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Abstract

Accurate static traffic assignment models are important tools for the assessment of strategic 

transportation policies. In this article we present a novel approach to partition road net-

works through network modularity to produce data-driven static traffic assignment models 

from loop detector data on large road systems. The use of partitioning allows the estimation 

of the key model input of Origin–Destination demand matrices from flow counts alone. 

Previous network tomography-based demand estimation techniques have been limited by 

the network size. The amount of partitioning changes the Origin–Destination estimation 

optimisation problems to different levels of computational difficulty. Different approaches 

to utilising the partitioning were tested, one which degenerated the road network to the 

scale of the partitions and others which left the network intact. Applied to a subnetwork 

of England’s Strategic Road Network and other test networks, our results for the degener-

ate case showed flow and travel time errors are reasonable with a small amount of degen-

eration. The results for the non-degenerate cases showed that similar errors in model pre-

diction with lower computation requirements can be obtained when using large partitions 

compared with the non-partitioned case. This work could be used to improve the effective-

ness of national road systems planning and infrastructure models.

Keywords Traffic assignment · Origin–Destination demand estimation · Community 

detection

Introduction

Public investment to alleviate congestion on national road networks attracts much scru-

tiny due to the high costs involved and the essential nature of key infrastructure. Having 

accurate models of road traffic to allow policy makers to undertake long-term planning 

are therefore necessary. Static Traffic Assignment (TA) models are frequently used for 

strategic transportation planning within travel demand models (Department for Transport 

2022). Much of current research focuses on dynamic TA which can model congestion more 
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accurately, however static TA still has a specific use for the economic appraisal of long-

term future changes to traffic patterns at the entire network level (Patil et al. 2021; Tsana-

kas et al. 2020).

Origin–Destination (O-D) demand estimation is a key challenge for static TA models 

and road transportation planning. O-D demand matrices represent the number of trips 

taken by drivers between distinct origins and destinations on the road network within a 

specific analysis time period (Abrahamsson 1998). In the literature there are a range of dif-

ferent approaches for their estimation (Bera and Rao 2011).

An established way of obtaining O-D matrices is through manual surveys of road users. 

However, these can be expensive and laborious, having low sample rates leading to high 

sampling bias risk and missed movements (Hazelton 2000). As an alternative in recent 

years there has been interest in new forms of historic trip data which provide information 

on driver trajectories from sources such as mobile phone GSM, GPS and Automatic Num-

ber Plate Recognition (ANPR) (Cvetek et al. 2021; Landmark et al. 2021; Liao et al. 2022). 

However, these types of data have issues relating to privacy and integration into the road 

network which limits their accessibility for data-driven modelling (Mahajan et al. 2021). 

Further approaches include utilising zone-based activity and socio-economic data to simu-

late approximate theoretical demands (Horni et al. 2016; Ren et al. 2014), and toll gate data 

in closed highway systems (Zeng et al. 2021).

In many countries, inductive loops under the main strategic roads are used to monitor 

traffic. Often this data is publicly available and does not entail privacy concerns (Graph-

Hopper 2021). However, inductive loops do not provide any information on the routes driv-

ers take. Techniques in the literature exist which can use flow count data from loop detec-

tors to estimate O-D demand without the additional need for survey or historic trip data.

Attempting to estimate the O-D matrix solely from mean traffic flows entails problems 

relating to identifiability as the number of edge flow counts is less than the number of O-D 

demand pairs to be estimated, so it is difficult to know which vehicles on a road are travel-

ling between which O-D nodes (Hazelton 2003).

Network tomography-based approaches such as Hazelton (2000); Vardi (1996); Lo et al. 

(1996); Dey et al. (2020) attempt to use the stochastic nature of traffic counts to estimate 

O-D demands using multiple samples of edge flows on the network for the estimation time 

period. Assuming the Poisson distribution of demands and a non-congested network, the 

Generalised Least Squares (GLS) as formulated in Hazelton (2003) is a practical version of 

this approach which has been applied to real world highway networks in static TA models 

(Zhang et al. 2018). Although its assumptions may be strong (Tebaldi and West 1998), due 

to its relatively lower computational requirements compared to the other network tomog-

raphy-based approaches, the GLS is useful for gaining a prior matrix to be subsequently 

refined to include the effects of congestion through O-D adjustment algorithms (Spiess 

1990; Lundgren and Peterson 2008). Other related flow count techniques are reported to 

have superior accuracy, however they require additional data sources such as privacy sensi-

tive ANPR (Rostami Nasab and Shafahi 2020; Yang et al. 2017; Parry and Hazelton 2012).

GLS and network tomography-based techniques in general have difficulties working 

with large network sizes due to high space and time complexity in the involved processes 

(Brander and Sinclair 1996). Previous real-world applications of GLS have been limited to 

34 node road networks with routes between O-D pairs limited to one (Zhang et al. 2018). 

Other network tomography-based approaches have been applied to smaller sized road net-

works (Dey et al. 2020; Hazelton 2001).
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In this article, we propose a novel method to apply edge flow count O-D estimation 

to large-scale real-world road networks. This is done by partitioning the network into 

communities of smaller subnetworks to apply estimation to. We carry out an analysis 

of how partitioning a road network into a range of sizes affects accuracy and computa-

tional requirements.

Our partitioning approach uses community detection. Many networks representing 

complex systems contain a modular structure where the nodes cluster into communi-

ties of relative high density of connections with fewer connections between (Traag et al. 

2019). A well-known performance measure to detect such community structure is net-

work modularity (Fortunato 2010). One of the most used algorithms to evaluate modu-

larity, which is an NP-complete problem (Brandes et al. 2006; Leeuwen et al. 2019), is 

the Louvain algorithm which allows the evaluation of a hierarchy of community parti-

tions to be made (Blondel et al. 2008). A resolution parameter can determine the size 

of clusters that are identified. Applied to a road network, this can group areas of the 

network into clusters which are internally well-connected and externally less strongly. 

Basing community detection and the resulting partitioning on modularity utilises the 

network distance and not geographic distance between pairs which can be different. The 

grouping of nodes closer together on the network benefits the GLS estimation as the 

method does not account for geography constraints explicitly (Dey et al. 2020).

Previously, modularity and Louvain have been used to investigate high-level spatial 

and temporal patterns in travel demand when the demand is known, finding a strong 

relation between demand and geographic closeness of O-D pairs (Leeuwen et al. 2019). 

This provides evidence that the structure of travel demand could work with partitioned 

estimation.

Other works in transport literature have partitioned road networks with different 

approaches, utilising it for microscopic simulation (Ahmed and Hoque 2016), macroscopic 

fundamental diagrams (Dantsuji et  al. 2019; Lin and Xu 2020), and traffic management 

through travel speed correlation (Yu et al. 2021). As far as we know, previous research has 

not used partitioning the road network via network modularity for flow-count demand esti-

mation within static TA.

Our work develops several ways of applying partitioning to the estimation problem. The 

partitions can be the basis of reducing the road network down to a smaller, degenerated 

network with single nodes representing each community. Such a model could be integrated 

into infrastructure models such as NISMOD in the UK (Blainey and Preston 2019) which 

work at the scale of large urban areas but lack accurate treatment of traffic modelling. Pre-

vious works (e.g., Arnold et al. 2004) define cities or centroids of pre-determined zones as 

the nodes of networks, however, such approaches do not directly consider network prop-

erties in the creation of these zones. By utilising modularity as a basis for partitioning, 

the degenerate method can utlise network properties and avoid inaccuracies from group-

ing nodes that are close together geographically but not by network distance (or are even 

disconnected).

The partitions are also used within non-degenerate approaches, which preserve the road 

network in full but utilise the different scales of analysis, internal and external to the parti-

tions, to estimate a full network demand matrix with increased agility.

Standard validation techniques are often inadequate to assess the effects of the par-

titioning on the estimates (Dey et  al. 2020). Comparing the estimated matrix to another 
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validation data source, such as historic trips, is problematic as that is still only a sample of 

the movements. It is impractical to account for all the movements on a large-scale road net-

work for a ground-truth matrix. For this reason the validation of the results is done via the 

relative accuracy, predicting the flow and travel times through the user-equilibrium flow 

pattern of a derived static TA model.

To test this approach primarily we use flow count data from the England Strategic Road 

Network (SRN), a large real-world non-closed highway network suitable as a case study. This 

new technique is applied to a sample subnetwork connecting major metropolitan areas in 

England, using traffic flow count data obtained from the Motorway Incident Detection and 

Automatic Signalling (MIDAS) system used by National Highways (England) on the National 

Traffic Information Service (NTIS) model.

Summary of contribution

In this work, we propose a novel integrated and scalable method to obtain O-D estimations 

for large real-world highway networks and evaluate its performance producing accurate user-

equilibrium flow patterns with static TA models. We do this by using network modularity as 

a basis for dividing up the road network into partitioned subnetworks to reduce the compu-

tational difficulty of the O-D estimation problem. This new technique is applied to a large 

portion of England’s SRN. It is demonstrated that the incorporation of partitioned O-D esti-

mation within user-equilibrium flow pattern calculation has the effect of enabling reasonable 

estimates of the predicted flows and travel times compared to the unpartitioned case while 

greatly reducing the computational requirements. It is shown in the results that non-degenerate 

internal-only and internal-external combined approaches with large partitions leads to the best 

accuracy.

The primary contributions of our work are summarized as:

• A new method of producing O-D matrices from flow counts is proposed which utilises 

network modularity to determine the optimal way to partition the network effectively and 

automatically.
• The new method is applied in the calculation of user-equilibrium flow patterns solely from 

loop detector data on large scale real-world networks without the current size limitations 

of similar existing O-D estimation techniques.
• Different approaches to utilising the partitioning are investigated: one degenerates the net-

work based on the partitioning; others use the partitioning to focus on estimating the prior 

matrix from the internal and/or external movements of the partitioned nodes. It is found 

that using within-the-partition internal estimates for the O-D appraisal provides the best 

accuracy. Including the external between-the-partition estimates can help computation 

time.

The overall structure of this paper is summarized as follows. The "Traffic assignment model 

description" section describes the overall methodology for creating a full single-class, static 

TA model using network and loop detector data. In the  "Network simplification and parti-

tioned demand profile calculation" section, the method of network simplification is presented. 

The  "Application on the England Strategic Road Network" section provides a summary 

description of the MIDAS and NTIS datasets used for the case study. In the "Results" section 

the main results are presented. Lastly, the paper is concluded with a discussion in the "Discus-

sion" section, followed by a conclusion in the "Conclusion" section.
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Traffic assignment model description

Preliminaries and notation

Notation

In this work all the vectors are column vectors. For example, the column vector x is 

written as x = {x
i
, ..., x

dim(x)} , where dim(x) is the dimension of x. We use a ’prime’ (e.g. 

x’) to denote the transpose of a matrix or vector. ℝ
+
 denotes the set of all non-negative 

real numbers. Matrix Q ≥ 0 or vector x ≥ 0 indicates that all entries of a matrix Q or 

vector x are non-negative. Also, |X| represents the cardinality of a set X  , and [[X]] is used 

for the set {1, ..., |X|}.

Network definition

We model the road network as a directed graph with a set of nodes V and a set of edges 

A . The model assumes the graph is strongly connected and is defined by the node-edge 

incidence matrix with N ∈ {0, 1,−1}(|V|×|A|) . On road networks in general, and the Eng-

lish SRN in particular, there is a path between all pairs of nodes so the assumption is 

valid.

The set of all O-D pairs on the network is denoted by W = {wi ∶ wi = (wsi, wti), i = 1, ..., |W|} , 

where w
si
 is the origin node and w

ti
 is the destination node of O-D pair i. The amount of 

travel demand between any single O-D pair w = (w
s
, w

t
) is represented by d̂w ≥ 0 . Using 

this, dw
∈ ℝ

|V| is defined as a vector with all zeros except for two entries of −d̂
w for node 

w
s
 and a d̂w for node w

t
 . Then, dw

i is a demand vector for O-D pair i, which can be com-

bined for all O-D pairs to create the O-D demand matrix represented using D ∈ ℝ
|V|×|W|.

For the demand estimation in  the "Calculation of O-D demand matrices from flow 

counts" section, the O-D demand matrix D is denoted in a simplified vector form as 

g = (gi;i ∈ [[W]]) with each gi equivalent to d̂
w

i . R
i
 is the index set of simple routes 

(without cycles) connecting O-D pair i ∈ [[W]] , each r ∈ R
i
 is a different sequence of 

edges which connect the O-D pair.

Let x ∈ ℝ
|A|

+
 be the vector of the total edge flow x

a
 on edge a ∈ A . Then the set of 

feasible flow vectors F  is defined by:

where xw
i indicates the flow vector attributed to O-D pair i ∈ [[W]] . This implies that the 

total flow vector x is consistent with the demands dw
i between all O-D pairs.

The methods described in the following sections use different days of flow data on 

the network. They are seen as “snapshots” of the network at different points in time, 

with |J| samples of the edge flow vector x. j ∈ [[J]] where j is the index of different snap-

shots of the network with corresponding average time bin hourly flows.

Time bins are selected periods of time that are commonly used to approximate travel 

demand in static TA models (e.g. 6 am - 10 am) (Zhang et al. 2018). The travel demand 

is assumed to be the same for each hour of the time bin, an average of the profile in the 

period.

(1)F
def
={x ∶ ∃ x

w
i ∈ ℝ

|A|
+ s.t. x =

|W|∑

i=1

x
w

i , Nx
w

i = d
w

i ∀w
i
∈ W},
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The travel time on an edge a ∈ A is denoted by t
a
 . In the analysis of the results 

("Results" section), there is a comparison between estimated model values and observed 

values of flow and time. In time bin p on edge a, estimated values are indicated with 

x
user

p,a
 and tuser

p,a
 , and observed values are indicated with xobs

p,a
 and tobs

p,a
.

A collection of the network variables is provided in Table 1.

Congestion functions

Accurate congestion functions are key to TA models as they connect the travel time t
a
 to 

the vehicle flows x
a
 on edge a ∈ A . In the network model they take the form:

where t0

a
 is the free-flow travel time of an edge a ∈ A and f (⋅) is a strictly increasing and 

continuously differentiable function dependent on the flow x
a
 divided by the flow capacity 

m
a
 of that edge a ∈ A.

The Bureau of Public Roads (BPR) equation is consistent with Eq. 2 and is widely used 

in TA models (de Grange et al. 2017; Youn et al. 2008). In its more general form it is:

where the values of α and β are coefficients commonly taken as 0.15 and 4, respectively 

(Sheffi 1985). In this work we use this form of BPR and coefficients for all edges. The con-

gestion functions are used in the O-D adjustment ("Calculation of O-D demand matrices 

from flow counts" section) and solution of the Traffic Assignment Problem (TAP) ("Flow 

pattern calculation" section)

On the English SRN, as in Dervisoglu et  al. (2009), we use the maximum of the 

observed hourly mean flows on a edge as its capacity m
a
 . The NTIS provided values of 

(2)ta(xa) = t0

a
f

(

xa

ma

)

,

(3)t
a
(x

a
) = t

0

a

(

1 + �(
x

a

m
a

)
�
)

,

Table 1  Notation for Network 

Definition
Symbol Definition

V Set of Nodes

A Set of Edges

W Set of O-D Pairs

F Set of Feasible Flow Vectors

R
i

Set of Simple Routes for O-D pair i

J Set of Time Bin Average Flow Vector Samples

N Node-edge Incidence Matrix

g O-D Demand Vector

D O-D Demand Matrix

x
a

Flow on Edge a ∈ A

t
a

Travel Time on Edge a ∈ A

xuser

p,a
, tuser

p,a
Modelled Flow and Travel Time in Time Bin p on Edge 

a ∈ A

xobs
p,a

, tobs
p,a

Observed Flow and Travel Time in Time Bin p on Edge 

a ∈ A
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capacity are used for edges without sufficient congestion data for this estimation. The free-

flow travel time t0

a
 is obtained by taking the 95th percentile of the observed hourly mean 

speeds (Casey et al. 2020; Silvano et al. 2020) as the free-flow speed then converting it to 

the travel time through the edge length.

Calculation of O‑D demand matrices from flow counts

We use the GLS method together with the Bi-Level optimisation problem (BiLev) algo-

rithm to estimate the O-D demand matrix from flow counts alone. Described here are the 

existing techniques that are applied within the novel network partitioning O-D matrix esti-

mation presented in  the "Network simplification and partitioned demand profile calcula-

tion" section.

Prior O‑D demand matrix estimation

The GLS method assumes the edges are uncongested so that for each O-D pair the route 

choice probabilities are independent of the traffic flows. It obtains the estimated vector-

ised O-D demand matrix g ( ≥0) through the following optimisation problem (see Hazelton 

2000 for details):

where P = [pir] is the route choice probability matrix, 1 is a vector of ones and S is the 

sample covariance matrix for flows.

For all a ∈ A , r ∈ R
i
 , and i ∈ 1, ..., |W| , the edge-route incidence matrix entry Bi

ra
 is 1 

if route r ∈ R
i
 uses edge a, or 0 otherwise. We find the feasible routes for each O-D node 

pair using Yen’s multiple shortest paths algorithm (Brander and Sinclair 1996) and use 

them to create the edge-route incidence matrix B. We limit feasible routes to the two short-

est routes by distance, if available, as it is commonly the case for the majority of the route 

flows to use the best couple of choices (Bonsall et al. 1997).

O‑D demand matrix adjustment

To account for the effects of congestion and improve the accuracy of the vectorised initial 

prior demand estimate g0 , the congestion functions can be used to find an improved solu-

tion through a gradient-based BiLev algorithm. With the observed flow vector denoted by 

x̃ = ( ̃x
a
;a ∈ A ) and the estimated user-equilibrium flow vector x(g) for any feasible non-

negative vector g ( ≥0). The problem is expressed through the following objective function:

(4)

min
P≥0,g≥0

|J|∑

j=1

(xj − BP’g)�S−1(xj − BP’g),

s.t. pir = 0 ∀ (i, r) ∈ {(i, r) ∶ r ∉ Ri},

P1 = 1,
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The symbols are as defined in Table 1. Further details can be found in Spiess (1990) and 

Lundgren and Peterson (2008).

Flow pattern calculation

The predicted user-equilibrium flow pattern can be calculated using the congestion func-

tions ("Congestion functions" section) and adjusted O-D demand matrix ("Calculation 

of O-D demand matrices from flow counts" section) through the Frank-Wolfe algorithm 

with the following optimisation of the Traffic Assignment Problem (TAP) (Patriksson 

2015):

The Frank-Wolfe algorithm uses a convergence criterion based on the size of relative gap 

between consecutive iterations (see Patriksson (2015) for details). In this work a non-

dimensional relative gap of 10−5 is used for the convergence of the edge flows (Patil et al. 

2021). The user-equilibrium flow pattern results from drivers pursuing their selfish best 

route and throughout this work it is assumed to match the observed flows as commonly 

done in other works (Zhang et al. 2018; de Grange et al. 2017).

Network simplification and partitioned demand profile calculation

Network partitioning

Clustering is performed on the topographic representation based on a community parti-

tioning using network modularity via the Louvain algorithm.

Network modularity measures the relative density of edges inside communities com-

pared to the edges outside communities. It is measured with a scale value ranging from 
−0.5 to 1 (non-modular to fully modular clustering). By achieving the optimal value for 

modularity (closest to 1) the results should be the best possible grouping of the network 

nodes. The Louvain algorithm works by first finding small communities based on opti-

mising modularity on all the nodes locally. Then those small communities are regrouped 

as single nodes in a condensed graph and the modularity between them is calculated. A 

change in modularity process is applied to this new network to see if there are increases 

in modularity from combining the new community partitions. If no increase in modular-

ity occurs then that partition is optimal, otherwise the process of regrouping the nodes 

of the condensed graph repeats combining the communities further. See Blondel et al. 

(2008) and Traag et al. (2019) for more details.

The algorithm uses the following definition for modularity (Blondel et al. 2008):

(5)min
g≥0

F(g) =

|W|∑

i=1

(gi − g0

i
)2 +

|A|∑

a=1

(xa(g) − x̃a)
2
.

(6)min
x∈F

|A|∑

a=1
∫

x
a

0

t
a
(s)ds.
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Aij is the weight of the edge between nodes i and j, where i, j ∈ V . It is taken as the inverse 

of the edge length. The sum of the weights of the edges attached to node i is represented by 

ki =
∑�V�

j=1
Aij . The δ-function δ ( c

i
 , cj ) is 1 if ci = cj and 0 otherwise, such that c

i
 is the com-

munity to which node i is assigned. Also, m =
1

2

∑�V�
i=1

∑�V�
j=1

Aij is based on the total weight 

of network edges.

We partition the topographic representation using the inverse of the edge distances 

as the network edge weights as opposed to the true road distance. This is so that nodes 

closer on the topographic network are treated as having a stronger connection. In the 

process, we replace pairs of parallel edges that have opposite flow directions with undi-

rected edges due to the Louvain implementation used being limited to undirected graphs 

(Aynaud 2020). This does not affect the final result due to carriageways being in identi-

cal pairs.

With efficiency for large networks, the Louvain algorithm finds different high modular-

ity partitions and provides a complete hierarchical community structure that gives access to 

different resolutions of community detection (Blondel et al. 2008). The resolution param-

eter in the algorithm implementation used (Aynaud 2020) controls the size of communi-

ties outputted from this hierarchical structure. Making the resolution size larger leads to a 

smaller number of partitions being produced with a greater number of nodes inside each 

one. We vary the size of the resolution over a range to produce partition sizes from unpar-

titioned (resolution equals zero) to the largest partitions when there are only two separate 

communities (a resolution value which depends on network size). Not every resolution pro-

duces a unique number of communities. We selected the lowest resolution that found each 

unique number of communities.

Each time the Louvain algorithm is run with the same inputs it can produce a variation 

on the exact partitioning produced due to randomized cluster initialization (Leeuwen et al. 

2019). As we are primarily using partitioning to find communities of different sizes, con-

trol of the exact nodes in each partition is not a great concern.

Once we have produced a result for the given resolution, the new community topo-

graphic representation is created from the groupings. The nodes of each partition are 

grouped into community supernodes. We use a modified Depth First Search (Mehlhorn and 

Sanders 2008) to find the neighbours of each partition and establish the community super-

edges of a new community topographic representation. An example of the process can be 

seen in Fig. 1.

The traffic measurements and parameters on the simplified community topographic rep-

resentation are obtained from the original topographic representation using the following 

(7)Q =
1

2m

|V|∑

i=1

|V|∑

j=1

[
Aij −

kikj

2m

]
�(ci, cj).

Fig. 1  Example of community 

topographic representation 

after partitioning via Louvain 

algorithm
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steps if multiple edges connect the partitions in parallel. The mean free-flow travel time 

of the edges weighted by mean measured flow in all time bins is used as the community 

superedge free-flow travel time. The sum of the capacities and measured flows on the con-

stituent edges are used as the community superedge capacity and flow, respectively. The 

measured travel times for the community topographic edge are obtained from the mean of 

the observed travel times on the edges weighted by the measured flow in all time bins. We 

use this way of obtaining the traffic measurements and parameters because it approximates 

the effect of combining the multiple parallel edges of the original topographic into the 

community topographic. More roads have increased flow of vehicles and more capacity so 

these are summed; however, the time is the average per vehicle so the observed travel time 

and free-flow travel times are calculated through means weighted by the combined flows.

Partitioned network O‑D estimation

The community topographic representation can be used to obtain estimates of the uncon-

gested prior O-D demand matrix using the GLS method. We investigate four different ways 

of utilising the representation for this purpose to understand the effects on TA result accu-

racy and computational requirements: (i) degenerate; (ii-A) non-degenerate internal-only; 

(ii-B) non-degenerate external-only; (ii-C) non-degenerate internal-external combined. 

Figure 2 shows an illustrative example of a nine node undirected simple graph network to 

demonstrate the partition grouping with internal and external O-D movements.

(i) Degenerate

In the degenerate O-D estimation, the community topographic representation (Fig. 2 - blue 

graph) is used as a substitute network for original topographic representation (Fig. 2 - black 

graph). The O-D estimation and adjustment are applied to the flows and structure of the 

community topographic representation and not the original topographic representation.

In the nine node example, the partitioned community topographic representation is used 

to produce an O-D estimate, H
com

 , for the partitions A, B and C.

Fig. 2  Example nine node topographic network (black) partitioned into three communities. Community 

topographic is in blue. The green dashed lines are the partitions’ external O-D movements, the red dashed 

are the partitions’ internal O-D movements
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where each non-zero entry (e.g. HXY

com
 ) is an estimate of the demand travelling between the 

pair of partitions (e.g. X and Y) based on the edge flows of the community superedges 

(Fig. 2 - green dashed lines).

This approach reduces the network size as shown in Fig. 1. It loses the detail of individ-

ual road junctions but seeks to preserve some of the main network structure. �
���

 is used 

within the TA model to produce estimates of flows and travel times between the partitions 

on the community topographic representation.

(ii) Non-degenerate

The non-degenerate approaches aim to find an estimate of the demand for each O-D pair of 

the original topographic representation through breaking down the problem with the sim-

pler community topographic representation.

In all the non-degenerate approaches, the prior matrix H is used in the O-D adjustment 

algorithm to produce a final O-D demand matrix which is used in a static TA model for the 

whole topographic network.

(ii-A) Non-degenerate internal-only

The internal approach applies O-D estimation to separately estimate demands for the inter-

nal O-D pairs of each partition by applying GLS to the flows and structure of that parti-

tion’s subnetwork (Fig. 2 - red dashed lines). For example, for Partition A in the nine node 

example, we can express a matrix of demands ��

���
:

where each non-zero entry is an estimate of the demand travelling between the pair of 

nodes based on the edge flows of the topographic representation (Fig. 2 - black graph). It 

follows the same form for other partitions.

For each partition, the O-D values between the internal nodes will be larger than what 

would be estimated if the whole unpartitioned network was being used as all the flows are 

assumed to be going only between the internal nodes. This is corrected with the help of the 

O-D adjustment algorithm.

In the non-degenerate internal-only approach, the matrices of demands for each of the 

partitions are combined into a prior matrix H by assuming zero demand for the inter-parti-

tion O-D pairs. Such that for the nine node example the prior matrix estimate is,

(8)�
���
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where 0 is a matrix of zeros the size of the inter-partition O-D pairs. For the example in 

Fig. 2, there are three nodes in each partition and nine inter-partition O-D pairs between a 

permutation of two partitions. This corresponds to a 3 × 3 matrix for 0.

(ii-B) Non-degenerate external-only

The non-degenerate external-only approach uses the external partition O-D estimate, �
���

 , 

obtained from the community topographic representation. The external partition O-D 

demands are divided equally between the nodes which comprise the relevant partitions to 

spread the demand amongst the O-D pairs of the topographic representation (black graph).

To obtain estimates for the inter-partition demands, the community O-D matrix 

demands H
com

 are divided by the number of topographic O-D pairs that comprise each 

partition pair. For example, for partition pair AB, the number of nodes in A, uA , is three and 

the number of nodes in B, uB , is three so the number of O-D pairs is uAB
= u

A
∗ u

B
= 9 . 

The value for each pair is then HAB

com
∕9 . Then, in matrix form, for partition pair AB with l

A
 

as a column vector of ones the length of uA , and l
B
 as a column vector of ones the length of 

u
B,

External-only assumes zero values for the demands between the O-D pairs internal to the 

partitions, resulting in the following prior matrix,

where 0 is a matrix of zeros the size of the intra-partition O-D pairs. For the example in 

Fig. 2, there are three nodes in each partition and six O-D pairs between them. As in Eq. 9, 

the demand from a node to itself is included but set to zero. This then corresponds to a 3x3 

matrix for 0.

(ii-C) Non-degenerate internal-external combined

In the non-degenerate internal-external combined approach, a prior matrix is formed using 

both internal and external estimations without any O-D demands assumed zero:

Summary of process of network O‑D estimation

We summarise the process of applying the described network partitioning O-D estimation 

process in Algorithm 1.
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Ĥ

AB

ext
Ĥ
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Application on the England Strategic Road Network

Raw dataset description

The dataset used in this work takes the traffic data obtained through the MIDAS system 

installed on the main motorways and A-roads of the England SRN. MIDAS mostly records 

traffic through under-road inductive loops spaced approximately every 500 m. The dataset 

includes the data for the weekdays in September 2018 to June 2019. The MIDAS system 

measures speed, flow, occupancy and headway at approximately 7000 sites on the SRN. 

The data is given on a per-lane basis and aggregated over 1-minute intervals. It is assumed 

that the network does not have intersection control devices such as traffic lights. The SRN 

is without gated entry and exit so individual vehicles are not systematically identified as 

they join and leave the network (National Highways 2022).

The NTIS Network and Asset Model contains the information on the details and loca-

tion of the different systems National Highways uses to monitor and control traffic on the 

SRN. It contains information on the location of MIDAS sensor sites and geospatial infor-

mation of the road junctions and motorways that can be converted into a graph representa-

tion of the network. Attributes are also available to determine the direction of travel, capac-

ity and length of the associated weighted graph’s edges (National Highways 2022).

After conventional data selection and removal of faulty sensor observations, the central 

portion of the network was selected for analysis, comprising the main carriageways with 

relevant MIDAS sensor sites connecting a selection of major cities in England (Fig. 3).

Network graph topographic representation

The scale of the model is not concerned with navigation through the junctions between 

roads but instead with modelling the overall flows around the network. Therefore, an 

arterial road topographic representation is created for the English SRN. The NTIS 

model edges and nodes are grouped into superedges and supernodes that are used to 

create the simplified topographic representation (Fig. 4). Each supernode is a group of 

NTIS model nodes which comprise motorway junctions. Each superedge is a collection 

Fig. 3  Graph representation of 

the NTIS model of the SRN in 

the central subnetwork area. Map 

underlay from Google Maps 

(2021)
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of the NTIS model edges that comprise each carriageway between the junctions. The 

combination of NTIS edges into superedges involves averaging the flows recorded by 

the sensors on the NTIS edges that compose them ("MIDAS data extraction" section). 

After the process of node and edge combination, the supernodes and superedges that 

constitute the simplified topographic representation are referred to as its nodes and 

edges. The resulting topographic representation of the English SRN we use in our 

analysis has 73 nodes, 156 edges and 5256 O-D pairs.

MIDAS data extraction

MIDAS data from the available sensors are extracted and matched to the associated 

topographic edge through the NTIS dataset. The flow data recorded are grouped into 

time bins of three distinct periods, AM: 6am - 10am, MD (midday): 10am - 4pm, PM: 

4pm - 8pm. For each time period, the mean hourly flow is calculated over the respec-

tive period. The three time bins are selected to cover the morning and evening com-

muting traffic, and the less busy middle of the day, for which the demand patterns can 

vary considerably. They are similar to those used in previous data-driven static TA 

models (Zhang et al. 2018).

Loop detector data can be noisy and needs to be processed correctly (Knoop and 

Daamen 2017). When multiple sensors are available on the same edge, the median flow 

readings are used. This both minimises the effect of outliers and filters out erroneous 

readings, as those differing from the median by more than twice the median absolute 

deviation. This allows the central tendency of measured flows to be resistant to sensors 

with faults or which do not measure the main carriageway flow even after the slipway 

sensors are excluded through their database names.

The TA models are fitted to the MIDAS data taken from September 2018 to May 2019.

Fig. 4  Topographic represen-

tation for the subnetwork of 

the main roads connecting the 

central SRN
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Results

Accuracy of different applications of the partitioning on the English SRN

To investigate the effect of partition resolution on each of the types of partitioning matrix 

estimation techniques, the Louvain resolution parameter was varied to evaluate the effect 

on the TA model accuracy and computation requirements of the resulting partitions. The 

analysis was carried out on the topographic representation of the SRN using MIDAS data 

taken from September 2018 to May 2019 for the three time bins (AM, MD, PM). Making 

an assessment based on flow and travel time estimation is a practical way to validate the 

accuracy of the calculated O-D matrices. The computation time results refer to the time 

taken to calculate the prior O-D demand matrix, O-D adjustment and solve the TAP.

Relative errors in the flow and travel times of the UE assignment prediction are used to 

evaluate the performance. The Absolute Percentage Errors (APE) are calculated as:

for travel time, while

is used for flows. We use â to indicate an edge on the topographic representation (i.e. Fig-

ure 2 - black graph) in the non-degenerate cases, or an edge on the community topographic 

representation (i.e. Figure 2 - blue graph) in the degenerate case. For each time bin p and 

edge â , xobs
p,â

 is the observed flow and tobs
p,â

 is the observed travel time derived from the edge 

length divided by observed average speed. The values are the mean flow or time on each 

edge within each time bin over the nine month fitting period. tuser

p,â
 is the predicted travel 

time derived from the congestion function (Eq. 3) using xuser

p,â
 , which is the edge flow value 

predicted by the model through solving the UE TAP with the calculated O-D matrix. The 

APE values for all time bins on all edges are grouped together to provide the sample. For 

the case of the non-degenerate methods applied to the SRN, this means a 3 ∗ 156 = 468 

sample size that is used to create the boxplots. The number of observations in the sample is 

reduced for the degenerate approach, as the number of edges for the network varies with 

the size of the community topographic representation.

The results for the four estimation approaches can be seen to exhibit different patterns 

as the size of the partitions varies (Fig. 5 and 6). The error in flow and travel time predic-

tion can be compared to the result for the unpartitioned case, which is a benchmark for the 

methods. The unpartitioned case gives the same value for all methods except internal-only, 

for which it was unattainable as each community only contains one node in that case.

Comparing the different approaches for using the partitioning, it can be seen that 

there is considerably different behaviour between degenerate and non-degenerate 

approaches (Fig. 5). The flow prediction accuracy for degenerate varies less for the par-

titions with a smaller percentage of the total nodes inside (a larger number of partitions); 

however, as the size of the partitions increases, the flow prediction has a larger variance 

between resolutions. The relative error for flow is low for the largest partition size. This 

can be attributed to the network being degenerated to a two node, two edge system so 

(14)APEt
p,â

=

|tuser
p,â

− tobs
p,â

|

tobs
p,â

,

(15)APEx
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the demand prediction through GLS becomes trivial. It can be seen that the time predic-

tion accuracy for the degenerate method stays broadly similar before decreasing slightly 

as the partitions become larger and less numerous.

Between the other non-degenerate methods (internal-only; external-only; internal-

external combined), in Figs. 5 and 6 several trends can be seen. With internal-only, as 

the size of the partitions increases to include more nodes, the results for both flow and 

time improve up to the 11% point. Between 11-50% the median is approximately con-

stant. In Fig. 7, the computation time for internal-only also begins to level off past the 

11% point. This implies the results for using the internal-only approach are similar for 

the 11-50% partition size range in both accuracy and computation time. The results for 

internal-only were not available for the smallest five resolutions of partitioning. This is 

because the estimate of the prior matrix was too inaccurate for the O-D adjustment pro-

cess to converge.

As the percentage of average nodes in a partition increases, the results for the external-

only method show a broadly linear increase in error for flow and time prediction as well as 

computation time. This is due to the prior matrix increasingly basing the individual O-D 

Fig. 5  Plot of Absolute Percentage Error in user-equilibrium flow prediction for each partition size inves-

tigated on the topographic representation of the Strategic Road Network for September 2018 to May 2019. 

Solid line is median error and dashed lines indicate the IQR. Lines are used as visual aid for the individual 

point results
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Fig. 6  Plot of Absolute Percentage Error in user-equilibrium travel time prediction for each partition size 

investigated on the topographic representation of the Strategic Road Network for September 2018 to May 

2019. Solid line is median error and dashed lines indicate the IQR. Lines are used as visual aid for the indi-

vidual point results

Fig. 7  Computation time of 

results for each partition size 

investigated on the topographic 

representation of the Strategic 

Road Network for September 

2018 to May 2019. The time 

includes the calculation of 

the Origin–Destination (O-D) 

demand matrix and solution of 

the Traffic Assignment Problem 

(TAP). Lines are used as visual 

aid for the individual point 

results
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movements on a smaller subset of topographic edges. Less information is available so the 

prior matrix moves further from its best estimate which is the unpartitioned case.

When internal and external estimates are combined to create the prior matrix, it can be 

seen that there is a degradation in accuracy for flow and time prediction from the unparti-

tioned case to the point of approximately 7% of total nodes. After this, the results for both 

flow and time improve with increases in the partition size before they start to level off. At 

the largest partition size it can be seen that the accuracy matches the internal-only result 

but with less computation time (Fig. 7).

For all the approaches, the travel time APEs are generally lower than the flow APEs. 

The differences in patterns between flow and travel time can be explained by the non-line-

arity of the congestion functions that are used to obtain the UE modelled travel times from 

the UE modelled flows.

To provide some context to the errors obtained, the results can be compared with other 

recent work such as Dey et al. (2020). The analysis in that work used a more capable but 

computationally demanding method of network tomography than GLS to obtain an O-D 

matrix for a smaller network in Melbourne, Australia city centre (23 nodes, 54 edges). 

They found a mean APE of 24.18% for flow using simulated data. Using travel time data 

from Uber and Syic, they found mean APEs in travel time predictions of 18-33%. Although 

these results are not directly comparable, as the networks and methods are different, it 

highlights the approximate size of error for current static TA models using network tomog-

raphy O-D estimation.

For the road network, the memory requirement of the four techniques for all parti-

tion sizes did not vary much, staying between 20.8−20.9 GB in all cases. The network 

is not particularly large (73 nodes, 156 edges) so memory is not the concern (see section 

"Computational Requirements"). The calculations for the results were all performed on a 

Dell PowerEdge C6320 with 2.4GHz Intel Xeon E5-2630 v3 CPU. The implication of the 

results is that the best option would be to use the largest partition possible with the inter-

nal-external combined or the internal-only methods.

Comparison of the results with different sized networks

To investigate how the size of the network influences the results of the different methods, 

the same tests were carried out on additional artificially-generated networks of a range of 

sizes ("Appendix" section) and the Sioux Falls test network commonly used in TA model 

testing (TNFR 2022). The analysis was carried out on a single time bin of simulated flow 

data without travel time, generated according to the process outlined in  the "Appendix" 

section.

Similar trends to the English SRN can be seen when the techniques are applied to the 

artificially-generated networks (Fig. 8). For internal-only, there is a peak in error for small 

partition sizes with no results produced for the smallest partitions. The internal-only results 

level out after around 11-13% of nodes (i.e. eight or nine partitions). This pattern can be 

explained by less of the O-D pairs having an estimated non-zero value in the prior matrix 

for smaller partition sizes. In the case of each partition only containing one node that 

means no O-D pair has an estimated value, which is why internal-only cannot obtain a TAP 

result. As the partitions get larger, internal-only includes more estimated O-D pairs in the 

prior matrix. This provides a more accurate starting matrix for O-D adjustment to work 

with, which leads to lower errors.
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For external-only there is a steady increase in flow error as the partition size increases. 

As opposed to internal-only, this pattern can be explained by less of the O-D pairs having 

an estimated non-zero value in the prior matrix for larger partition sizes. For all partition 

sizes, at least some of the O-D pairs have an non-zero estimate so the TAP can be solved in 

all cases. As the partitions get larger, external-only includes more zero value non-estimated 

O-D pairs in the prior matrix. This provides a less accurate starting matrix for O-D adjust-

ment to work with, which leads to higher errors.

The results for the internal-external combined method show the same characteristic tri-

angle shape with an initial increase followed by a decrease in error. This pattern can be 

explained by it being a combination of the effects present for internal-only and external-

only. At smaller partition sizes, the external estimates make up the majority of the O-D 

pair estimates, whereas, at the larger partition sizes the internal estimates constitute the 

majority. This means the errors are small for a large number of small partitions, which 

suits external estimation, and a small number of larger partitions, which suits internal 

estimation.

For the degenerate method the trend is similar for Sioux Falls but different for the artifi-

cially-generated networks. With the artificially-generated networks, there is a peak in error 
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Fig. 8  Plot of Median Absolute Percentage Error in user-equilibrium flow prediction for each partition size 

investigated on different artificially-generated networks, the 73 node SRN network and the 24 node Sioux 

Falls network. Lines are used as visual aid for the individual point results
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between 0-10% and then the error reduces to almost zero for the larger partition sizes. This 

can be attributed to the artificially-generated networks having no congestion and the simu-

lated flows being created with a Poisson distribution, so that for the smaller network sizes 

(larger partitions) very accurate estimates of the demand are obtained.

Computational requirements

The computational requirements of the partitioning approaches were investigated using the 

artificially-generated networks for a single time bin as described in the "Appendix" section.

Fig. 9  (a) Flow prediction error 

and (b) computational require-

ments for a range of network 

sizes when the Origin-Desti-

nation (O-D) estimation and 

adjustment are applied to a range 

of networks without the use of 

partitioning. In (a) the solid line 

is median error and dashed lines 

indicate the IQR. Lines are used 

as visual aid for the individual 

point results
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Computational requirements without partitioning

When the GLS method of O-D estimation is applied to a network without partitioning 

being used, it can be seen in Fig. 9 that the median error in flow prediction remains con-

stant as the network size (number of nodes) grows, but the required computational time and 

memory increase steeply. For the results in Fig. 9, the O-D estimation and adjustment algo-

rithms are being applied to the entire network. Due to the steeply increasing computational 

requirements, there is a limit on the number of nodes that O-D estimation can be applied 

to at one time. The main driving factor for memory requirements is the number of O-D 

pairs in the network and the assumed number of routes between them for GLS application. 

This is because these two factors determine the number of decision variables in the GLS 

mathematical optimisation formulation. As the number of nodes increases in the network, 

the number of O-D pairs and therefore the number of decision variables increases by order 

O(n(n − 1)) . If the number of decision variables is too high, it can lead to infeasibly large 

memory requirements and breach the limit of the Gurobi solver used (Gurobi 2023). The 

number of days of data also contributes to increased memory requirements but is not the 

main driving factor. Further details on the networks investigated (i.e. the number of O-D 

pairs) for computational requirements without partitioning can be found in Table 2 in the 

"Appendix" section.

Computational requirements on larger networks with partitioning

The analysis of the artificially-generated networks was expanded to larger sizes for the 

internal-only and internal-external combined methods which are the best performers of the 

non-degenerate partitioning approaches. As the networks grow in size it can be seen in 

Fig. 10 (a) that the memory requirements for both methods increase at the extreme ranges 

of partitioning. Comparing between Figs. 9 and 10, the effectiveness of using partitioning 

to reduce the computational requirements for larger networks can be seen. For example, by 

using two partitions (internal-only and internal-external) the 243 node network has a simi-

lar RAM requirement and computation time to the unpartitioned 135 node network.

At very small partitions the memory requirements increase very steeply. The 216 and 

243 node networks were unable to be calculated unpartitioned, this is due to the size of 

memory required and limitations with the Gurobi solver used. Of most interest is the 

increase in memory at the largest partition sizes. It can be seen that as the total network 

size grows, the memory for the larger partitions starts to become very high as each subnet-

work within a partition is larger. Computation time shows a similar trend to memory for 

the two methods (Fig.  10 (b)), with internal-external having an advantage over internal-

only for large partition sizes with larger networks.

Based on the results in Figs. 8 and 10, for the internal-only the error levels off between 

11-50% and the computation requirements start to increase at 25%, so the optimal range for 

partition sizes is between 11-25% (or 9 to 4 partitions). For the internal-external approach, 

the error in Fig. 8 is lowest for the largest partitions (i.e. 50%), so it is best to go for as large 

a partition as is computationally affordable. In the case of the tested networks this would 

be 25%, however, for larger networks than those tested, this partition size would reduce. 

As internal-only has better errors than internal-external for smaller partitions, it is internal-

only that is the better choice if result accuracy and memory are the primary concerns. If 

computation time is more important then internal-external is faster at the larger partition 

sizes.
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To determine the optimal partition size before applying the method, consideration needs 

to be made of the computing resources available and what is most important out of result 

accuracy, computation time and memory requirements. The optimal size and number of 

partitions also depends on the size of the overall network and the number of routes between 

O-D pairs. As memory requirements are usually the main limiting factor for applying this 

type of O-D estimation, from the networks analysed, we can recommend starting with 9 

partitions using internal-only and then reducing that number until the memory and compu-

tation time requirements become too onerous.

Fig. 10  Computational require-

ments for each partition size 

investigated for a 153, 216 and 

243 node artificially-generated 

network: a Memory; b Computa-

tion Time. Lines are used as 

visual aid for the individual point 

results
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Discussion

In proposing a method of partitioning a road system through network modularity, in this 

work we have demonstrated its potential for the calculation of the key O-D demand input 

for static TA models from loop detector data. This opens up the opportunity to estimate 

flow patterns for large road networks such as national highway systems without the need 

for additional routing data sources (i.e. travel surveys).

The results show that partitioning the network into small communities of nodes is tol-

erable for a degenerate approach to reduce the size of the network being analysed. This 

degenerate approach could be well suited for use in infrastructure assessment models such 

as NISMOD where the scale of analysis is more coarse, for instance at the inter-city level.

Applying partitioning in a non-degenerate way showed that a similar level of error in 

user-equilibrium flow and travel time predictions to the unpartitioned case can be obtained 

by dividing the network into a small number of larger partitions. The results show that the 

best accuracy results came from only using the internal O-D estimates of the partitions for 

the larger partition sizes. However, the results show that by also including the external par-

tition estimates there can be a reduction in computation time in some cases. For the Eng-

lish SRN case study, it appears that the best option is to partition the network into two large 

communities. In very large networks where the size is such that a two community partition 

is still infeasibly large, the results show that for community partitions numbering three and 

greater it would be better to use the internal-only approach unless the communities contain 

such a small proportion of the nodes that the flow error starts to rise (approx. 12.5% of 

nodes or eight community partitions).

The use of partitioning unlocks the ability to utilise existing network tomography-based 

approaches on much larger networks with higher numbers of O-D pairs. It should be noted, 

however, for cases where the full-sized network is not too computationally onerous, it 

would be better to apply the O-D estimation without partitioning as that still provides the 

best accuracy.

For the England SRN case study, results were obtainable for the unpartitioned case as 

the network size and number of O-D pairs were small enough to be computationally feasi-

ble. This allowed the comparison of new partitioning methods to the baseline unpartitioned 

results on a real road network. If that case study were expanded to include a larger road 

system, partitioning would eventually become essential.

The non-degenerate approach is useful for application in more detailed traffic planning. 

The traffic assignment models which it can create are well suited to estimating alternative 

flow patterns of vehicles such as system-optimal, under which the global travel cost of all 

drivers is minimised through the routes they are assigned. This can be used for producing 

performance comparisons of different national road systems through metrics such as the 

Price of Anarchy and evaluating network improvement options (Youn et al. 2008).

The performance of the methods in this work is assessed by the prediction accuracy 

of the TA models using the estimated O-D matrices. The O-D matrices produced are not 

necessarily close representations of the true demand profile. The matrix obtained through 

the partitioning provides the prior matrix for the O-D adjustment algorithm to create a suit-

able demand input for the TA model to predict flows and travel times with the accuracy 

presented.

Future work could look to apply this type of multi-scale demand estimation with 

alternative techniques to GLS, which may be more suitable. Further research could look 

into incorporating separate terms in the O-D adjustment for the internal and external 
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estimations of the prior matrix. Future work could also incorporate other data sources to 

inform the division between the O-D pairs of the externally estimated O-D movements. For 

example, in the AM period a greater share of demand could be distributed to the destina-

tions where more employment is located. In this work we used the standard formulation 

and coefficients for the congestion functions, more accuracy is possible through the use of 

more advanced function estimates. Lastly, this work assumes that all the edges on the net-

work have flow measurements, future work could look into adapting the method for situa-

tions where a number of measurements are missing. For example, flows on edges without 

measurements could possibly be reconstructed from the measurements on edges that feed 

into them.

Conclusion

In this work we developed a method of network partitioning through modularity to esti-

mate O-D demand matrices for large road networks to be used in static TA models. We 

applied it to the central subnetwork of the English SRN and several artificially-generated 

networks to allow different levels of partition resolution to be tested for their effects on the 

results of TA models derived solely from loop detector traffic data.

We show that the approach developed allows for traffic to be analysed nationally at dif-

ferent scales. It can be used within infrastructure models to improve their analysis of con-

gestion. It can also be used to create static TA models for strategic analysis and planning 

with a data source accessible to many transport planners. Future investigations could seek 

to implement the technique with more accurate techniques for O-D estimation from edge 

counts and improved adjustment algorithms.

Appendix

Creating the artificial networks and generating artificial flow samples

To simulate the artificially-generated networks used in the results we use the nine-node 

example in Fig. 2 as a building block. The single undirected edges of the simple graph are 

replaced with edges in both directions which are assigned equal distances. The process 

adds another of the nine-blocks to the network connecting a random node on the existing 

network to a random node on the new nine-node block. The random chosen nodes are lim-

ited to the nodes with order less than 6 (in and out combined). In the example of the pro-

cess in Fig. 11 this restricts the connections to nodes 1, 5 and 8. A larger distance for the 

dual edges connecting the blocks than those within the nine-node unit is used.

We chose to create the networks with this approach as it represents a suitable approxi-

mation of how conurbations connect together and it contains a visible modular structure 

amenable to the methods applied.

A number of network blocks are connected to make the size of test network required 

(in multiples of nine). Once the network is specified, an O-D matrix is created for the net-

work which randomly assigns a number between 0 and 10 to each O-D pair. The network 

is taken to be uncongested so the congestion function used is just the edge distance (inde-

pendent of flow).
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With the assigned O-D matrix the average flows on the network are created by using 

the Frank-Wolfe algorithm to solve for user-equilibrium (Eq.  6). This provides an aver-

age flow on each edge which can be used to generate a sample number of days of flows by 

using a random Poisson generator. The number of simulated days is set to be the number of 

edges in the network multiplied by 2.5. This flow sample is then used in the same processes 

described in the methodology to generate results.

For each size of network three iterations were trialled. The random aspect of the net-

work creation did not have a considerable effect on the results.

The same flow sample generation approach is used for the Sioux Falls example using 

the network data and sample O-D matrix from TNFR (2022).

Fig. 11  Example of nine node weighted directed graph used to build a more complex artificially-generated 

network

Table 2  Details of the networks used for testing Origin-Destination (O-D) estimation and adjustment com-

putational requirements without the use of partitioning

Nodes (-) Edges (-) O-D Pairs (-) Routes (-) No. of 

decision 

variables

RAM (GB) Comp. 

Time 

(mins)

Median 

Flow APE 

(%)

72 206 5112 2 10224 9.4 3.8 4.4

81 232 6480 2 12960 14.0 6.0 3.9

90 258 8010 2 16020 21.9 8.4 4.4

99 284 9702 2 19404 31.8 14.1 4.3

108 310 11556 2 23112 44.7 21.3 4.4

117 336 13572 2 27144 61.4 32.2 4.2

126 362 15750 2 31500 82.4 52.3 3.5

135 388 18090 2 36180 108.4 69.3 4.4

144 414 20592 2 41184 140.2 118.3 4.2
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Unparitioned network computational requirements

For the tests in the "Computational Requirements" section, the unpartitioned network fea-

tures are presented in Table 2. The O-D matrix is a square matrix the size of the number of 

O-D pairs. The number of decision variables in the GLS formulation is determined from 

the number of O-D pairs multiplied by the number of assumed routes. All calculations 

were performed on a Dell PowerEdge C6320 with 2.4GHz Intel Xeon E5-2630 v3 CPU.
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