application. The main chal-
lenge for this is to find data against which to calibrate the parameters ν and δ characterising
the external time-varying influences. In this context, the formulation of the 3CVM suggests
to test its use to describe the distribution of opinions in the readership of a newspaper such
as The Guardian in the UK whose political backing of the Labour, Liberal (Lib Dem) and
Conservative parties has changed on various occasions in the last 78 years.

We have used the dataset [87] referring to the 18 general elections held in the UK
between 1945 and 2010 to try and estimate the parameters ν and δ for a population corre-
sponding to a random sample of the readership of The Guardian (whose circulation between
1945 and 2021 has varied between 105 and 3× 105). If we use the average time between
each general election as unit of time, and notice that The Guardian’s political orientation
changed 8 times between 1945 and 2010, in 1950, 1951, 1955, 1959, 1974, 1979, 2005, 2010.
The average switching rate can thus be estimated as ν ≈ 8/18. By treating the backing of the
Labour or Conservative party as being in the influences state ξ = 1, and representing the
backing of the Lib Dem party by ξ = −1, we can estimate that on average 〈ξ〉 = δ ≈ 6/18.
Note that here the change from backing jointly two parties (e.g., Labour and Lib Dem) to
supporting only one of those parties (e.g., Liberal Party) is considered as a “switch” (and
the joint Labour/Liberal and Conservative/Liberal support is treated as an influence state
ξ = (1− 1)/2 = 0). The parameter b could in principle be estimated from the approach to
the “final state” occurring on a timescale ∼ 1/b, see Equation (A4). In this context, it is a
difficult task to assess on what timescale consensus or polarization may occur, if ever. Here,
for the sake of argument, we set b = 0.01. With (b, ν, δ) = (0.01, 0.44, 0.33) and assuming
an initial population consisting of 60% and 10% of labour and conservative supporters,
respectively, and 30% of Lib Dem backers, the model predicts a final state consisting of
70% and 12% of Labour and Conservative supporters, respectively, and 18% of Lib Dem
backers in a random sample of size N = 200. For a larger sample of size N = 1000 and
the same above parameters, the model predicts a final state comprised of 85% and 14%
of Labour and Conservative supporters, and only a small fraction of 1% backing the Lib
Dem party. These figures, suggesting the slow evolution towards quasi polarization of
The Guardian’s readership as N increases, with a raise of support for the Labour party, do
not seem absurd but are not realistic as they underestimate the Lib Dem vote. Moreover,
the 3CVM ignores entirely the existence of a small but non-negligible fraction of voters
backing other parties (such as the Green party). A more realistic model would take into
account more than three parties, and mechanisms ensuring the maintenance of long-lived
coexistence of all opinions.
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