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ABSTRACT

Multigrid algorithms are widely used to solve large-scale sparse

linear systems, which is essential for many high-performance work-

loads. The symmetric Gauss-Seidel (SYMGS)method is often respon-

sible for the performance bottleneck of MG. This paper presents

new methods to parallelize and enhance the computation and paral-

lelization efficiency of the SYMGS andMG algorithms onmulti-core

CPUs. Our solution employs a matrix splitting strategy and a re-

vised computation formula to decrease the computation operations

andmemory accesses in SYMGS.With this new SYMGS strategy, we

can then merge the two most time-consuming components of MG.

On top of these, we propose a new asynchronous parallelization

scheme to reduce the synchronization overhead when parallelizing

SYMGS. We demonstrate the benefit of our techniques by integrat-

ing them with the HPCG benchmark and two real-life applications.

Evaluation conducted on four architectures, including three ARMv8

and one x86, shows that our techniques greatly surpass the per-

formance of engineer- and vendor-tuned implementations across

various workloads and platforms.

CCS CONCEPTS

·Mathematics of computing→ Solvers;Mathematical soft-

ware performance; · Computing methodologies→Massively

parallel algorithms.
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1 INTRODUCTION

Sparse linear solvers underpin many high-performance scientific

and industrial workloads for modeling our physical world. Ex-

amples of such workloads include a wide range of applications

seen in computational flow dynamics [49] and environmental sci-

ence [38, 62].

Sparse linear solvers can be implemented using direct or iterative

methods. As iterative methods tend to be more efficient and easier

to implement on parallel systems than the direct counterpart [52],

∗Both authors contributed equally to this research.
2Corresponding author

most solvers choose to use iterative methods like the conjugate

gradient (CG) method [22, 52] for solving large-scale linear systems.

The convergence of an iterative solution is usually accelerated by

a multigrid (MG) process. This is done by using an MG method

to generate a sequence of grids (or meshes) through successive

refinement, where grids are graded from fine to coarse. In this way,

the iterative solution of the fine linear system is accelerated by

solving the coarser systems. As such, the MG computation rate

greatly influences the efficiency of an iterative method. However,

the MG computation time can be expensive on large-scale problems

that can have millions of equations and variables [10], making

optimizing MG algorithms a non-trivial challenge.

Themost time-consuming step ofMG is to reduce high-frequency

errors from coarser grids - a process known as smoothing. The

smoothing operation is usually realized by using a symmetric Gauss-

Seidel (SYMGS) method [56] to recursively compute on a collec-

tion of grids. Studies have shown that SYMGS generally converges

much faster than alternative methods like the Jacobi method on

multi-core CPUs [52], and hence it is the dominant approach for

implementing MG. Unfortunately, the Gauss-Seidel smoother has

a major drawback - it exhibits a low degree of parallelism due to

extensive computation dependencies [43]. As we will show later in

the paper, smoothing can account for 78% of the MG computation

time and should not be ignored when optimizing MG and sparse

linear solvers.

Efforts have been made to parallelize the Gauss-Seidel method.

Parallelization can be achieved by either using graph coloring tech-

niques to group the independent variables of the linear system to

solve partitions in parallel [2, 28, 46], or exploiting pipeline paral-

lelism in the directed acyclic computation graph of a given grid

setting through level scheduling [1, 40, 42]. These prior schemes

represent an important step for optimizing the Gauss-Seidel method

by focusing on computation parallelization. However, little work

has attempted to optimize the memory access latency of SYMGS on

multi-core CPUs. SYMGS is known to be memory-bounded because

the algorithm needs to access large, sparse matrices that cannot

fit into the last level cache and the kernel computation has a low

arithmetic intensity [63]. Reducing the memory access latency is

essential for gaining further performance improvement for SYMGS.
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The issue is increasingly important since the performance gap be-

tween the CPU and the memory subsystem becomes wider [7, 8].

This paper aims to push the boundary of memory and compu-

tation optimization of SYMGS on homogeneous multi-cores. Our

approach revises the classical Gauss-Seidel method used by main-

streamed MG algorithms to reduce the number of computation and

memory access operations. Our revision preserves the SYMGS se-

mantics without changing the computation outcome, yet it can lead

to noticeable performance improvement. We achieve this by first al-

tering how sparse matrices are stored according to the computation

characteristics of SYMGS. It allows us to merge sparse matrix-vector

(SPMV) multiplication and SYMGS kernels, which dominate the ex-

ecution time of MG, to reduce the number of memory accesses and

computation operations. Although it may appear strikingly sim-

ple, our technique outperforms state-of-the-art MG optimization

approaches [17, 32, 47, 54] by a large margin. Our computation opti-

mization is orthogonal to existing SYMGS parallelization strategies,

allowing a linear solver to leverage well-established parallelization

strategies to exploit parallelism.

In addition to computation optimization on a single core, we

propose a new way to improve parallelization efficiency using asyn-

chronous pipeline parallelism across processor cores. This is based

on the observation that the commonly used blockmulti-color (BMC)

reordering strategy [27, 28] for parallelizing SYMGS can lead to fre-

quent stalls of parallel threads, leading to sub-optimal performance

for parallel execution. Our approach advances the standard BMC

algorithm by using pipeline parallelization to exploit parallelism,

allowing parallel threads to start computation asynchronously. Our

strategy not only reduces the synchronization overhead but also

improves the multi-core utilization by allowing parallel threads to

start computation as soon as the data dependence is resolved.

Our techniques are generally applicable. We have integrated our

techniques1 to the high performance conjugate gradient (HPCG)

benchmark [15, 43, 51] and two real-life application: YHAMG [17]

and CitcomCU [53]. The HPCG benchmark provides a representa-

tive implementation of MG and is commonly used to evaluate the

performance of high-performance systems. Furthermore, YHAMG

is a highly optimized algebraic multigrid (AMG) library with multi-

ple smoothers such as SYMGS, Jacobi, and Chebyshev polynomials.

CitcomCU is a widely used finite element solver for earth simula-

tions [5].

We evaluate our approach on both Intel x86 and ARMv8 multi-

core processors, including an Intel Xeon and three ARM multi-

core systems: Phytium 2000+ [45], Kunpeng (KP) 920 [26] and

Thunder X2 [36]. We compared our approach against heavily-

tuned MG implementations accelerated with industry-strength

high-performance libraries as well as prior parallelization methods

designed for MG algorithms [47, 51]. We evaluated our techniques

on both a single computing node and in a distributed setup with

256 computing nodes.

Our approach outperforms prior works by a large margin. On the

ARM platforms, it improves the ARM-specific HPCG implementa-

tion accelerated using the ARM Performance Library (ARMPL) [4]

by 1.92xś2.33x. On the Intel platform, our approach improves the

heavily-optimized HPCG version in the Intel Math Kernel Library

1Code and data available at https://github.com/YXJ-123/MGopt-APP.

Algorithm 1: A standard V-Cycle MG algorithm.

1 function MG(𝐴ℎ , 𝑏ℎ , 𝑥ℎ0 )

2 if on the coarsest level then

3 𝑥ℎ = BottomSolver(𝐴ℎ, 𝑏ℎ, 𝑥ℎ0 ) ⊲ Bottom solver

4 else

5 repeat𝑚1: 𝑥
ℎ = SYMGS(𝐴ℎ, 𝑏ℎ, 𝑥ℎ0 ) ⊲ Presmoothing

6 𝑟ℎ = 𝑏ℎ − 𝐴ℎ𝑥ℎ ⊲ Residual

7 𝑟 2ℎ = 𝐼 2ℎ
ℎ
𝑟ℎ, 𝑥2ℎ0 = 0 ⊲ Restriction

8 𝑥2ℎ = MG(𝐴2ℎ, 𝑟 2ℎ, 𝑥2ℎ0 ) ⊲ Recursion

9 𝑥ℎ = 𝑥ℎ + 𝐼ℎ
2ℎ
𝑥2ℎ ⊲ Prolongation

10 repeat𝑚2: 𝑥
ℎ = SYMGS(𝐴ℎ, 𝑏ℎ, 𝑥ℎ) ⊲ Postsmoothing

11 end

12 return 𝑥ℎ

13 end

(MKL) [47] by 1.40x. We show that such a performance advantage

is transferable to real applications where our techniques give a

1.4x and 3.1x speedup over the engineer-tuned implementation of

YHAMG and CitcomCU applications, respectively.

This paper makes the following contributions:

(1) It proposes a new SYMGS algorithm to reduce the com-

putation and memory access costs on multi-cores (Section

3.1);

(2) It provides an empirical study on how to determine the

best parameters of the commonly used block multi-color

reordering parallelization method (Section 4.2);

(3) It presents an asynchronous method to reduce the synchro-

nization overhead when parallelizing SYMGS (Section 4.3).

2 BACKGROUND

2.1 Multigrid Algorithms

Iterative methods have proven effective in solving linear systems

arising in physical modeling [14, 52]. MG algorithms are often

employed to implement an iterative solution for solving a linear

system, 𝐴𝑥 = 𝑏, where 𝐴, 𝑏, and 𝑥 are a sparse matrix, a dense

vector and a result vector respectively.

Although a diverse range of MG algorithms and implementa-

tions is available [6, 11, 13, 25, 41, 60], they typically operate on a

hierarchy of discretizations (grids). There are different choices of

MG methods with varying trade-offs between the speed of solving

a single iteration and the rate of convergence across iterations, with

the V-Cycle being themost commonly used implementation [52, 55].

We use V-Cycle as a working example, but our techniques can be

equally applied to other mainstream MG implementations that use

SYMGS, including F-Cycle and W-Cycle.

Algorithm 1 outlines how V-Cycle solves an ℎ-level linear sys-

tem, 𝐴ℎ𝑥 = 𝑏. An MG cycle has five operators: bottom solver, pre-

smoothing, post-smoothing, restriction and prolongation. The cycle

is implemented using recursion by repeatedly applying the MG

function to coarser grids (line 8 in Algorithm 1). This process is re-

peated until the coarsest grid is reached where the cost of the direct

solution is negligible so that a bottom solver (line 3 in Algorithm

1) is used to solve this collection of grids directly. Before and after

operating on a finer grid, pre-smoothing (line 5 in Algorithm 1) and

post-smoothing (line 10 in Algorithm 1) are respectively applied
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to cancel out errors from the coarser grids. Smoothing is followed

by computing the residual error after the smoothing operation.

Then, a restriction operation down samples the residual error to a

coarser grid before the prolongation operator interpolates a correc-

tion computed on a coarser grid into a finer grid. In essence, the

cycle repeatedly projects the current residual from a finer grid onto

the next coarser grid and interpolates the solution from the coarser

grid onto the finer one.

2.2 Symmetric Gauss-Seidel

SYMGS can be used as a smoother and a solver in a MG implemen-

tation like Algorithm 1. For example, in HPCG, SYMGS is used as

the pre-smoother, post-smoother and bottom solver, where pre-

smoothing and post-smoothing are applied once on each level of

the grid (i.e.,𝑚1 and𝑚2 are set to one in Algorithm 1). In other

implementations, smoothing operations can be performed multiple

times [5].

A SYMGS iteration consists of a forward and a backward sweep [52],

which can be respectively defined as:

𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 : 𝑥1 = (𝐷 + 𝐿)−1 (𝑏 −𝑈𝑥0), (1)

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 : 𝑥2 = (𝐷 +𝑈 )−1 (𝑏 − 𝐿𝑥1), (2)

where the backward sweep takes as input the intermediate vector

(𝑥1) produced by the forward sweep. Here, 𝐷 is the diagonal entries

of 𝐴, and 𝐿 and 𝑈 are the lower and upper triangular parts of

𝐴, respectively. Note that equations (1) and (2) contain a sparse

triangular matrix-vector multiplication (SPTRMV) operation𝑈𝑥0
or 𝐿𝑥1, and a sparse triangular linear solving (SPTRSV) operation,

(𝐷 + 𝐿)−1𝑏 or (𝐷 +𝑈 )−1𝑏, where 𝑏 is a vector. When substituting

the output of the forward sweep, 𝑥1, into the backward sweep, we

have

𝑥2 = 𝑥0 +𝐺 (𝑏 −𝐴𝑥0), (3)

where𝐺 = (𝐷 +𝑈 )−1𝐷 (𝐷 +𝐿)−1 is symmetric; and hence the name

of symmetric GS.

2.3 Overhead of SYMGS

In an attempt to quantify the computation overhead of SYMGS in

MG, we profile the sequential version of HPCG on the ARMv8-

based Phytium 2000+ CPU. This benchmark solves a regular 27-

point stencil discretization in three dimensions of an elliptic partial

differential equation. HPCG uses a preconditioned conjugate gra-

dient (PCG) algorithm [22, 24] implemented through a four-level

V-Cycle MG method.

Our profiling results show that SYMGS accounts for 78% of the

whole program execution time of HPCG, while SPMV has the

second-largest overhead, contributing to 20% of the HPCG exe-

cution time. Note that we also observe a similar execution time dis-

tribution on other hardware platforms used in this paper. Moreover,

independent studies have shown that SYMGS and SPMV operations

are memory-bounded in HPCG, each has a low computation-to-

memory ratio of 0.152 and 0.156 flops/byte, respectively [63]. Such

a low arithmetic intensity further highlights the need of memory-

aware optimization for MG.

3 COMPUTATION OPTIMIZATION

Our approach has two strands. The first is to devise the SYMGS and

SPMV computation patterns in MG on a single core. Our optimiza-

tion stores matrix A as sub-matrices to enable a new computation

formula and kernel fusion to reduce computation overhead. The

second is to exploit pipeline parallelism to reduce parallel thread

starving running on multiple processor cores. We describe our

computation optimization in this section and our parallelization

optimization in Section 4.

3.1 SYMGS Kernel Optimization

Recall that the forward and backward sweep of SYMGS performs

an SPTRMV and an SPTRSV operation (Section 2.2) on 𝐷 , 𝐿, and

𝑈 of matrix 𝐴. We split matrix 𝐴 into submatrices 𝐷 , 𝐿 and𝑈 and

use the CSR format to store the submatrices. Since 𝐷 is diagonal,

it can be stored as one vector. Our current implementation uses

CSR, but other sparse matrix formats can be used too. For example,

the matrices 𝐿 and𝑈 in [63] are stored in SELL format, while the

whole matrix 𝐴 is stored in CSR format in [32]. We note that the

matrix format conversation only needs to perform once, and hence

the overhead of conversion is negligible. This storage format allows

the SPTRMV and SPTRSV to be performed by accessing only one

submatrix 𝐿 or 𝑈 instead of the whole matrix 𝐴. Therefore, the

memory bandwidth cost is reduced and the data locality is also

improved.

Since SPTRMV and SPTRSV can now be decoupled, we first

execute the SPTRMV, 𝑝0 = −𝑈𝑥0, in the forward sweep, which is

then followed by SPTRSV. As a result, the forward sweep can be

formulated as:

𝑥1 = (𝐿 + 𝐷)−1 (𝑏 + 𝑝0). (4)

As the backward sweep takes as input the output (𝑥1) of the

forward sweep, we can rewrite the backward step of equation (2)

as:

𝑥2 = (𝐷 +𝑈 )−1 (𝑏 − 𝐿𝑥1)

= (𝐷 +𝑈 )−1 [𝑏 + 𝐷𝑥1 − (𝐷 + 𝐿)𝑥1]

= (𝐷 +𝑈 )−1 (𝐷𝑥1 − 𝑝0) .

(5)

Now let 𝑝1 = 𝐷𝑥1−𝑝0, the backward sweep in equation (5) becomes:

𝑥2 = (𝐷 +𝑈 )−1𝑝1 . (6)

Comparing the original equation (2) of the backward sweep with

our new formula in equation (6), we can see that our formula saves

one SPTRMV operation because we do not compute 𝐿𝑥1 in equation

(6). This formula permits us to combine equations (4) and (6) to

build an optimized SYMGS, for which we call SYMGS-opt.

3.2 Computational Fusion

In our implementation, the computations of 𝑥1 and 𝑝1 at lines 3

and 4 of Algorithm 2 are fused to further reduce the memory access

operations. Consider 𝑥1 = (𝐿 +𝐷)−1 (𝑏 + 𝑝0). Then for the element

𝑥1 [𝑖] in row 𝑖 , there is

𝑥1 [𝑖] =
1

𝑎𝑖 [𝑖]
(𝑏 [𝑖] + 𝑝0 [𝑖] −

𝑖−1∑︁

𝑗=0

𝑎𝑖 [ 𝑗]𝑥1 [ 𝑗]), (7)
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Algorithm 2: Fusion of kernels SYMGS and SPMV

1 function Fusion(𝐴, 𝑏, 𝑥0)

2 Compute 𝑝0 := −𝑈𝑥0

3 Compute 𝑥1 := (𝐷 + 𝐿)−1 (𝑏 + 𝑝0 ) ⊲ forward step

4 Compute 𝑝1 := 𝐷𝑥1 − 𝑝0

5 Compute 𝑥2 := (𝐷 +𝑈 )−1𝑝1 ⊲ backward step

6 ⊲ end of SYMGS-opt

7 Compute 𝑦 := 𝑝1 + 𝐿𝑥2 ⊲ end of SPMV

8 return 𝑥2 and 𝑦

9 end

Algorithm 3: Pesudocodes for computing 𝑥1 and 𝑝1.

Input: 𝑤 := 𝑝0 ⊲ do 𝑝0 = −𝑈𝑥0 in parallel.

Output: 𝑥 := 𝑥1, 𝑤 := 𝑝1
1 for 𝑖 = 0 to 𝑛 do

2 double 𝑡𝑒𝑚𝑝 = 𝑏 [𝑖 ]

3 for 𝑗 = 𝐿𝑝 [𝑖 ] to 𝐿𝑝 [𝑖 + 1] − 1 do

4 𝑡𝑒𝑚𝑝 − = 𝐿𝑣 [ 𝑗 ] ∗ 𝑥 [𝐿𝑐 [ 𝑗 ] ]

5 end

6 𝑥 [𝑖 ] = (𝑡𝑒𝑚𝑝 + 𝑤 [𝑖 ] )/𝐷 [𝑖 ]

7 𝑤 [𝑖 ] = 𝑡𝑒𝑚𝑝

8 end

and 𝑝1 = 𝐷𝑥1 − 𝑝0, so 𝑝1 can be reduced to

𝑝1 [𝑖] = 𝑎𝑖 [𝑖]𝑥1 [𝑖] − 𝑝0 [𝑖]

= 𝑏 [𝑖] −

𝑖−1∑︁

𝑗=0

𝑎𝑖 [ 𝑗]𝑥1 [ 𝑗] .
(8)

Since 𝑝1 is stored in 𝑝0 inplace, only one auxiliary vector is needed,

so the memory footprint overhead is small.

The pseudocode in Algorithm 3 describes how to compute the

forward sweep, 𝑥1 and 𝑝1 used in Algorithm 2, assuming CSR is

used. Here, 𝐿𝑝 is the row pointer of 𝐿 in the CSR form, 𝐿𝑣 stores

the nonzero values and 𝐿𝑐 stores the column indexes of 𝐿 in the

CSR form.

3.3 Kernel Fusion

Kernel fusion is shown to be effective in optimizing MG [34, 44, 63].

Our computation formula also supports kernel fusion to reduce

computation and memory access latency. In line with the standard

implementation of MG, SYMGS-opt is followed by one SPMV of

computing 𝐴𝑥2 (line 6 of Algorithm 1). From the equation (6) we

have:

𝑝1 = (𝐷 +𝑈 )𝑥2 . (9)

Considering 𝐴 = 𝐿 + 𝐷 +𝑈 , we can obtain 𝐴𝑥2 by

𝐴𝑥2 = 𝑝1 + 𝐿𝑥2 . (10)

The main idea is that the intermediate vector 𝑝1 = (𝐷 + 𝑈 )𝑥2
has already been computed in SYMGS-opt during the backward

step. This fusion merges SYMGS-opt with SpMV, and saves the

computation and memory bandwidth costs.

Algorithm 2 outlines the computation process of our new SYMGS

plus SpMV implementation (denoted as Fusion). Thus, by reusing

𝑥𝑥0
*

-U

=𝑝𝑝0
(a) Compute 𝑝0 in parallel.

𝑏𝑏 + 𝑝𝑝0
*

(𝐷𝐷 + 𝐿𝐿)−1
=𝑥𝑥1
(b) Forward smooth to get 𝑥1 .𝑝𝑝1

*

(𝐷𝐷 + 𝑈𝑈)−1
=𝑥𝑥2

(c) Backward smooth to get 𝑥2 .

𝑥𝑥2
*=y

L 𝑝𝑝1
+

(d) Compute 𝑦 in parallel.

Figure 1: The computation flow of our Fusion implementa-

tion.

the result of 𝑝1 for computing 𝐴𝑥2 in line 7 of Algorithm 2, our

scheme saves computation and memory accesses for matrix 𝐴.

3.4 Efficiency Analysis

Figure 1 shows the workflow of our new Fusion implementation.

We compare our optimizaiton with the classical SYMGS plus SPMV

(one SYMGS followed by one SPMV) implementation where SYMGS

is described in Section 2.2. The classical SYMGS implementation

reads matrix𝐴 twice and costs𝑂 (4𝑛𝑛𝑧) flops, where𝑛𝑛𝑧 is the num-

ber of non-zeros of 𝐴, but it requires an additional SPMV operation

to read matrix 𝐴 once and costs𝑂 (2𝑛𝑛𝑧) flops, which leads to three

reads to matrix𝐴 and𝑂 (6𝑛𝑛𝑧) flops. By contrast, our Fusion imple-

mentation (described in Algorithm 2) only needs to load matrices 𝐿

and 𝑈 from the main memory to the cache twice. This leads to two

reads of matrix 𝐴. The computational complexity of our scheme

is 𝑂 (4𝑛𝑛𝑧) flops. As a result, our new implementation incurs only

two-thirds of the memory accesses of the classical SYMGS plus

SPMV implementation. Furthermore, if the initial vector 𝑥0 is zero,

the computation of −𝑈𝑥0 is not needed, and the computation cost

of Algorithm 2 is reduced to 𝑂 (3𝑛𝑛𝑧) flops.

4 PARALLELIZATION OF SYMGS

Our computation optimization can be integrated with existing par-

allelization schemes for SYMGS. This can be achieved by executing

the SPTRSV operation (see Section 2.2) across concurrently run-

ning threads, using the block multi-color reordering (BMC) [27, 28]

parallelization scheme.

4.1 Block Multi-color Reordering

The idea of BMC is to group computation tasks into color blocks,

where tasks with the same color have no dependence and can be

executed in parallel. Although it breaks some of the original depen-

dence relations and leads to slow convergence [16, 46], it introduces

more parallelism in SYMGS. There are three different ways of apply-

ing BMC to a 3-dimensional geometric grid: flake block (1D), strip
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x

y

z

(a) Cx=2, Cy=1, Cz=1 (b) Cx=2, Cy=2, Cz=1 (c) Cx=2, Cy=2, Cz=2

Figure 2: Block division with a different number of colors in

each direction.

block (2D) and cube block (3D). These block partitioning schemes

can be described by using three parameters, 𝐶𝑥 ,𝐶𝑦 and 𝐶𝑧 , which

respectively represent the number of colors in the 𝑥 , 𝑦 and 𝑧 di-

rections, as shown in Figure 2. For example, 𝐶𝑥 = 2,𝐶𝑦 = 1 and

𝐶𝑧 = 1 represents the 1D partition in Figure 2(a), where the 𝑦 and

𝑧 directions have no parallelism and all the flake blocks are along

the 𝑥-dimension. We want to choose the best partition scheme to

strike a balance between parallelism and convergence rate.

As can be seen from Figure 2, using a small number of colors

(i.e., 𝑐 is small) is unlikely to expose high parallelism due to the

limited grid side length and unitary partition of blocks. On the

other hand, using too many colors can lead to poor data locality

and frequent thread synchronization. Figure 6 shows that there is

no łone-size-fits-allł number of colors. To facilitate the subsequent

analysis, we empirically set 𝑐 as 8 (i.e., 𝑐𝑥 = 𝑐𝑦 = 𝑐𝑧 = 2) on all

platforms, which gives an overall good performance.

4.2 Adaptive Block Size Selection

BMC employs a block size parameter, denoted by 𝑏 = 𝑏𝑥𝑏𝑦𝑏𝑧 ,

which determines the amount of work assigned to a given number

of threads that can simultaneously perform computation tasks of

the same color. As the block size increases, the parallelism decreases,

but the data locality and convergence rate improve. Conversely, if

the block size decreases, parallelism increases, but data locality and

convergence rate suffer. Here, our goal is to establish a metric that

will enable us to select the appropriate block size 𝑏𝑖 , ensuring a

good convergence rate without compromising load balancing. For

a typical MG implementation like the geometric multigrid (GMG)

algorithm, the block size can be determined based on the geometric

information of grids by considering computation balance. Specifi-

cally, for a 3-dimensional problem domainwith𝑥 ,𝑦, and 𝑧 directions,

the average number of blocks per color (denoted by 𝑛𝑝𝑒𝑟_𝑐𝑜𝑙𝑜𝑟 ) is

𝑛𝑝𝑒𝑟_𝑐𝑜𝑙𝑜𝑟 =
𝑁𝑥

𝑐𝑥𝑏𝑥
×

𝑁𝑦

𝑐𝑦𝑏𝑦
×

𝑁𝑧

𝑐𝑧𝑏𝑧
, (11)

where 𝑐 = 𝑐𝑥 · 𝑐𝑦 · 𝑐𝑧 is the total number of colors across three

dimensions, and 𝑏𝑖 and 𝑁𝑖 represent the block size and grid side

length of dimension 𝑖 respectively. To ensure load balance, we use

the following formula to choose the block size (𝑏 = 𝑏𝑥𝑏𝑦𝑏𝑧) for

BMC:
𝑛𝑡 · 𝛽 = 𝑛𝑝𝑒𝑟_𝑐𝑜𝑙𝑜𝑟 , (12)

where 𝑛𝑡 is the number of parallel threads, and 𝛽 is the average

number of blocks to be processed by each thread, and 𝛽 ≥ 1. Our

key insight is to let 𝑏𝑖 as large as possible to enhance convergence

rate without compromising load balancing, i.e., we hope that 𝛽 is

0 1 2 3

4 5 6 7

Cx = 2, Cy = 2

0 2 4 6

0 2 4 6

1 3 5 7

0 2 4 6

1 3 5 7

0 2 4 6

6 6 1 3

5 71 3 5 7

7

Time 1

Time 2

Time 3

Time 4

Async with dependencySync with barrier
Task Pool

Dependency𝑻𝑻𝒊𝒊 Thread 𝒊𝒊 (𝒊𝒊=0,1,2) 𝑻𝑻𝟎𝟎 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐𝑻𝑻𝟎𝟎𝑻𝑻𝟎𝟎 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐
𝑻𝑻𝟎𝟎

𝑻𝑻𝟎𝟎 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐𝑻𝑻𝟎𝟎 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐𝑻𝑻𝟎𝟎 𝑻𝑻𝟏𝟏
x

y

（a） （b） （c）

Figure 3: Using BMC to parallelize SYMGS algorithm. Fig-

ure(a) represents the dependencies between different color

blocks. Figure(b) shows the commonly used synchronous

method, all threads are synchronized before executing blocks

of a different color. Figure(c) shows our proposed asynchro-

nous scheme, the execution time is reduced.

near one. In Section 6.2, we empirically show that our adaptive

strategy for choosing the block size gives a good performance.

To improve data locality, we reorder the blocks based on their

colors and store blocks of the same color consecutively in the mem-

ory space. Furthermore, the mapping of SYMGS to the 3D grid is

straightforward, as each row of the matrix corresponds to a point

on the grid. Specifically, SYMGS accesses rows in the same order

as we scan over the 3D grid after parallelization.

We stress that the block size can dynamically change when

moving to a coarser grid across MG iterations. The grid size of

coarser level is almost an eighth of the finer level in MG. The block

size decreases proportionally as the grid scale decreases, that is, the

number of blocks at each level is kept the same.

4.3 Asynchronous Parallelization

In equation (12), 𝛽 equals one under perfect load balance. However,

𝑛𝑝𝑒𝑟_𝑐𝑜𝑙𝑜𝑟 may not be divisible by𝑛𝑡 , and𝑏𝑖 is determined by letting

𝛽 as near one as possible in this case. Since threads work on a whole

block, load imbalance occurs when 𝛽 is not an integer, which results

in performance degradation. To solve this problem, we propose an

asynchronous mode for BMC.

The vast majority of BMC implementations compute blocks of

the same color in parallel by introducing a barrier among parallel

threads before switching to computation on blocks of a different

color. Figure 3(a) depicts the dependencies of the two color blocks,

and in Figure 3(b), this synchronous scheme introduces a barrier

for the parallel computations on blocks 0, 2, 4, and 6 before moving

to blocks 1, 3, 5, 7. A problem with this synchronous parallelization

scheme is that depending on the amount of work within a block,

there is no guarantee that all the parallel threads can finish at the

same time; as a result, some of the parallel threads may need to

wait for the slowest peer before moving to compute the blocks

with a different color. Furthermore, it is possible that the number

of remaining blocks is smaller than the number of parallel threads.

In this scenario, some processor cores and threads have to be idle

in waiting for the computation of some blocks. One such example



Yang et al.

Table 1: Hardware platforms used in evaluation.

Phytium 2000+ KP 920 Thunder X2 Xeon

#Cores 64 64 32 14

Sockets 1 1 1 2

#NUMAs 8 2 1 2

CPU Freq. 2.2GHz 2.6GHz 2.5GHz 2.0GHz

L1 cache 32KB 64KB 32KB 896KB

L2 cache 2MB 512KB 256KB 28MB

L3 cache None 64MB 32MB 38.5MB

is given in Figure 3(b), where threads 𝑇1 and 𝑇2 have to wait 𝑇0 at

time 2. These issues lead to the under-utilization of computation

resources.

To improve the parallelism for coloring-based parallelization, we

propose to execute blocks of different colors asynchronously. As

shown in Figures 3(a) and 3(b), BMC-based (synchronous) SYMGS

executes blocks of different colors according to the direction order

of x, y, and z, and each block is dependent on the blocks of the

previously executed colors with a distance of one in each of the

three directions. As can be seen from Figure 3(c), our asynchronous

scheme allows a parallel thread to execute as long as its dependent

blocks get executed, rather than waiting for the completion of all

blocks of the previous color. Our asynchronous scheme reduces the

stalling time between parallel execution and improve the utilization

of processor cores, leading to faster execution time.

This asynchronous mode of BMC can effectively alleviate the

load imbalance caused when 𝛽 is not a whole number in equation

(12). This is particularly important when the block partition method

is used to solve linear equations with unstructured matrices where

the number of blocks with different colors may vary greatly and

the problem of unbalanced load is more prominent.

We use the tasking mode introduced by OpenMP 3.0 to imple-

ment our asynchronous parallelization scheme. Later in Sections

6.3 and 7.3, we show that our asynchronous approach can greatly

improve the performance of BMC-based parallel SYMGS.

5 EXPERIMENTAL SETUP

5.1 Evaluation Platforms

To demonstrate the portability of our optimization strategies, we

test our approach on both ARM and x86 platforms. Table 1 lists

the hardware platforms used in the paper, including three ARMv8

architectures [18, 58] and an Intel Xeon Gold-5117 CPU. We stress

that our work focuses on performance optimization of a single

computing node, and we also test our approach on a Phytium 2000+

cluster using 256 computing nodes.

Our evaluation platforms run Linux kernel version 4.19.46, and

we use GCC version 11.2.0 with the "-O3" compiler option and

MPICH version 3.4.3.

5.2 Application Workloads

We ported our techniques to the official release of HPCG (version

3.1). This version does not use architecture-dependent optimiza-

tions like our competing baselines (Section 5.3). HPCG runs using

multiple MPI processes where each process is further parallelized

using OpenMP threads on a shared-memorymachine2. We also port

our techniques to realistic linear solver applications: YHAMG [17],

CitcomCU [53], linear solver of unstructured matrices. All the pro-

grams are written in C++.

We use representative problem sizes in our evaluation. HPCG

implements a four-level MG, and the scale of each level decreases

by a factor of eight. The test grid size of HPCG is 192 × 192 × 192.

We apply CitcomCU to solve a real application problem with a local

grid scale of 256 × 256 × 128 per MPI process, and use YHAMG to

solve the Poisson problem discretized by a 7-point and a 27-point

stencil, respectively.

5.3 Competing Baselines

HPCG for ARM.We compared our HPCG implementation against

the ARM-architecture-tuned HPCG developed by ARM [51, 54].

We denote this version as HPCG_for_ARM. This heavily-tuned im-

plementation uses the ARM Neon single instruction multiple data

(SIMD) instruction for matrix multiplications. It exploits level sched-

uling parallelization [43] at the finest grid level and uses BMC to

parallelize the remaining coarser levels of grids. We also use the

ARM Performance Libraries (ARMPL) (version 21.0) [4] to acceler-

ate the SPMV kernel of this implementation for a fair comparison.

HPCG for x86. On the Intel platform, we compared our HPCG

implementation against the optimized HPCG version (close source)

provided by the Intel MKL library (release date January 2022) [47].

We denote this version as HPCG_for_MKL.

YHAMG and CitcomCU. Both applications have already been

heavily optimized by their developers. Specifically, CitcomCU uses

a optimized F-Cycle MG, and YHAMG uses hand-optimized SYMGS

and SPMV kernels. We show that our techniques can be applied to

the two applications to further improve their performance.

Synchronous BMC. We compare our asynchronous paralleliza-

tion scheme to the synchronous BMC parallelization described in

Section 4.3 on the parallel version of of the SYMGS kernel in HPCG,

which runs on multi-core CPUs using OpenMP.

5.4 Evaluation Methodology

In our experiments, we evaluate the performance of our SYMGS

kernel optimization (SYMGS-opt) described in Section 3.1 and our

kernel fusion techniques (Fusion) described in Section 3.3, as well

as their integration with BMC described in Section 4. We also eval-

uate our adaptive blocking strategy described in Section 4.2.

Unless stated otherwise, we report the end-to-end benchmark

performance. We run each test case 10 times on unloaded machines

and report the geometric mean of the runtime. The variance across

different runs is small, less than 5%. We run the benchmarks with 8

MPI processes on ARM and 4 MPI processes on x86 (to match the

28 CPU cores), with 7 OpenMP threads per MPI process. For further

analysis of other strategies, we use 8 and 32 OpenMP threads for

each MPI process on ARM systems (28 on x86).

2OpenMP is used to parallelized SPMV and other matrix multiplication operations but
SYGMS is implemented as a sequential kernel in the official release of HPCG.
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Figure 4: Comparison of our optimized HPCG (BMC+Fusion)

and the hardware-specific implementations on a single node.

20 21 22 23 24 25 26 27 28
Number of Nodes

21

23

25

27

29

211

213

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

20.9
41.6

82.3
162.9

322.6
634.3

1243.8 2473.3

2.7
5.5

10.9
21.7

42.5
84.9

169.5
346.4

40%

50%

60%

70%

80%

90%

100%

Pa
ra

lle
l E

ffi
cie

nc
y

Performance (BMC+Fusion)
Performance (Reference)
Efficiency (BMC+Fusion)
Efficiency (Reference)

96.7%

91.7%
4909.3

676.3

Figure 5: Performance and parallel efficiency of HPCG (with

BMC+Fusion and Reference) in a Phytium 2000+ computing

cluster with 256 nodes.

Table 2: Breakdown of individual optimizations on HPCG.

Method Phytium2000+ KP920 ThunderX2 Xeon

Reference 1.00x 1.00x 1.00x 1.00x

SYMGS-opt 2.73x 2.06x 1.82x 1.56x

Fusion 3.08x 2.21x 2.03x 1.80x

BMC 3.98x 3.29x 3.84x 1.98x

BMC+SYMGS-opt 5.71x 4.62x 4.88x 2.56x

HPCG_for_ARM/MKL 3.29x 3.16x 3.03x 2.44x

BMC+Fusion 7.66x 6.07x 6.94x 3.42x

6 EXPERIMENTAL RESULTS

6.1 HPCG Performance

Single-node performance. Figure 4 reports the HPCG perfor-

mance (measured as GFLOPS) of our optimizations (BMC+Fusion)

and the competing baselines across our evaluation platforms. Here,

we use the official release of HPCG as the Reference. The exper-

iments were performed on a single computing node using all the

physical processor cores. The vendor-tuned HPCG implementa-

tions, HPCG_for_ARM and HPCG_for_MKL, take advantage of the

high-performance back-end libraries and hardware-specific opti-

mization, delivering significant performance benefits over the refer-

ence implementation. Although our implementations are based on

the platform-agnostic reference implementation, it outperforms the

vendor-tuned versions on their targeting platforms by a large mar-

gin. Specifically, our techniques improve HPCG_for_ARM by 1.92xś

2.33x and HPCG_for_MKL on x86 by 1.40x. The HPCG_for_ARM

implementation uses BMC for parallelization together with ARM-

specific SIMD instructions to accelerate SPMV computation. Our

BMC implementation builds upon the official release and does not

use ARM-specific instructions. Yet, our implementation gives sig-

nificantly better performance.

Multi-node performance scalability. Figure 5 shows the per-

formance when running our HPCG implementation with BMC

parallelization (BMC+Fusion) in a 256-node Phytium 2000+ cluster

using a total of 16, 384 cores. As can be seen from the diagram,

our implementation exhibits a good scalability with nearly linear

improvement on GFLOPS as the number of computing nodes used

increases. Specifically, when using 256 nodes, our implement de-

livers 4909.3 GFLOPS. The performance of our implementation

translates to a 91.7% parallel efficiency3. Note that as we reduce

the computation time in the optimized version, the communication

overhead further limits parallel efficiency, which leads to a lower

parallel efficiency for the optimized version. However, our approach

still gives a higher throughput measured by GFLOPS compared to

the reference implementation.

Performance breakdown. Table 2 gives a breakdown of individ-

ual optimizations on HPCG, using the official implementation of

HPCG as the reference baseline (Reference) where SYGMS is im-

plemented as a sequential kernel. Even without paralleling SYMGS,

our kernel level optimizations, SYGMS-opt and Fusion, are able to

give 1.56x to 3.08x improvement over the reference implementa-

tion. Our full optimization, BMC+Fusion gives the highest speedup

across evaluation platforms, showing that our optimization can be

useful in optimizing MG.

6.2 Adaptive BMC Parallelization

We have described the strategy for adaptively selecting BMC block

sizes in Section 4.2. Our strategy is based on an observation that

the number of colors 𝑐 and the block size 𝑏 together determine

the parallelism and work distribution across parallel threads. This

experiment provides quantified data to justify our design choices.

Since there are many possible choices for 𝑏 in all three directions,

we set 𝑏 to {8, 16, 32, 64, 216, 512} and 𝑐 to {2, 4, 8, 16, 32, 64}, and

perform a greedy search to sample the parameter space. To expand

the selection of parameters, we apply BMC to the first two fine-

grained grids. When the parameters are not evenly divided in all

three directions, the y-axis direction is usually set with more colors

or blocks because we find that it gives better performance.

Figure 6 shows the resulting HPCG performance when changing

the number of blocks per color (i.e., the number of blocks can run

in parallel). Here, we normalize the performance to the optimal

3The parallel efficiency is computed as 𝑇𝑛/𝑛𝑇1 . Here, 𝑇1 is the measured through-
put (GFLOPS) on a single node, and 𝑇𝑛 is the measured throughput when using 𝑛
computing nodes. Essentially, this higher-is-better metric quantifies how much of the
theoretically perfect improvement (projected linearly from a single node to 𝑛 nodes)
has been realized.
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Figure 6: Impact of the BMC color and block counts on the performance of HPCG using 8 and 32 (26 threads on Xeon) parallel

OpenMP threads. The numbers in the heat map are normalized to the optimal performance (1.0) on each platform.
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Figure 7: Performance comparison between the asynchro-

nous and the synchronous mode in load imbalance (OMP=7)

and load balancing (OMP=8) scenarios.

performance found on each platform (i.e., 1.0 is the optimal per-

formance). It can be observed that in almost all cases, the optimal

performance can be achieved when the number of blocks is close

to the number of threads, i.e., 𝛽 approaches 1 in equation (12). The

optimal numbers of colors 𝑐 can vary across platforms, but using

4, 8 or 16 colors gives an overall good performance. Based on this

observation, we set the number of colors as 8 and 𝑐𝑖 = 2 in the

three directions in subsequent experiments, and select the number

of blocks according to equation (11).

We also compare our adaptive scheme with common fixed block

size schemes for all grid levels of MG. For example, our scenario

iterates 51 times when reaching the same residual as the reference,

and 56 times when using the static block size of 64 [44]. HPCG

achieved a throughput of 20.92 GFLOPS on Phytium 2000+ using

the former and only 16.23 GFLOPS using the latter.

6.3 Asynchronous BMC

In this experiment, we compare our proposed asynchronous BMC

with the standard synchronous implementation in the SYMGS phase

of HPCG. Our experiment considers the scenarios where the num-

ber of blocks can not be evenly distributed across parallel threads.

0.0s 0.1s 0.2s 0.3s 0.4s

forward

backward

(a) Sync with OMP=6.

forward

backward

0.0s 0.1s 0.2s 0.3s 0.4s

(b) Async with OMP=6.

Figure 8: Thread computation (solid blocks) and idle (blank

gap) between thread invocationswhen computing the SYMGS

kernel in the synchronous (a) and the asynchronous (b) mode

using six parallel threads to process eight blocks of a color.

Figure 7 shows the performance of our asynchronous mode

and the standard synchronous mode on our evaluation platforms

under load imbalance (OMP=7) and balancing (OMP=8) scenarios

(with eight blocks per color) when using a different number of

OpenMP threads. Our asynchronous parallelization scheme gives

the best overall performance, whose advantage is more evident in

the imbalanced mode.

To closely examine the benefit of our asynchronous scheme, con-

sider now Figure 8. This diagram shows the computation and idle

time of parallel threads measured on our Intel Xeon platform using

six OpenMP threads for executing eight blocks of the same color.

We can see that there are some gaps between thread invocations

as the number of parallel threads used is smaller than the number

of blocks that can run concurrently. However, we observe more

frequent thread idle with longer idle time at the synchronous exe-

cution mode than in our asynchronous mode. This is because our

asynchronous allows parallel threads to start working on a block of

a different color as long as its dependence has been resolved, which

in turn reduces the thread idle time. Since our approach improves
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Table 3: Runtime measurement (in seconds) for different stages of YHAMG.

Phytium 2000+ Intel Xeon

YHAMG 7-point 27-point 7-point 27-point

Setup Solve Setup Solve Setup Solve Setup Solve

Native 3.35 4.67 3.83 7.32 1.86 3.15 2.40 5.56

+SYMGS-opt 3.43 3.82 4.16 5.73 1.90 2.75 2.49 4.41

+Fusion 3.43 3.44 4.16 5.17 1.90 2.53 2.49 4.12
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Figure 9: Speedup of CitcomCU on Phytium 2000+ and Intel

Xeon platforms. Our leads to good speedup.

thread utilization, it leads to a faster execution time compared to

synchronous parallelization in this experiment.

7 APPLICATIONS

7.1 Algebraic Multigrid

In this evaluation, we integrate our SYMGS-opt and Fusion tech-

niques to the algebraic multigrid (AMG) kernel [37, 50] in the

YHAMG library [17]. We set the local grid scale to 128×128×128 for

an MPI process. The experiments were performed on the Phytium

2000+ and Xeon systems using a single node. Note that the BMC par-

allelization technique is not used in this evaluation and we mainly

measure the benefit of Algorithm 2.

Table 3 shows the performance results, where Setup and Solve

denote the wall times (in seconds) for the setup and solve stage of

AMG [55], respectively. On Phytium 2000+, we observe a modest

processing overhead of 2.33%∼8.62% during the setup stage. This is

due to the preprocessing overhead of converting the input matrix to

our matrix storage format. However, this overhead is amortized at

the later, most time-consuming solving stage (which often iterates

many times in a typical MG-based solver), where our Fusion ver-

sion improves the native YHAMG implementation by 35.8%∼41.6%

per solver iteration. We also see a similar performance trend on

Xeon. Like Phytium 2000+, although our approach introduces minor

overhead with a 2.1%ś3.7% increase in the setup processing time

on Xeon, the cost is paid off by the 24.5%ś34.9% performance im-

provement at the solver stage. For large-scale problems, where the

solver dominates the execution time, our optimization techniques

can give a clear boost to the application’s performance.

7.2 CitcomCU

The native implementation of CitcomCUdoes not parallelize SYGMS.

We upgrade it by using BMC to parallelize its SYMGS kernel, which

accounts for 70% of the whole program execution time. We then

Table 4: Input matrices used in our evaluation.

ID Input Rows #nnz #nnz/rows

𝐴 af_shell10 1, 508K 52.67M 35

𝐵 audikw_1 944K 77.65M 82

𝐶 cage14∗ 1, 506K 27.13M 18

𝐷 cant 62K 4.01M 64

𝐸 crankseg_1 53K 10.61M 201

𝐹 ecology2 1, 000K 5.00M 5

𝐺 Flan_1565 1, 565K 117.41M 75

𝐻 G3_circuit 1, 585K 7.66M 5

𝐼 hollywood-2009 1, 140K 113.89M 100

𝐽 Hook_1498 1, 498K 60.92M 41

𝐾 inline_1 504K 36.82M 73

𝐿 ldoor 952K 46.52M 49

𝑀 ML_Geer∗ 1, 504K 110.88M 74

𝑁 pwtk 218K 11.63M 53

𝑂 Serena 1, 391K 64.53M 46

𝑃 ship_003 122K 8.09M 66

𝑄 shipsec1 141K 7.81M 55

𝑅 tmt_sym 727K 5.08M 7
∗These two matrices are unsymmetric. Others are symmetric.

evaluate two variants of our techniques, BMC_ADAPT that applies

our block size selection scheme (Section 4.2) and BMC+Fusion that

implements our full optimization.

Figure 9 shows the execution time (in seconds) and the speedup

relative to the native implementation (original) of CitcomCU

on Phytium 2000+ and Intel Xeon. Note that we also observed

similar performance improvement on KP 920 and Thunder X2 as

Phytium 2000+. Here, BMC(8) uses a block size 𝑏 = 8 × 8 × 8 in

all grid levels. Our block size choosing scheme, BMC_ADAPT, gives

a 2x speedup on both the ARM and Xeon platforms, improving

BMC by 30%. With our full optimization, BMC+Fusion gives the best

performance, improving the native implementation and BMC by at

least 3x and 1.87x respectively. The results show the effectiveness

of our techniques on real programs.

7.3 Unstructured Matrices

Our computation and parallelization optimization methods can

be applied to linear equation solvers for unstructured matrices.

We apply our optimization to a set of representative unstructured

matrices from SuiteSparse [12] given in Table 4. The main purpose

of this evaluation is to show the benefits of asynchronous BMC

strategy when comparing with synchronous mode.

In this experiment, we use ABMC [27] to parallelize SYMGS and

measure the wall times when performing three times of SYMGS.

We first use METIS (version 5.1.0) [29] to partition the matrices into

blocks and then use Colpack [21] to map blocks into colors, where
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Figure 10: The speedup of asynchronous mode compared

with synchronous mode when performing three times of

SYMGS with different number of block partitions. A to R

represent the serial numbers of matrices shown in Table 4.

blocks of the same color can be executed in parallel. We note that

most matrices show good performance using colors less than 10.

So according to our block size choosing strategy in Section 4.2 (i.e.,

the number of blocks per color is close to the number of threads),

the number of blocks is set between 100 and 300 as it gives a good

trade-off between parallelism and processing overhead.

Figure 10 shows the speedupwhen using the asynchronousmode

versus the synchronous mode for each matrix across all platforms.

We observe that our asynchronous parallelization scheme gives

better performance over the standard synchronous mode on most

of the matrices across platforms for a different number of blocks.

Specifically, our approach improves the synchronous mode by 5%

to 14% across evaluation platforms. On some small matrices like

cant, our asynchronous scheduling approach does not give a clear

advantage and can have a modest slowdown because there is not

enough computation to amortize the overhead of dynamic sched-

uling. For some matrices, like hollywood-2009, it requires to use

a large number of colors, and leads to low parallelism, which af-

fects the performance benefit of asynchronous scheduling strategy.

Nonetheless, our asynchronous scheduling approach leads to better

performance over the synchronous mode for most of the test cases.

8 DISCUSSIONS

Naturally, there is room for improvement and further work. We

discuss a few points here.

Optimizing library.One of our ongoing works is to implement our

techniques as an optimizing library to provide an API to optimize

SYMGS and SPMV kernels in MG.

More fusions.Wehave shown that fusing the presmoother (SYMGS)

with SPMV can greatly improve the performance of HPCG. We en-

vision the same techniques can be applied to other MG operators

too. For example, we can fuse SPMV with a restriction operator or

merge the postsmoother (SYMGS) with the following SPMV outside

MG to further improve the performance.

Sparse matrix storage formats. Our current implementation

splits matrix 𝐴 to submatrices 𝐿 and 𝑈 , which are then stored in

the CSR format. While this strategy already gives significant im-

provement, we are aware that CSR may prevent vectorization. Our

future work will exploit other storage formats like ELLPACK [30]

and Sliced ELL [31], and investigate if a better, dedicated sparse

matrix storage format can be designed for SYMGS and MG.

Distributed and NUMA optimization. This work focuses on

performance optimization on shared-memory multi-cores. Since

our approach does not introduce extra synchronization and commu-

nication overhead, a distributed technique [9] can directly benefit

from the improved performance of a single CPU. Our approach

currently does not model the NUMA impact. Therefore, NUMA-

aware work distribution techniques [59] are complementary to our

solution.

Heterogeneous devices. This work focuses on homogeneous

multi-core CPUs because they remain the most widely used com-

puting devices in HPC and MG. Our future work will look into

extending our techniques to the GPU space. Given the expensive

memory access overhead on GPUs, memory optimization would

become even more important. It would also be interesting to see if

our techniques can be integrated with optimization designed for

GPU-based stencil computing [48] and linear solvers [41].

9 RELATED WORK

MG is often used as a preprocessor to accelerate the solution of

large-scale linear problems. SYMGS is often used as the smoother

of MG and many techniques have been proposed to parallelize it.

Our work proposes a new way to optimize the SYMGS computation.

We achieve this by partitioning the input matrix into submatrices

around which we develop a new computation formula to reduce

the computation cost. A closely related prior work for optimizing

conjugate gradient computation [32] also breaks the forward and

backward sweep of SYMGS to compute the upper and lower trian-

gular parts, aiming to improve the locality of vector 𝑥 . Unlike our

approach that partitions and stores the lower and upper triangular

parts of matrix𝐴 separately, [32] stores the entire matrix in the CSR

format. As such, it does not reduce memory access to 𝐴 nor save

the computation. The work [63] stores matrices of 𝐿 and 𝑈 sepa-

rately. However, it incurs more computation than our approach,

as the SYMGS algorithm [63] requires one more SPTRMV than

our SYMGS-opt. Our new SYMGS computation formula reduces the
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number of computation operations, which is more beneficial for

computation-intensive kernels [19, 20, 39, 57].

The second contribution of our work is a new way to paral-

lelize SYMGS to reduce the synchronization overhead. Generally

speaking, there are two types of parallelization strategies: level

scheduling [1, 43] and color reordering [3, 35, 63]. In this work, we

exploit BMC to accelerate the SYMGS. The multi-color reordering

method (MC) [46] has long been used to parallelize SYMGS, but its

drawback is having poor data locality. Later BMC [28] alleviates the

problem of poor locality by using blocks as shading units instead

of points. There are three types of block partitioning methods from

different dimensions: flake block [51], strip block [28] and cube

block [3]. While most previous works consider increasing the num-

ber of colors in one or two fixed direction, we compare the effects

of changing the number of colors in all three different directions.

This block size is often set to a constant value like 64 [44], or a

fixed very large block size (2625) is chosen in [32] via the auto-

tuning technique, or it is determined as large as possible based

on the number of physical processors available [3]. In fact, both

the number of colors and the size of the blocks affect the rate of

convergence and parallelism, which is embodied as iteration step.

No one has yet come up with a strategy that will pick out these

parameters and achieve the best performance in all cases. In this

work, we further propose a strategy for choosing the block size

adaptively, based on the grid scale and the number of OpenMP

threads. Comparing with the previous methods which use a con-

stant small block size for all grid levels, our adaptive strategy can

improve the performance a lot. None of previous works combine

level scheduling with color reordering. In this work, we apply the

level scheduling technique to BMC, and an asynchronous BMC is

proposed based on the dependencies of blocks of different colors.

An algebraic block multicoloring (ABMC) method is proposed in

[27], which is suitable for solving linear systems of equations with

unstructured matrices. Our asynchronous BMC can also be applied

to this block partitioning approach.

SPMV is another important kernel of MG. Kernel fusion is one

of the commonly used techniques for optimizing MG. For example,

a SYMGS-SPMV fusion technique is proposed in [44] for systems

equipped with Intel Xeon Phi coprocessors. Different from it, we

store submatrices 𝐿 and 𝑈 separately and one SPTRMV is saved

in this work. SYMGS-SPMV is also used in the recent work [63].

Besides fusing SYMGS with SPMV, a red-black coloring along 𝑧-axis

is proposed in [61] and a forward and backward SYMGS smooth

fusion is tested on Tianhe-2 supercomputer. SPMV is naturally

parallelizable and its optimizations mainly focus on choosing ap-

propriate storage format [33], such as ELLPACK [30], Sliced ELL

[31] or continuous CSR [23]. We use the CSR format and the other

formats can be used together with our techniques.

10 CONCLUSION

We have presented a set of new techniques for optimizing multi-

core multigrid (MG) algorithms, specifically focusing on improving

the performance of the symmetric Gauss-Seidel (SYMGS) method,

which is the most time-consuming kernel in MG. Our approach

involves partitioning the sparse matrix into multiple storage units

and using an optimized SYMGS to reduce computation and memory

access overhead. To further reduce computational overhead, we

merge SYMGS with the sparse matrix-vector (SPMV) multiplica-

tion kernels of MG. The resulting kernel is only two-thirds the

computational cost of the classical SYMGS plus SPMV. For paral-

lel executions, we utilize the block multi-color (BMC) method to

parallelize SYMGS and propose an adaptive method for selecting

the optimal block size. Moreover, we tackle the load imbalance

issue among threads by combining BMC with level scheduling and

propose an asynchronous BMC method.

Our techniques have been integrated into the HPCG benchmark

that implements a representative MG algorithm and two real-life

applications, YHAMG and CitcomCU. We also test our asynchro-

nous BMC method on unstructured matrices from SuiteSparse [12].

Experimental results demonstrate that our approach outperforms

the engineer-tuned implementation by a large margin on three

ARMv8 and one x86 multi-core platforms.
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