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Background: Hypoglycemia is the most common adverse consequence of

treating diabetes, and is often due to suboptimal patient self-care. Behavioral

interventions by health professionals and self-care education helps avoid

recurrent hypoglycemic episodes by targeting problematic patient behaviors.

This relies on time-consuming investigation of reasons behind the observed

episodes, which involves manual interpretation of personal diabetes diaries and

communication with patients. Therefore, there is a clear motivation to automate

this process using a supervised machine learning paradigm. This manuscript

presents a feasibility study of automatic identification of hypoglycemia causes.

Methods: Reasons for 1885 hypoglycemia events were labeled by 54 participants

with type 1 diabetes over a 21 months period. A broad range of possible

predictors were extracted describing a hypoglycemic episode and the subject’s

general self-care from participants’ routinely collected data on the Glucollector,

their diabetes management platform. Thereafter, the possible hypoglycemia

reasons were categorized for two major analysis sections - statistical analysis

of relationships between the data features of self-care and hypoglycemia

reasons, and classification analysis investigating the design of an automated

system to determine the reason for hypoglycemia.

Results: Physical activity contributed to 45% of hypoglycemia reasons on the real

world collected data. The statistical analysis provided a number of interpretable

predictors of different hypoglycemia reasons based on self-care behaviors. The

classification analysis showed the performance of a reasoning system in practical

settings with different objectives under F1-score, recall and precision metrics.

Conclusion: The data acquisition characterized the incidence distribution of the

various hypoglycemia reasons. The analyses highlighted many interpretable

predictors of the various hypoglycemia types. Also, the feasibility study

presented a number of concerns valuable in the design of the decision support

system for automatic hypoglycemia reason classification. Therefore, automating

the identification of the causes of hypoglycemia may help objectively to target

behavioral and therapeutic changes in patients' care.
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1 Introduction

The general goal of type 1 diabetes (T1D) care is maintenance of
near normal levels of blood glucose (BG) (1). Avoidance of higher

than normal BG (hyperglycemia) reduces the risk of long-term
complications, such as eye, kidney or nerve damage (2). Whilst

avoidance of low BGs (hypoglycemia) reduces the risk of cognitive
impairment and accidents. Successful T1D management largely

depends on patient self-care, which requires education and frequent
decision making including regular blood glucose (BG) monitoring,

insulin intake and its dose adjustment, carbohydrate counting, and
planning for dose adjustments due to physical activity (3).

In conventional diabetes care BG levels and food/medication
intake are registered by patients in individual diabetes diaries and

are examined by clinicians at personal appointments generally
occurring once every 3-6 months (4). However, with current and
projected advances in sensing and communication technologies,

diabetes care is progressively becoming more data-driven and
patient-centered, focused on e-learning, decision support and

remote supervision of self-care practices based on multimodal
data acquisition (5–9). A novel developed Glucollector system

(Figure 1) follows this approach. This data acquisition and
management suite facilitates the collection, management and

visualization of self-monitored blood glucose (SMBG)
measurements, continuous glucose monitoring (CGM) data,

carbohydrate and insulin intake, and provides a platform for
clinician-patient communication and e-learning. Glucollector has

been deployed in the DAFNEplus (Dose Adjustment for Normal
Eating) Randomized Controlled Trial (RCT) (10).

In both personal appointments and remote monitoring, the
clinicians supervisory role is to detect problematic self-care patterns

in diabetes diaries, to clarify the context of the abnormal pattern
with the patient to identify the underlying reason, and to suggest

changes to self-care routines to avoid such patterns reoccurring.
Such manual interpretation of every episode is problematic

considering the time lags between personal appointments and the
amounts of data aggregated between them. This process is more

feasible in a day-to-day patient supervision paradigm facilitated by
the diabetes data management system, such as the Glucollector,

where clinicians can examine the remotely collected self-care data in
a convenient form. However, this process still becomes a tedious

routine for clinicians often supervising tens or hundreds of patients,
and therefore, there is a clear motivation to automate such BG

pattern interpretation and provide clinical decision support driven
by artificial intelligence (AI) and machine learning technology.

The modern diabetes treatment is associated with large
amounts of data generated from health records, food/medication

diaries and various smart monitoring devices. Taking this into
account and that hypoglycemia represents a major adverse

consequence of diabetes treatment, substantial research effort was
committed to design data-driven tools based on machine learning

that would provide assistance in clinical practice and personal day-
to-day hypoglycemia prevention. A number of recent systematic

reviews outline these research efforts (11–14). However, from these
studies it is evident that in context of hypoglycemia prevention the

pattern recognition and machine learning research mainly focuses
on hypoglycemic event prediction, while the retrospective data-

driven interpretation of reasons behind such events (automated
hypoglycemia cause classification), that is needed for behavioral

intervention, remains understudied.
This manuscript aims to fill this gap by conducting a feasibility

study aiming to determine the practicality and limitations of
automated hypoglycemia reason classification from patterns of

T1D self-care data, collected by the modern diabetes management
software. The key objectives of this study are to design indicative

predictor variables from time series of self-care data, assess their
statistical relationship with reasons behind hypoglycemic events,

design an automated system for hypoglycemia cause classification
and assess its practicality.

2 Materials and methods

2.1 Data acquisition

Data was collected between March 2018 and December 2019
from a cohort of 54 Glucollector users who were also patients of

Sheffield Teaching Hospitals (STH) NHS Foundation Trust taking
part in the DAFNEplus RCT, for details refer to the protocol paper

of the trial (10). Ethics approvals were granted under REC ref: 16/
NW/0573 and 18/SW/0100. For the purpose of data collection, the

10 most common reasons behind hypoglycemia episodes, defined as
< 4mmol/L SMBG measurements, were identified by the diabetes

specialists based on their clinical practice and patient interviews.
These reasons were presented to the participating people with

type 1 diabetes who were asked to label their recent hypoglycemia

FIGURE 1

The functionality of Glucollector.
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episodes from the preceding two weeks on their Glucollector
diabetes diary interface. For every episode, they were allowed to

select up to two possible reasons with a confidence level of 1 to 5 for
every answer with 5 being the highest confidence.

The 54 participants were 36 female (18male), and the average age was
46.8± 15.2 years. These participants labeled a total of 1885 hypoglycemia

observations which were obtained during the data collection period.
Episodes that did not belong to class “Other” or “Don’t know” and

which were labeled with confidence levels 4-5 were included into the
analysis dataset, yielding a total of 821 observations. Figure 2 shows the

class distribution of the collected dataset. Considering the vast disbalance in
class observations the cases were grouped into the three general categories

of hypoglycemia causes for statistical and predictive analysis: physical
activity, mistakes in food intake, mistakes inmedication dosage selection. It

can be noted that cases related to physical activity constitute about 45% of
the dataset. The second most prominent category of episodes is associated

with carbohydrate counting and food intake (≈33%). Cases related to
insulin dosage selection and intake comprise the third most common

category with ≈15%. These three groups are used as possible class labels in
the classification analysis section, i.e. the proposedmachine learning system

aims to “guess” the cause of hypoglycemic event from patterns of self-care
data around the event.

2.2 Event representation

For purposes of statistical and classification analyses discussed
in the further sections, each labeled hypoglycemic case was

represented as a set of predictor variables or “features” that
describe the context of the observed hypoglycemia. These features

were extracted from a variety of data sources in the Glucollector:
static subject demographics from health records, user-uploaded

self-care data (BG, insulin intake, carbohydrate intake), and
Glucollector website usage statistics.

One of the key stages of the proposed analysis is to identify
factors in data that are indicative of a particular hypoglycemia

episode. To the best of our knowledge no such analyses have been
conducted before, therefore, a broad range of possible predictors

describing both the episode and the subject’s general self-care were
considered. Table 1 lists the extracted features by categories, gives

FIGURE 2

The distribution of the observed hypoglycemia cases by reasons. Gray color bars mark the total number of collected cases and the blue color bars

denote the number of high-confidence cases included in the analysis dataset.
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TABLE 1 Considered predictor variables.

# Feature description Encoding # Feature description Encoding

Demographics 40 Total insulin advice ba_total_ins

1 Age age 41 Difference between advised and logged intake ba_diff

2 Gender gender 42 Meal rise setting ba_meal_rise

3 Years with diabetes y_w_diab 43 The presence of ‘Excercise’ tag before the event ba_has_excercise

Self-care during the episode General self-care behavior over the past 3 months

Temporal features Blood glucose

4 Relative time of day as a single float variable [0,1] tod 44 BG mean glu_mean

5 Absolute time offset from noon cos_tod 45 BG standard deviation glu_std

6 Absolute time offset from midnight sin_tod 46 BG range glu_range

7 Local offset from the usual wake up time wake_up_offset 47 BG maximum glu_max

8 Is business day is_bday 48 BG minimum glu_min

Interpolated BG curve 49 BG rate of mean value crossing glu_mean_x

8 Mean of interpolated BG bgi_mean 50 BG skewness glu_skew

9 Standard deviation of interpolated BG bgi_std 51 BG kurtosis glu_kurt

10 Range of interpolated BG bgi_range 52 Mean of negative BG slopes neg_slopes_mean

11 Minimum of interpolated BG_bgi_min 53 Mean of positive BG slopes pos_slopes_mean

12 Maximum of interpolated BG bgi_max QA insulin intake dosages

13 Slope of interpolated BG bgi_slope 54 QA insulin mean ins_mean

14 Skewness of interpolated BG bgi_skew 55 QA insulin standard deviation ins_std

15 Kurtosis of interpolated BG bgi_kurt 56 QA insulin range ins_range

Recent SMBG before the episode 57 QA insulin maximum ins_max

16 Previous BG reading value pre_g_val 58 QA insulin minimum ins_min

17 Time offset from the previous BG reading pre_g_offset 59 QA insulin rate of mean value crossing ins_mean_x

18 Time offset from the previous hyperglycemia pre_H_offset 60 QA insulin skewness ins_skew

19 Time offset from the previous hypoglycemia pre_h_offset 61 QA insulin kurtosis ins_kurt

20 Time offset from the previous in-target reading pre_t_offset Basal insulin intake dosages

SMBG after the episode 62 Basal insulin mean bas_mean

21 Next BG reading value post_g_val 63 Basal insulin standard deviation bas_std

22 Time offset to the next BG reading post_g_offset 64 Basal insulin range bas_range

23 Time offset to the next hyperglycemia post_H_offset 65 Basal insulin maximum bas_max

24 Time offset to the next hypoglycemia post_h_offset 66 Basal insulin minimum bas_min

25 Time offset to the next in-target reading post_t_offset 67 Basal insulin rate of mean value crossing bas_mean_x

QA insulin intake 68 Basal insulin skewness bas_ skew

26 Previous QA insulin dosage pre_ins_dosage 69 Basal insulin kurtosis bas_kurt

27 Time offset from previous QA insulin intake pre_ins_offset Carbohydrate intake

28 Next QA insulin dosage post ins dosage 70 Carb mean car_mean

29 Time offset to the next QA insulin intake post_ins_offset 71 Carb standard deviation car_std

Basal insulin intake 72 Carb range car_range

30 Previous basal insulin dosage pre_bas_dosage 73 Carb maximum car_max

(Continued)
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their description and short encodings. Each hypoglycemic case was

represented by a total of 83numerical variables. Features that are
not self-explanatory are further detailed below.

The temporal features section contains the absolute time offsets
in hours from noon and midnight to alleviate the boundary issue of

a single float time representation (tod feature), e.g. 23:55 and 00:05
being represented by a very large and a very small value respectively,

while being just 10 minutes apart. The wake_up_offset feature is
extracted as a difference between the 3 month median time of day’s

first BG reading (after 4:30) and the episode day’s first BG reading
time. This feature was included to describe the discrepancy from

subject’s usual day schedule. All time offsets (features 5-7, 17-20, 22-
25, 27, 29, 31, 33, 35, 37) were expressed in hours.

Features 8-15 in Table 1 encode the BG trajectory around the

hypoglycemic episode. To obtain them, SMBG readings from the 6
hours long time segment around each episode were interpolated

using the piecewise cubic Hermite interpolating polynomial
(PCHIP) (15) and summarized using a number of commonly

used statistical functionals.
Features 26, 28, 30, 32, 34, 36 describing the most recent and the

next intakes of food/medication were centered using the subject-
specific means in order to take into account subjects’ physiological

differences and their general food/medication intake amounts. For
example, with Imean _ k being the average QA (quick acting) insulin

dosage for subject k (feature 54), and Ipre _ k being their most recent
QA insulin intake dosage in a particular episode, the feature 26 was

expressed as a difference Ipre _ k − Imean _ k.
Features 38-43 were extracted from patient personal Bolus

Advisor devices which were used for QA insulin dosage
calculation shortly before episodes.

The general self-care features 44-83 describe the overall
statistics of BG, food and medication intake over the 3 months

preceding the episode. In addition to that, each case included
features of engagement with one of the Glucollector’s e-learning

tools GlucoChallenge, which reflects the subject ability to estimate
carbohydrate amount.

2.3 Statistical analysis

The aim of this analysis is to characterize the patterns of self-

care during the different categories of causes of hypoglycemia. More
specifically, the aim is to identify statistically significant

relationships between the considered predictors and the target
class labels. This analysis was conducted by fitting statistical

models with binary outputs separately for each considered class
of hypoglycemia.

The dataset is characterized by the three important qualities,
which define the applicable types of such analysis: the observations

are clustered by subjects, the considered predictors have different
distributions and a high degree of collinearity. The former arises

from the fact that each subject has provided multiple observations,
which violates the observation independence assumption of the

majority of statistical modeling tools. Therefore, Mixed Effect
Generalized Linear Models (MEGLM) (16) and Generalized
Estimating Equations (17) were considered, as they are capable of

dealing with panel data and have no assumptions about the
variable distributions.

The multicollinearity means that many of the considered data
features are correlated. While there are no formal orthogonality

assumptions in MEGLM and GEE methods, statistical significance
of effect size estimates and model stability are deteriorated in the

presence of highly collinear features (18). In the selected dataset the
collinearity is mainly intrinsic and arises from how the predictors

are defined, for example the predictor insulin range naturally
correlates with both predictors minimum insulin value and

maximum insulin value. Figure 3 shows the correlation matrix of
the highly collinear non-binary features (Pearson r≥ 0.7 with any

other feature).
The statistical significance of the relationships between the

considered predictors and the target class labels were analyzed by
fitting statistical models with binary outputs for each considered

class of hypoglycemia. Not all of the considered features were
available in some of the episode observations, especially the ones

TABLE 1 Continued

# Feature description Encoding # Feature description Encoding

31 Time offset from previous basal insulin intake pre_bas_offset 74 Carb minimum car_min

32 Next basal insulin dosage post_bas_dosage 75 Carb rate of mean value crossing car_mean_x

33 Time offset to the next basal insulin intake post_bas_offset 76 Carb skewness car_skew

Food intake 77 Carb kurtosis car_kurt

34 Previous carbohydrate intake amount pre_car_dosage Engagement with GlucoChallenge quiz

35 Time offset from previous carbohydrate intake pre_car_offset 78 Number of quiz answers cnc_ansnum

36 Next carbohydrate intake amount post_car_dosage 79 Number of separate days with any quiz answers cnc_daysnum

37 Time offset to the next carbohydrate intake post_car_offset 80 Average of quiz points cnc_points_avg

Bolus advisor 81 Standard deviation of quiz points cnc_points_std

38 Most recent food insulin advice ba_food_ins 82 Average number of answers per session cnc_dist_avg

39 Most recent correction insulin advice ba_corr_ins 83 Standard deviation of answers per session cnc_dist_std
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related to Bolus Advisor settings as they were often not provided by

the users. This significantly reduces the dataset size in multiple
regression analysis. Therefore, two types of regression were

employed - single variable regression, allowing for a larger sample
size, and multiple regression, allowing for a better model fit.

MEGLM models with binary output, logit link and random
subject-specific intercepts were used in both single-variable and

multiple regressions. This method was chosen over GEE due to the

improved convergence stability. The generalized form of a MEGLM
model is defined as follows:

g(m) = Xb + Zb + d  (1)

where g is the link function, m is n-by-1 vector of conditional

probability of the outcome given the random effect b with n
denoting the number of observations (events). X is n-by-f design

matrix of predictor variables from Table 1 with f denoting the
number of features. b is the f-by-1 fixed effects vector. Z is n-by-q

random effect design matrix and b is the random effects q-by-1
vector with q denoting the number of participants. d is the model

offset vector.
With logit link function, subject id i, observation (event) j,

hypoglycemia category k, single predictor variable x from Table 1,
equation (1) takes the following form:

logit(pijk) = ln(
pijk

1 − pijk
) = b0 + b1xij + bi + ϵijk  (2)

where pijk is the probability of event j from subject i belonging to

category k. b0 denotes the model bias and b1 is the fixed effect
coefficient of variable x. bi is the random-effect intercept for each

subject i which accounts for behavioral and physiological
variability. ϵijk is the model fit error.

Beta coefficient b1 is the main product of this single variable
association strength analysis. Term p/(1−p) is known as odds, hence

the obtained beta coefficient can be interpreted as follows: increase
in predictor variable x by 1 leads to an increase by b1 in the

logarithm of odds, that the observed event belongs to category k. As
explained before, not all predictor variables were available for each

observed event, hence the single variable analysis allowed to employ
more data. The beta coefficients obtained separately for each

FIGURE 3

The correlation matrix of features that have exhibited r≥0.7 with at

least one other feature. Color scale denotes the correlation between

the variables.

TABLE 2 Regression analysis.

Hypoglycemia
types

Separate simple regressions Multiple regression, N=647

Physical
activity

Carbohydrate
intake

Medication
intake

Physical
activity

Carbohydrate
intake

Medication
intake

age 0.00700 (0.44) -0.00325 (-0.26) -0.00490 (-0.21) 0.0206* (2.05) -0.0126 (-1.27) -0.0456** (-3.27)

gender 0.501 (1.29) 0.311 (1.01) -0.768 (-1.29) 0.579** (2.63) 0.353 (1.60) -1.263*** (-3.64)

time_of_day -2.073*** (-5.74) 1.483*** (4.35) 0.601 (1.19) – – –

cos tod -0.120 (-1.06) -0.201 (-1.77) 0.0477 (0.29) -0.336** (-3.17) 0.0497 (0.46) -0.259 (-1.36)

sin_tod 1.197*** (8.50) -0.681*** (-5.48) -0.211 (-1.11) 0.711*** (6.36) -0.365*** (-3.49) -0.180 (-1.10)

wake_up_offset -0.0200 (-0.34) -0.00736 (-0.13) 0.00975 (0.12) 0.0955 (1.72) -0.0679 (-1.23) -0.0839 (-1.00)

is_bday 0.00571 (0.04) -0.147 (-0.89) 0.568* (2.16) 0.160 (1.21) -0.316* (-2.36) 0.544* (2.53)

bgi_mean 0.0374 (0.86) -0.0499 (-1.12) 0.0669 (1.07) – – –

bgi_std -0.0285 (-0.45) -0.0171 (-0.27) 0.0801 (0.90) – – –

bgi_range -0.00831 (-0.36) -0.00627 (-0.28) 0.0237 (0.72) – – –

bgi_min 0.333 (1.83) -0.286 (-1.61) -0.00847 (-0.03) -0.185 (-1.21) 0.149 (0.97) 0.152 (0.76)

bgi_max -0.00303 (-0.13) -0.0114 (-0.49) 0.0245 (0.73) -0.0870* (-2.27) 0.0121 (0.36) 0.0219 (0.43)

(Continued)
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TABLE 2 Continued

Hypoglycemia
types

Separate simple regressions Multiple regression, N=647

Physical
activity

Carbohydrate
intake

Medication
intake

Physical
activity

Carbohydrate
intake

Medication
intake

bgi_slope -0.0854 (-0.47) 0.0179 (0.10) -0.144 (-0.55) -0.603* (-2.13) -0.0511 (-0.19) 0.218 (0.58)

bgi_skew -0.185 (-1.46) 0.00460 (0.04) 0.0328 (0.17) -0.110 (-0.86) 0.154 (1.17) 0.0595 (0.28)

bgi_kurt 0.0191 (0.22) -0.0195 (-0.23) -0.109 (-0.76) 0.00563 (0.07) -0.00837 (-0.10) -0.0799 (-0.53)

pre_g_val -0.0140 (-0.71) -0.0180 (-0.90 ) 0.0508 (1.82) -0.00962 (-0.44) -0.0224 (-1.04) 0.0742* (1.98)

pre_g_offset -0.0700* (-2.26) 0.00715 (0.48) -0.00318 (-0.16) 0.00355 (0.18) -0.0158 (-0.79) 0.0217 (0.34)

pre_H_offset -0.000870 (-0.41) 0.000833 (0.38) -0.00694 (-1.25) -0.00233 (-0.80) 0.00358 (1.19) -0.00538 (-0.95)

pre_h_offset -0.000421 (-0.51) 0.000593 (0.71) -0.00260 (-1.63) -0.000978 (-1.37) 0.00123 (1.76) -0.00212 (-1.56)

pre_t_offset -0.00873 (-0.78) -0.00171 (-0.16) -0.00994 (-0.71) 0.00706 (0.63) -0.00230 (-0.21) -0.0388* (-2.19)

post_g_val 0.0106 (0.41) -0.0224 (-0.85) 0.0288 (0.74) 0.0299 (1.07) -0.00300 (-0.11) -0.0212 (-0.48)

post_g_offset 0.0517 (1.91) -0.00882 (-0.38) -0.0499 (-1.49) -0.0110 (-0.28) 0.0714 (1.80) 0.0151 (0.22)

post_H_offset 0.00423 (1.20) -0.00266 (-0.77) -0.00243 (-0.45) 0.00579 (1.77) -0.00534 (-1.62) -0.00202 (-0.40)

post_h_offset 0.000534 (0.44) -0.00212 (-1.76) 0.00206 (1.05) 0.000806 (0.85) -0.00210* (-2.25) 0.00104 (0.65)

post_t_offset 0.0246 (1.75) -0.00610 (-0.99) -0.00331 (-0.42) 0.0109 (0.69) -0.00808 (-0.54) -0.0218 (-0.84)

pre_ins_dosage -0.0239 (-1.81) 0.119*** (5.03) -0.0282 (-1.64) -0.0601** (-3.24) 0.0610*** (3.39) 0.0115 (0.44)

pre_ins offset -0.0960*** (-3.91) -0.00135 (-0.06) 0.0396 (1.28) -0.0120 (-0.53) -0.0279 (-1.28) -0.0673 (-1.56)

post_ins_dosage 0.102*** (4.25) -0.0195 (-1.56) -0.0287 (-1.64) 0.0242 (1.16) -0.0615** (-2.81) 0.0360 (1.14)

post_ins_offset -0.0504** (-2.70) 0.0618*** (3.42) -0.0256 (-0.93) -0.00545 (-0.31) 0.00711 (0.39) -0.0596 (-1.85)

pre_bas_dosage -0.00918 (-0.50) 0.0541** (2.92) -0.000893 (-0.04) 0.0135 (0.80) 0.0325* (2.04) -0.000875 (-0.05)

pre_bas_offset 0.00247 (1.40) -0.00184 (-0.94) -0.00174 (-0.70) -0.00554 (-0.62) 0.0110 (1.24) -0.0790** (-3.15)

post_bas_dosage 0.0332 (1.77) -0.0363* (-2.02) -0.0313 (-1.40) 0.00330 (0.19) 0.0105 (0.64) -0.0160 (-0.85)

post_bas_offset 0.00172 (0.36) -0.000936 (-0.19) 0.00516 (0.81) -0.00427 (-1.08) 0.00551 (1.19) -0.0138 (-1.48)

pre_car_dosage 0.00312 (1.11) 0.000280 (0.10) -0.0106 (-1.72) 0.00179 (0.75) 0.000499 (0.21) -0.0179** (-3.15)

pre_car_offset 0.0104 (0.38) -0.0476 (-1.56) 0.0231 (0.54) -0.0219 (-0.66) 0.0112 (0.33) 0.141** (2.66)

post_car_dosage 0.00345 (1.23) -0.00359 (-1.25) 0.00168 (0.39) -0.00388 (-1.53) 0.00384 (1.47) -0.00121 (-0.31)

post_car_offset -0.0357* (-2.35) 0.0544*** (3.61) -0.0307 (-1.23) -0.0135 (-0.84) 0.0132 (0.81) 0.0264 (1.04)

glu_mean -0.155 (-1.20) 0.0501 (0.44) 0.00362 (0.02) 0.186 (1.05) -0.0494 (-0.29) -0.601* (-2.30)

glu_std -0.251 (-1.33) 0.0555 (0.33) 0.510 (1.60) -0.670* (-2.19) 0.0696 (0.26) 0.558 (1.35)

glu_range 0.0275 (1.08) -0.0176 (-0.74) -0.00437 (-0.12) – – –

glu_max 0.0309 (1.19) -0.0195 (-0.80) -0.00620 (-0.16) 0.00496 (0.12) 0.0349 (0.83) 0.00831 (0.13)

glu_min 0.184 (0.78) -0.0851 (-0.38) -0.119 (-0.36) 0.152 (0.80) -0.158 (-0.81) 0.0789 (0.32)

glu_mean_x -3.897 (-1.63) 1.830 (0.81) 2.500 (0.71) -1.288 (-0.57) 0.817 (0.35) -3.779 (-0.96)

glu_skew 0.752 (1.57) -0.264 (-0.59) -0.560 (-0.74) – – –

glu_kurt 0.214* (2.32) -0.106 (-1.16) -0.246 (-1.46) 0.161 (1.21) -0.189 (-1.42) -0.394 (-1.67)

neg_slopes_mean 0.0820 (1.18) -0.0899 (-1.39) 0.135 (1.12) 0.146* (2.47) -0.166** (-2.88) -0.0171 (-0.19)

pos_slopes_mean 0.00391 (0.03) -0.0775 (-0.52) 0.325 (1.60) 0.157 (1.44) -0.214 (-1.78) 0.108 (0.66)

ins_mean -0.0227 (-0.79) -0.0732 (-1.08) 0.0674 (1.01) – – –

ins_std -0.00337 (-0.28) -0.132 (-1.08) 0.118 (0.63) – – –

(Continued)
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TABLE 2 Continued

Hypoglycemia
types

Separate simple regressions Multiple regression, N=647

Physical
activity

Carbohydrate
intake

Medication
intake

Physical
activity

Carbohydrate
intake

Medication
intake

ins_range -0.000209 (-0.28) -0.0254 (-1.26) 0.00243 (0.08) – – –

ins_max -0.000214 (-0.26) -0.0215 (-1.08) 0.00247 (0.08) 0.0189 (1.27) -0.0277 (-1.78) 0.0238 (0.85)

ins_min -0.719* (-2.35) 0.682* (2.39) -0.0402 (-0.07) – – –

ins_mean_x -1.020 (-0.54) 5.927** (2.87) -6.185* (-2.31) -1.823 (-1.09) 1.424 (0.83) 2.377 (0.91)

ins_skew -0.0990 (-0.71) -0.0580 (-0.50) 0.192 (1.41) -0.241 (-0.77) 0.274 (0.88) -0.465 (-0.86)

ins_kurt -0.0111 (-0.74) -0.0179 (-0.57) 0.0241 (1.37) -0.00904 (-0.16) 0.0338 (0.62) -0.00317 (-0.03)

bas_mean -0.0225 (-0.71) -0.0126 (-0.48) -0.00698 (-0.15) – – –

bas_std -0.132* (-2.05) 0.0136 (0.25) 0.241* (2.37) – – –

bas_range -0.00119(-0.05) -0.0353 (-1.74) 0.0709* (2.25) – – –

bas_max -0.00185 (-0.09) -0.0236 (-1.29) 0.0443 (1.37) -0.0113 (-0.84) 0.0104 (0.72) -0.0265 (-1.37)

bas_min -0.00108 (-0.04) 0.0103 (0.43) -0.0360 (-0.93) – – –

bas_mean_x -0.109 (-0.23) -0.655 (-1.64) 0.821 (1.28) 0.123 (0.45) -0.549* (-1.96) -0.0573 (-0.14)

bas_skew -0.0626 (-0.98) -0.00487 (-0.07) 0.155 (1.49) 0.0813 (0.93) -0.130 (-1.41) 0.147 (1.10)

bas_kurt 0.0140 (1.73) -0.0144 (-1.41) -0.00747 (-0.64) 0.0160 (1.57) -0.0221 (-1.93) 0.0178 (1.30)

car_mean -0.00644 (-0.61) 0.00289 (0.35) 0.000189 (0.01) – – –

car_std 0.0120 (0.74) -0.0112 (-0.71) 0.0145 (0.48) 0.0240 (1.03) -0.0615* (-2.34) 0.0319 (0.79)

car_range 0.00377 (1.13) -0.00157 (-0.52) -0.00407 (-0.74) – – –

car_max 0.00367 (1.12) -0.00149 (-0.51) -0.00423 (-0.79) 0.000260 (0.05) 0.0146** (2.72) -0.0221** (-2.87)

car_min 0.00261 (0.12) -0.000645 (-0.03) -0.0143 (-0.43) – – –

car_mean_x 0.847 (0.48) -1.744 (-1.06) -0.948 (-0.35) 1.431 (0.98) -1.678 (-1.12) 0.252 (0.10)

car_skew 0.234 (1.54) -0.184 (-1.25) -0.208 (-0.76) -0.0448 (-0.22) -0.472* (-2.23) 1.002* (2.57)

car_kurt 0.00812 (0.60) -0.00100 (-0.08) -0.0271 (-0.46) 0.0578 (0.83) -0.133 (-1.27) 0.0326 (0.30)

cnc_ansnum 0.00475 (1.29) 0.00225 (0.63) -0.00700 (-1.22) 0.00181 (0.61) 0.00726* (2.40) -0.0130** (-2.65)

cnc_daysnum 0.0378 (0.94) 0.0144 (0.37) -0.0236 (-0.40) – – –

cnc_points_avg -0.00234 (-0.09) -0.0110 (-0.43) -0.00709 (-0.19) 0.0241 (1.06) -0.0180 (-0.79) -0.0668 (-1.84)

cnc_points std -0.0133 (-0.43) -0.0510 (-1.62) 0.0443 (1.00) – – –

cnc_dist_avg -0.0653 (-1.60) -0.0226 (-0.56) 0.0429 (0.94) -0.0187 (-0.55) -0.0354 (-1.02) -0.0398 (-0.93)

cnc_dist_std -0.0135 (-0.58) -0.0437 (-1.82) 0.0602* (1.98) -0.0403 (-1.57) 0.0155 (0.60) 0.0663 (1.92)

ba_iob -0.335 (-1.26) 0.308 (1.28) -0.411 (-0.87) – – –

ba_allowed_bgv -0.0257 (-0.63) 0.0213 (0.51) -0.00603 (-0.11) – – –

ba_food_ins -0.0581* (-2.26) 0.102*** (3.81) -0.0456 (-1.23) – – –

ba_corr_ins 0.118 (1.72) -0.284*** (-3.63) 0.139 (1.48) – – –

ba_total_ins -0.0937*** (-3.57) 0.105*** (3.99) -0.00760 (-0.20) – – –

ba_diff 0.402* (2.51) -0.242 (-1.83) 0.0638 (0.34) – – –

ba_carb_cu -0.464 (-1.29) 0.452 (1.14) 0.643 (1.31) – – –

ba_meal_rise -0.134 (-1.34) 0.138 (1.42) -0.0669 (-0.39) – – –

ba_has_ex 1.663*** (5.87) -1.374*** (-4.44) -0.749 (-1.54) – – –

z statistics in parentheses; and Significance levels: *p. * p < 0.05, ** p < 0.01, *** p < 0.001. Bold styled values are statistically significant.
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predictor from Table 1 are given in the left half of Table 2, with z-
statistic from Wald test in parentheses.

When considering multiple predictors simultaneously it is first
necessary to select the subset of variables leading to the best model

fit. To obtain more reliable effect size estimates from multiple
regression analysis only the most indicative predictors were

preserved. The feature quality was tested by fitting a separate
MEGLM model for each individual feature and calculating the

resulting Bayesian information criterion (BIC) (19), which
measures the goodness of fit. After selecting a subset for every

prediction target, further filtering was done by calculating the
Variance Inflation Factor (VIF) (20) for every feature, and

discarding those with VIF ≥ 10, thus reducing the collinearity of
features. Predictors related to Bolus Advisor settings and outputs

were discarded from the multiple regression analysis to increase the
sample size. Prior to the analyses the dataset was centered, but

not scaled.
In case of multiple regression, equation (1) takes the following

form:

ln(
pijk

1 − pijk
) = b0 + b1x

1
ij + b2x

2
ij +… + bf x

f
ij + bi + ϵijk  (3)

The obtained beta coefficients from multiple regression analysis
are given in the right half of Table 1 z-statistic from Wald test in

parentheses. The different levels of statistical significance are
marked by asterisk (* for p< 0.05, ** for p< 0.01, *** for p<

0.001). The statistical significance was defined as p< 0.05. The
further interpretation of the obtained beta coefficients is given in the

Results section. Data preparation was conducted in Python and
statistical models were fit using STATA software.

2.4 Classification analysis

The aim of this analysis is to design machine learning models
for automatic hypoglycemia classification and assess their

performance. This system aims to automatically select one of the
three categories of hypoglycemia causes - physical activity, food

intake, medication intake (see Figure 2). The practical motivation is

to design a decision support system, which would retrospectively
analyze patient self-care data and highlight the possible problems in

self-care to the clinician.
Two classification scenarios were investigated: binary one-vs-

rest classification done separately for each class and exclusive 3-
class classification. This analysis has utilized the same dataset as in

multiple regression, with the Bolus Advisor features excluded to
maximize the sample size.

The analysis sequence of all investigated scenarios is illustrated
in Figure 4. It follows the conventional supervised learning scheme

consisting of feature extraction the acquired data which were
represented as explained in section 2.1, feature subset selection,

classifier model training and validation (21).
First the dataset was split 10 times to obtain multiple training

and validation samples for the 10-fold cross-validation (CV)
procedure. During the split the data was grouped by subjects to

make sure that the observations from the same subject were not
simultaneously present in both training and validation sets. Within

each CV fold a separate feature selection procedure was applied to
obtain a subset of features yielding the best classification

performance. Considering the strong collinearity in the dataset,
the Sequential Forward Floating Selection (SFFS) (22) algorithm

was used, as it was found to be especially efficient in such settings.
This algorithm iteratively adds features to the selected subset and

continuously attempts to reduce the set at every iteration, while
monitoring for the classification performance increase. At each

iteration the performance was measured by training and validating
a separate ensemble classifier in a nested 5-fold CV procedure

involving only the training sample of the outer CV fold. The nested
CV was also set to respect the grouping by subjects.

The SFFS algorithm is computationally expensive, therefore
Extremely Randomized Tree ensemble classifier (23) was used in

the SFFS procedure, since it is computationally cheap, performs well
in the presence of collinear features and requires less hyperparameter
fine-tuning. The final classification performance in each CV fold was

assessed by training a neural network classifier (24, 25), on the
selected feature subset from the training CV sample and validating

it on the same subset from the validation sample. This model,
consisting of 3 fully connected layers with dropout regularization,

FIGURE 4

Feature selection and classifier evaluation sequence.
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required hyperparameter optimization, was more computationally
expensive to train, but has consistently outperformed the other

considered classification methods in our settings. The model output
consists of a single unit in binary classifiers and 3 units with softmax

activation in a multi-class model, each returning the one-vs-rest
probability for the corresponding class. The dropout rate was set to

60% and the number of units in each hidden layer was set equal to the
number of features in the selected subset, which was decided in a

separate grid search prior to the analysis. In both, SFFS procedure and
neural network training steps, the observations were weighted to

account for the class disbalance in the dataset. Weights for
observations of class i were calculated as wi = Nobs=(Ncl*Nobsi),

where Nobs is the dataset size, Ncl is the number of classes and Nobsi

is the number of samples of class i.

Considering the strong feature collinearity, the same analysis
was also conducted on predictors obtained from principal

component analysis (PCA) (26) applied to the design matrix of
all considered features. In this scenario the SFFS has selected

generally smaller sets of orthogonal components with higher
individual classification power.

The presented classification analysis has been conducted in
Python using scikit-learn (27) and tensor flow (28) libraries.

2.4.1 Evaluation metrics

Due to this class disbalance in each classification scenario, the
simple categorical accuracy did not adequately describe classification

performance, therefore Matthews correlation coefficient (MCC) (29),
precision, recall and F1-score, which is the harmonic mean of the

latter two, were the chosen performance metrics. The SFFS procedure
aimed to maximize the mean F1-score of the classifier cross-

validation. And by changing the optimization target between recall,
precision and F1-score in the neural network training step it was

possible to obtain different classification performance profiles,
potentially suitable in the various practical settings, for example,

when a certain class recall is favored over classification precision or
vice-versa. By definition the chosen performance metrics are

calculated for individual classes, so in the multi-class classification
analysis the class-average F1-score, recall and precision were used as

neural network optimization targets.

3 Results

3.1 Statistical analysis

This analysis has highlighted a number of interpretable
predictors of different hypoglycemia types. For example, as the

statistical significance of multiple regression predictors suggests,
episodes related to physical activity generally happened during

daytime, were associated with lower QA insulin intake prior to
event, were more common in men, in subjects with lower glycemic

variability and slower BG fall in general. Episodes related to food
intake had a higher probability to occur in mornings, evenings and

on weekends, were associated with higher relative QA insulin
dosages before the event and lower dosages after, were more

commonly observed in subjects with slower general BG decline,

frequent changes in basal insulin dosages and more frequent
consumption of large amounts of food. Hypoglycemic episodes

related to mistakes in medication dosage selection were more
common in women, subjects with lower average BG levels, more

frequent consumption of small amounts of food and less activity in
the GlucoChallenge quiz; occurred more frequently during the

business days and generally later after the food intake.
Simple regression scenarios show that the features extracted

from Bolus Advisor settings, tags and most recent advice prior to
the episodes are strong predictors of activity- and food-related

hypoglycemia classes, however they were available in only 328 cases.

3.2 Classification analysis

The results of classification analysis are detailed in Table 3. The

SFFS procedure aimed to maximize the mean F1-score of the
classifier cross-validation. And by changing the optimization

target between recall, precision and F1-score in the neural
network training step it was possible to obtain different

classification performance profiles, potentially suitable in the
various practical settings, for example, when a certain class recall

is favored over classification precision or vice-versa. By definition
the chosen performance metrics are calculated for individual

classes, so in the multi-class classification analysis the class-
average F1-score, recall and precision were used as neural

network optimization targets. The classification analysis was also
conducted on predictors obtained from PCA applied to the design

matrix of all considered features. The results of the described CV
analyses are combined in Table 3, which contains the average

performance metrics from CV with standard deviations.
According to the results in Table 3, in all classification scenarios the

accuracy metrics were proportionate to the corresponding class
support. The highest F1-score for the most common class of activity-
related episode was 0.67 ± 0.13 and 0.51 ± 0.25 in binary andmulticlass

classification scenarios respectively; 0.49 ± 0.12 and 0.43 ± 0.16 for a
less represented class of food intake related episodes; 0.39 ± 0.23 and 0.6

± 0.14 for the least common class of episodes related to medication
intake. Despite the sampling weighting, detection of insulin-related

episodes was rarely possible in the multiclass classification scenario.
The different performance profiles were successfully produced by

changing the ANN training objective between F1-score, recall and
precision. It can be speculated that for practical implementation in a

decision support system, the F1-score and precision are more suitable
choices of the target performance metric.

PCA transformation of the raw handcrafted features was
especially beneficial in one-vs-rest classification scenario. Besides,

it has significantly sped up the exhaustive SFFS procedure. Thus, the
application of other PCA variations and dimensionality reduction

methods is also of interest.

4 Discussion

The conducted feasibility study has outlined a number of

concerns valuable in the design of the decision support system for
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automatic hypoglycemia reason classification. Firstly, our data
acquisition has characterized the incidence distribution of the

various hypoglycemia reasons with more than 45% of the
collected cases being related to physical activity.

Secondly, the conducted statistical and classification analyses
have highlighted many interpretable predictors of the various
hypoglycemia types. These predictors were designed manually to

describe the subject self-care around the observed episodes, as well
as their general self-care habits. Although a relatively large number

of predictors was considered, the further search for optimal data
features based on clinical domain knowledge can potentially

improve the performance of the desirable reasoning system.

Besides that, deep learning (24) could be applied to this problem
to automatically design features directly from the raw collected data,

however such features would not be human-interpretable.
Thirdly, the classification analysis has characterized the

potential performance and limitations of the proposed system in
the current settings, where reasoning relies on data manually
entered by subjects. As it currently stands, practical application of

automatic hypoglycemia cause inference is questionable, due to the
lack of self-care and physiological data. Statistical analysis results

and manual visual assessment of subject self-care records show that
food intake data is often omitted from personal diaries, especially

snacks and food intake to correct hypoglycemia. This hinders the

TABLE 3 Classification analysis results.

Binary One-vs-Rest classification

Raw features PC features

NN
Objective

Result metrics Physical
activity

Food intake Medication intake Physical activity Food intake Medication intake

F1-score F1-score 0.65 ± 0.11 0.49 ± 0.12 0.39 ± 0.23 0.67 ± 0.13 0.49 ± 0.13 0.30 ± 0.12

Recall 0.84 ± 0.08 0.73 ± 0.21 0.63 ± 0.23 0.87 ± 0.06 0.79 ± 0.26 0.61 ± 0.25

Precision 0.55 ± 0.16 0.39 ± 0.12 0.33 ± 0.28 0.56 ± 0.16 0.39 ± 0.10 0.22 ± 0.11

MCC 0.33 ± 0.05 0.19 ± 0.06 0.23 ± 0.25 0.34 ± 0.10 0.16 ± 0.07 0.12 ± 0.14

Recall F1-score 0.60 ± 0.14 0.47 ± 0.14 0.27 ± 0.17 0.63 ± 0.15 0.48 ± 0.13 0.24 ± 0.16

Recall 0.96 ± 0.06 0.83 ± 0.16 0.75 ± 0.18 0.97 ± 0.04 0.91 ± 0.13 0.88 ± 0.13

Precision 0.46 ± 0.19 0.35 ± 0.15 0.18 ± 0.14 0.48 ± 0.17 0.33 ± 0.12 0.16 ± 0.13

MCC 0.15 ± 0.15 0.12 ± 0.11 0.05 ± 0.14 0.25 ± 0.08 0.09 ± 0.04 0.05 ± 0.09

Precision F1-score 0.46 ± 0.17 0.32 ± 0.13 0.28 ± 0.18 0.39 ± 0.16 0.23 ± 0.07 0.25 ± 0.06

Recall 0.46 ± 0.24 0.34 ± 0.26 0.36 ± 0.20 0.29 ± 0.16 0.16 ± 0.07 0.45 ± 0.29

Precision 0.67 ± 0.22 0.60 ± 0.26 0.33 ± 0.30 0.71 ± 0.18 0.57 ± 0.24 0.33 ± 0.31

MCC 0.24 ± 0.06 0.15 ± 0.11 0.16 ± 0.22 0.25 ± 0.12 0.15 ± 0.07 0.19 ± 0.07

NN

Objective

Raw features PC features Food intake Medication intake

Result metrics Physical

activity

Food intake Medication intake Physical

activity

F1-score F1-score 0.51 ± 0.25 0.43 ± 0.16 0.06 ± 0.14 0.44 ± 0.25 0.19 ± 0.21 0.09 ± 0.11

Recall 0.54 ± 0.30 0.56 ± 0.29 0.05 ± 0.11 0.61 ± 0.43 0.38 ± 0.43 0.06 ± 0.08

Precision 0.51 ± 0.24 0.40 ± 0.13 0.08 ± 0.19 0.47 ± 0.23 0.20 ± 0.20 0.29 ± 0.38

MCC 0.13 ± 0.11 0.06 ± 0.06

Recall F1-score 0.52 ± 0.26 0.34 ± 0.24 0.09 ± 0.15 0.46 ± 0.19 0.32 ± 0.16 0.06 ± 0.08

Recall 0.59 ± 0.3 4 0.48 ± 0.38 0.08 ± 0.13 0.51 ± 0.30 0.50 ± 0.31 0.06 ± 0.10

Precision 0.51 ± 0.24 0.33 ± 0.20 0.11 ± 0.19 0.54 ± 0.15 0.33 ± 0.24 0.22 ± 0.34

MCC 0.11 ± 0.14 0.08 ± 0.09

Precision F1-score 0.50 ± 0.20 0.41 ± 0.15 0.01 ± 0.02 0.53 ± 0.22 0.30 ± 0.23 0.07 ± 0.11

Recall 0.55 ± 0.33 0.56 ± 0.30 0.01 ± 0.01 0.62 ± 0.28 0.41 ± 0.32 0.05 ± 0.09

Precision 0.57 ± 0.11 0.41 ± 0.20 0.14 ± 0.35 0.48 ± 0.23 0.25 ± 0.19 0.14 ± 0.24

MCC 0.12 ± 0.09 0.06 ± 0.06

MCC, Matthews correlation coefficient.
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understanding and modeling of BG dynamics, and consequently,
the classification performance.

While the objective unobtrusive measurement of food intake is
problematic, continuous physical activity tracking in users via the

commercially available wearable sensors is viable. Even though it
was not measured in our experimental settings, classification

analysis results show that activity-related episodes were the easiest
to detect (Table 3), partially due to the amount of relevant cases in

the dataset. It can be speculated that the introduction of activity
tracking in subjects would significantly increase the rate and

accuracy of this hypoglycemia class detection, which in turn
would also reduce the uncertainty about other classes. Therefore

it can be stated that the addition of physical activity tracking in
Glucollector and other BG decision support systems is the key

necessary element to make this type of reasoning feasible and
beneficial in clinical practice.
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