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Abstract: Probiotics are live microorganisms recognized as natural candidates to substitute antibiotic
substances, usually used to treat bacterial infections responsible for numerous human and animal
diseases. Antibiotics are mostly prescribed for treating infections caused by bacteria. However, their
excessive and inappropriate use has resulted in the increase of bacterial antimicrobial resistance
(AMR) and host microbiota imbalance or dysbiosis phenomena. Even though antibiotics are the
most well-known lifesaving substances, the AMR within the bacterial community has become a
growing threat to global health, with the potential to cause millions of deaths each year in the future.
Faced with these worldwide issues, it is high time to discover and develop antibiotic alternatives.
There exists some evidence of probiotic roles in antagonizing pathogens, modulating immune
systems, and maintaining general host health by restoring the gut microbiota balance. The multi-
antimicrobial action mechanisms of such beneficial living microorganisms are one approach to
practicing the “prevention is better than cure” concept to avoid antibiotics. The current review
proposes a comprehensive description of antibiotic-related AMR issues and the potential of probiotics
as antibiotic alternatives, while discussing pros and cons, as well as some evidence of beneficial uses
of probiotics for human and animal health protection through recent results of experimental models
and clinical trials.

Keywords: antimicrobial resistance; immunomodulation; gut microbiota; bacteriocins; human health;
animal health

1. Introduction

The use of antibiotics has a long history of applications in bacterial infection treatment,
owing to their ability to inhibit the growth of or kill living microorganisms [1]. However,
the current dissemination of antibiotic resistance genes into pathogenic bacteria has raised
concern about the effectiveness of today’s antibiotic repertoire in the near future. Antimi-
crobial and antibiotic resistance problems have spread worldwide and have prompted
the World Health Organization to classify such issues as an unpredictable global health
threat with broad, multiple-sector impacts to human, animal, food, and environment
safety [2]. Antibiotic-resistant pathogen-related deaths are projected to rise to 10 million per
year worldwide by the year 2050 [3]. Therefore, alternative approaches to target bacterial
pathogens have been advocated, such as directly treating diseases with therapeutic agents
or indirectly modulating the gut microbial community with beneficial live microorganisms,
the so-called probiotics [4]. In fact, probiotics play a key role in the microbiota equilibrium
by re-populating, for instance, a gut in dysbiosis [5].

The mammalian gut microbiota confers health-promoting benefits to the host by mod-
ulating the immune system, by increasing the efficiency of nutrient utilization, and by
eliminating the presence of pathogens [6]. An overall balance in the proportion of gut
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microbiota is essential in maintaining the healthy condition of the host [7]. The intestinal
microbiome is unique in each individual and may be affected by genetic and environmental
factors. Inappropriate and systematic administration of antibiotics is one of the environ-
mental factors that cause alteration of gut microbiota (dysbiosis), leading to a deficiency of
beneficial microorganisms in favor of potentially harmful microorganisms, as well as lower
microbial diversity [8].

Probiotics are well-known as “good microorganisms” as opposed to “bad or harmful
microbes” like pathogens. The term probiotic comes from the Latin “pro” and Greek
“bios”, literally meaning “for life”, whereas antibiotic signifies “against life”. The most
common probiotic definition is a live microorganism with beneficial effects when provided
in appropriate conditions to a host. [9]. By possessing antagonistic properties, probiotics
have been found to hinder the growth of gut pathogens through (i) the production of
bioactive metabolites such as bacteriocins, hydrogen peroxide, organic acids, antioxidants,
and antimicrobial peptides [10,11]; (ii) competition for nutrients and attachment sites [12];
and (iii) the modulation of immune system functions [13]. The first antimicrobial activity
mechanism of probiotics is comparable to the direct antibiotic molecular reactivity against
pathogens, whereas the second and third ones are inherent to probiotic cells, owing to
their adhesion and colonization capacities, and indirect mechanisms through immune cells,
respectively. By developing multi-antimicrobial mechanisms, probiotics induce low risks
of resistance to pathogens, aside from transferring resistance genes which are normally
verified before any microorganisms are recognized as probiotics. Some experimental
studies and clinical trials on humans and animals have been reported in the literature,
indicating some evidence of probiotic applications as alternatives of antibiotics to inhibit
or/and destroy pathogens responsible for various diseases [14,15].

This review proposes a comprehensive description of antibiotic-related antimicrobial
resistance issues, states the potential of probiotics as antibiotic alternatives while discussing
pros and cons of their uses, and illustrates with recent examples some evidence of probiotic
applications instead of antibiotics in human and animal health protection.

2. Antibiotics: Antimicrobial Resistance Causes and Potential Alternatives
2.1. Basic Concept of Antibiotics

Etymologically, the notion of antibiotics comes from “antibiosis”, which describes
antagonistic effects among microorganisms [16]. The term “antibiotics” refers to naturally
derived substances that inhibit or kill bacteria [17], whereas “antimicrobials” emerged with
the development of natural, semi-synthetic and synthetic substances capable of inhibiting
the proliferation of bacteria, viruses, fungi, and parasites [1]. According to Smith et al.
(1998), antibiotics are low-molecular-weight substances produced by live microorganisms
and plants, capable of selectively killing or hindering the growth of other organisms at low
concentrations. These include synthetic organic compounds with identical antimicrobial
activities [18].

Antibiotics can be classified according to their molecular structures, action mode,
activity spectrum, origins, or administration route [17]. Most antibiotics are produced by
filamentous actinomycetes (Streptomyces spp.). Other bacteria (Bacillus and Pseudomonas)
and fungi (Penicillium) also synthesize antibiotic molecules [19]. A list of the major classes
of antibiotics is provided in Table 1.

Table 1. Main classes of antibiotics and their sources.

Antibiotics Example Source Reference

Aminoglycosides Streptomycin Streptomyces griseus [20]

B-Lactams Penicillin Penicillium griseofulvum [21]
Glycopeptides Vancomycin Amycolatopsis orientalis [22]

Lipopetides Daptomycin Streptomyces roseosporus [23]
Macrolides Erythromycin Streptomyces erythreus [24]
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Table 1. Cont.

Antibiotics Example Source Reference

Oxazolidinones Linezolid Chemical synthesis [19]
Phenicols Chloramphenicol Streptomyces venezuelae [25]

Polypeptides Gramicidin Bacillus brevis [26]

Polymixin Colistin Paenibacillus polymyxa [27]

Quinolones Ciproxacin Chemical synthesis [19]

Sulfonamides Mafenide Chemical synthesis [19]

Tetracyclines Oxytetracyclines Streptomyces rimosus [28]

Antibiotics are currently used to treat infections and inhibit the growth of pathogenic
microbes in the context of human health. The main antibiotic action mechanisms include
cell wall synthesis inhibition, cell membrane structure or function breakdown, nucleic acid
structure and function inhibition, protein synthesis inhibition, and key metabolic pathway
blockage of folate synthesis [29].

2.2. Antimicrobial Resistance (AMR) Issues

AMR is the ability of microorganisms to resist and grow in the presence of antimicro-
bial agents [30]. The emergence of antibiotic resistance is a major global health challenge.
The possible causes of its apparition include poor hygiene and misuse and overuse of
antibiotics [31]. Moreover, animal farms have been identified as a potential source of an-
tibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) [32]. Therefore, the
consumption of antibiotic-treated animal products constitutes a potential risk of resistant
bacteria transfer [33]. For example, methicillin-resistant Staphylococcus aureus (MRSA) has
been detected in farm equipment, livestock, and dairy farmers [34]. Bacteria can insert their
genetic information into another organism via horizontal gene transfer mechanisms such
as conjugation, phage transduction, plasmid mobility, and natural transformation, which
facilitate bacteria niche expansion and functional diversification [35]. Human-associated
bacteria have been found to have a 25-times higher chance of exchanging genetic material
than bacteria from other environments [36]. Under the selective pressure exerted by antibi-
otic treatment, evolving microbial communities result from the altered population structure
of the indigenous microbiota, which have endured stress perturbation and acquisition of
resistance enrichment. Antibiotics also favor antibiotic-resistant communities, enriching
the presence of resistance genes in the microbiome. For instance, a study has showed an
increased exchange of integrating conjugative genes that encode multidrug resistance by
interspecies DNA-synthesis-inhibiting antibiotics. The ability of commensals to outcompete
pathogens for space and nutrients, as well as enhancing the host defense of the colonic
epithelium, actively protect the host against infections [37,38]. Administration of antibiotics
can disrupt the population structure of the gut environment, which then compromises
the defenses, thus opening new niches for intrusion. The mobility of antibiotic-induced
resistance genes encourages co-localization of pathogenic and commensal bacteria, which
thus provides opportunities for the transfer of resistance to harmful pathogens [35]. This
can be exemplified by methicillin-resistant S. aureus (MRSA), which acquired a gene that
improved its colonization in the host from Staphylococcus epidermis [39].

The main AMR mechanisms developed by resistant pathogens (Figure 1) include the
presence of resistance genes in transposable elements such as in plasmids, reduction in
uptake of antimicrobial agents (efflux of the antibiotic from the cell, biofilm formation, and
permeability reduction), the presence of factors that affect the target antibiotic like enzymes,
and mutation or alteration in the target site of antibiotics [40]. Table 2 lists the action modes
and the resistance mechanisms of principal antibiotic classes.
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Figure 1. Illustration of antibiotic action modes (left side) and antibiotic resistance mechanisms
(right side) of pathogens.

Table 2. Action modes and resistance mechanisms of main antibiotic classes.

Class Mode of Action Resistance Mechanism Reference

Aminoglycosides
Inhibition of protein synthesis

(30S ribosomal subunit
inhibitor)

Binding inhibition by phosphorylation, adenylation, and
acetylation of aminoglycosides

Aminoglycoside-modifying enzymes (e.g.,
acetyltransferases, phosphotransferases)

16S rRNA methylation
Efflux-mediated resistance

[41–43]

β-Lactams Inhibition of cell wall
synthesis (peptidoglycan)

Production of β-Lactamases
Permeability change (Efflux) [41,42,44]

Glycopeptides Inhibition of cell wall
synthesis (peptidoglycans)

Intrinsic resistance in Gram-negative cells by
impermeable outer membrane

Presence of enzymes that modify and hydrolyze
peptidoglycan precursors

Low permeability

[41,42,45]

Fluoroquinolones Inhibition of nucleic acid
synthesis Mutations in DNA gyrase or topoisomerase IV [41,42,46]

Sulfonamides
Blockage of key metabolic
pathways (folate synthesis

inhibitors)

Mutations in folP gene encoding dihydropteroate
synthase, sul1, sul2 genes, sulfonamide monooxygenase

gene sulX
[41,42,47]

Tetracyclines
Inhibition of protein synthesis

(30S-ribosomal subunit
inhibitor)

Enzymatic inactivation
Binding site mutation [41,42,48]

Chloramphenicols
Inhibition of protein synthesis

(50S-ribosomal subunit
inhibitor)

Mutations within 23S rRNA of the 50S ribosomal subunit
Enzymatic inactivation via acetyltransferases

Active efflux
[41,42,49]

2.3. Alternatives to Antibiotics

Considering the alarming consequences of AMR, new antibiotic alternative treatments
which are more specific while eliminating deleterious side effects on the gut microbiota
are crucial. These alternatives aim at maximally reducing the inappropriate and excessive
use of antibiotics and should produce the same beneficial effects of such active molecules.
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Among the alternative candidates include molecular substitute classes such as bacteriocins,
antimicrobial peptides, medicinal plants, and nanoparticles, which directly act by inhibiting
or destroying pathogens, and microbial-based substitute classes such as bacteriophages,
probiotics, and some vaccines [50]. The antibacterial mechanisms of the latter are based on
either direct or indirect activities. For instance, bacteriophages are viruses that release their
genetic material into bacteria, degrading the bacterial DNA, and ultimately killing them.
Probiotics may directly act through antibiosis by producing metabolites such as bacteri-
ocins, organic acids, antioxidant compounds, and nutrient-space competition, or indirectly
by modulating the host’s gut microbiota and immune system, and can in this way reduce
dysbiosis and bacterial infections, respectively. Figure 2 summarizes the main potential
alternatives that have been considered to reduce the use of or even replace conventional
antibiotics, and thus fight against AMR phenomena. Two alternative groups are distin-
guished according to their functions: (i) disease prevention through gut microbiota and
immune system modulation (e.g., probiotics) and immune stimulation (e.g., vaccines), and
(ii) disease treatment by reducing or suppressing bacterial infections (e.g., phage therapy,
bacteriocins, nanoparticles, antibodies, and quorum-sensing anti-virulence inhibitors) [50].
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3. Probiotics as Potential Alternative to Antibiotics

The probiotic-based approach represents a potential effective strategy to counter the
emergence of antibiotic-resistant bacteria [51]. Probiotics consist of live microorganisms
that are beneficial to the host when used under adequate conditions [9].

There exists evidence to support the idea that probiotics can be used for treating and
preventing infectious diseases in human and animal health [4,52]. For instance, several
clinical trials demonstrate the positive effect of the probiotic yeast Saccharomyces boulardii
on Candida infection complications [53]. Lacticaseibacillus casei ATTC334, Bifidobacterium
breve JCM1192, and Bifidobacterium infantis BL2416 are able to decrease the harmful effects
and mortality in chicks due to Salmonella infections by competitive exclusion and cytokine
release promotion mechanisms [54].
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The main antimicrobial mechanisms of probiotics include competitive exclusion, in-
testinal barrier function improvement by enhancing mucin and tight junction protein
expression, antimicrobial molecule secretion, and immune system regulation [55]. Figure 3
outlines the principal antimicrobial mechanisms employed by probiotics.
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3.1. Competitive Exclusion of Pathogens

The establishment of a probiotic bacterial population in the gastrointestinal tract cre-
ates competition for nutrients or adhesion sites to prevent the overgrowth of potential
pathogens. Two competitive strategies, namely, exploitation and interference competition,
exist [12]. Exploitation competition for both nutrients and space is an indirect mechanism.
It results from rapid nutrient consumption due to the secretion of extracellular molecules
(e.g., proteases, iron-chelating siderophores), which are able to hydrolyze complex macro-
molecules, thus restricting resources for competitors. Probiotics also can rapidly colonize
uninhabited niches or compete with pathogens through the production of adhesins and
receptors that bind to specific surface features [56]. Several experimental studies reported
the antagonistic effects of lactic acid bacteria (LAB) on the adhesion of pathogens [57–59].

Interference competition acts directly on potential pathogens by the production of
antimicrobial compounds, for example, bacteriocins that harm pathogens. Furthermore,
it reduces antibiotic-induced superinfections and aids in the restoration of the desired
microbial numbers inside the body [7]. Probiotic Lactiplantibacillus plantarum strains effec-
tively compete with, exclude, and displace the adhesion of pathogenic Escherichia coli and
Salmonella enterica [60].

3.2. Improvement of Intestinal Barriers

The intestinal barrier has a fundamental role in health and disease. It constitutes
an important line of defense in order to maintain intestinal homeostasis by ensuring
mechanical, chemical, immune, and microbial barrier functions. These functions can be
compromised when the mucosa suffers structural damage and dysregulation [61]. The use
of probiotics represents a potentially effective strategy for the mucosal barrier function to
out-compete pathogenic organisms. The mechanical barrier is ensured by the intestinal
epithelial cells (IECs) and intercellular junction complexes. The tight junctions (TJs) at the
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IECs’ apical side regulate small and ionic molecules to maintain normal intestinal barrier
function with regard to pathogenic bacteria and harmful substances [62]. Probiotics are
able to restore the gut barrier by enhancing the expression of genes and proteins involved
in tight junction (TJ) signaling and regulating the intestinal epithelial cells’ apoptosis and
the proliferation of IECs. As an example, Lactobacillus acidophilus causes a strain-specific
and rapid enhancement of intestinal epithelial TJ barrier function, mediated by the Toll-like
receptor-2 (TLR-2) heterodimeric complexes TLR-2/TLR-1 and TLR-2/TLR-6, which leads
to protection against intestinal inflammation [63].

Moreover, a mucus layer is secreted by goblet cells in the intestinal epithelium. The
mucus, mainly composed of high-molecular-weight glycoproteins called mucins, enhances
nutrient uptake, provides adhesion sites for resident bacteria, and prevents microbial
penetration [61,62,64].

Probiotics are also able to elicit mucin expression and mucus secretion from the goblet
cells. Treatment of mucus-secreting colon epithelial cells (HT29-MTX) with probiotic mix
yogurt supernatants (Streptococcus thermophilus, Lactobacillus bulgaricus, and Bifidobacterium
bifidum (C-Bb); S. thermophilus, L. bulgaricus, and L. acidophilus (C-La); and S. thermophilus, L.
bulgaricus, and Lactobacillus gasseri (C-Lg)) increased the expression of MUC2 and CDX2, as
well as the production of mucin proteins. MUC2 is a major mucin protein in the mucus
layer, whereas CDX2 regulates the expression of MUC2 [65].

3.3. Secretion of Antimicrobial Peptides (AMPs)

Probiotic bacteria can produce and release antimicrobial molecules such as organic acid
compounds [66,67], diacetyl [68], hydrogen peroxide [69], and peptides [70], which have
selective activity against numerous strains of microbes commonly found in the gut. Bacterial
AMPs are often referred to as bacteriocins, which are a heterogenous group of ribosomally
synthetized peptides. These peptides directly kill or inhibit the growth of pathogens in
the lumen [71]. Bacteriocins are generally categorized into three classes: (1) heat-stable
peptides of class I are lantibiotics with characteristic polycyclic thioether amino acids (e.g.,
lanthionine, <5 kDa), with linear (A-lantibiotics) or globular (B-lantibiotics) structures;
(2) heat-stable peptides of class II are bacteriocins containing no lanthionine (<10 kDa); and
(3) heat-labile high-molecular-weight molecules are class III bacteriocins (>30 kDa) [72].

The antimicrobial mechanisms of probiotic bacteriocins are structure-dependent (e.g.,
amino acid sequence and net charge) and include pore formation and enzyme activity
modulation, as well as quorum sensing, i.e., the ability to detect and respond to cell
population density with gene regulation [73].

Bacteriocins of class I have detrimental effects on cell integrity, owing to their ability
to enter the cell membrane. Another action mechanism of class I bacteriocins is cell wall
synthesis inhibition. Those of class II have the ability to depolarize cell membranes by
binding to the membrane pore receptor system, such as mannose phosphotransferase,
while those of class III directly lyse cells [74].

The AMP named nisin is, for instance, able to interact with membrane-bound lipid
II proteins and cause pore formation in the cell membrane, leading to the lysis of the
bacterium [75,76]. Such bacteriocins are produced by Lactococcus lactis and belong to the
class of A-lantibiotics with a positive charge.

The class I B-lantibiotic named mersacidin from Bacillus spp. is a globular-shaped and
neutral or negatively charged peptide that is able to interfere with cell wall biosynthesis [77].

The class II bacteriocin named pediocin from Pediococcus pentosaceus GS4 (MTCC
12683) has antibacterial and antagonistic potential against S. aureus (ATCC 25923), E. coli
(ATCC 25922), Pseudomonas aeruginosa (ATCC 25619), and Listeria monocytogenes (ATCC
15313) [78].

The AMPs colicin, megacin, klebicin, helveticin I, and enterolysin from Bacillus mega-
terium, Klebsiella pneumonia, Lactobacillus helveticus, and Enterococcus faecalis, respectively, are
categorized as class III bacteriocins. They are able to catalyze cell wall hydrolysis [73]. A
few examples of probiotic bacteriocins and their target microorganisms are listed in Table 3.
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Table 3. Antimicrobial activity of some probiotic bacteriocins.

Bacteriocins Probiotic Target Microorganisms Reference

Bacteriocin L. acidophilus KS400
Gardnerella vaginalis,

Streptococcus agalactiae, P.
aeruginosa

[79]

Enterocin M Enterococcus faecium
AL41

Campylobacter spp.
Clostridium spp. [80]

Nisin-like bacteriocin L. lactis C15 E. coli [81]

Pediocin Ped. pentosaceus GS4
(MTCC 12683)

S. aureus (ATCC 25923), E. coli
(ATCC 25922), P. aeruginosa

(ATCC 25619), and L.
monocytogenes (ATCC 15313)

[78]

Plantaricin P1053 L. plantarum PBS067 S. aureus and E. coli [82]

Subtilin-like
bacteriocin—Subtilin JS-4 Bacillus subtilis JS-4 L. monocytogenes [83]

3.4. Modulation of Host Immune System

Probiotic bacteria may exert their immunomodulatory effect by increasing the growth
of healthy components in the gut microecology. By restoring the normal ecological niche,
a probiotic can give rise to better nutritional and environmental proto-cooperation that
enables the body to regulate all the specific and nonspecific immune responses [84].

The nonspecific immune response (innate immunity) is the first line of defense and
is composed of chemical and physical barriers (skin and mucous membranes), immune
cells (dendritic cells, macrophages, monocytes, neutrophils, and natural killers), and im-
munomodulatory agent cytokines.

The specific immune response (adaptive immunity) is induced toward offensive
targets by lymphocytes (B and T cells) and through antibody responses, immunoglobulin
production, and the cell-mediated immune response [85].

Probiotics have an impact on innate immunity by enhancing the cytotoxicity of natural
killer (NK) cells and the phagocytosis of macrophages. They modulate the adaptive
immunity by interacting with intestinal immune cells such as enterocytes, dendritic cells,
and regulatory T cells [13].

The replenishing of the gut population through probiotics has gone beyond the benefits
of maintaining a balanced gut ecosystem by recuperating the immune system. Probiotics
affect the host defense mechanisms in several ways such as the stimulation of phagocytic
activity, balancing pro-inflammatory and anti-inflammatory cytokines, and enhancing the
production of cytokines and immunoglobulin IgA.

3.4.1. Stimulation of Phagocytic Activity

Probiotic bacteria are able to enhance nonspecific immune responses. Among the
possible mechanisms is the promotion of phagocytic activity through macrophage activa-
tion [86]. Activated macrophages enhance phagocytosis by promoting the production of
cytotoxic molecules such as nitric oxide (NO) and secrete immunoregulatory cytokines
such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and interferon-γ
(IFN-γ) in order to initiate the destruction of pathogens [87]. At the same time, they express
receptors for a variety of cytokines such as IFN-γ, IL-4, IL-10, and TNF-α [88].

Specific receptors (pattern recognition receptors, or PRRs) of macrophages can bind to
the surface components of probiotic LABs, such as flagella, proteins, capsular polysaccha-
rides (CPSs), lipopolysaccharide (LPS), and peptidoglycan (PG), which represent microbial-
associated molecular patterns (MAMPs) [89].

The probiotic strains Lacticaseibacillus rhamnosus GG, L. rhamnosus KLDS, L. helveticus
IMAU70129, and L. casei IMAU60214 have been shown to stimulate inflammatory responses
and activate human macrophages. Pretreatment with Lactobacillus enhanced phagocyto-
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sis and the antimicrobial activity of macrophages against S. aureus, S. typhimurium, and
E. coli [90].

It has been proposed that consumption of fermented milk containing Lactobacillus
johnsonii and S. thermophilus enhances the phagocytic activity of peripheral blood leukocytes
in healthy adult volunteers [91]. In another study, an improvement of phagocytic activity
of peritoneal macrophages in a murine model was shown after feeding with fermented fish
protein concentrate (FPC) at 0.3 mg/mL for 7 consecutive days. This finding indicates that
fermented fish proteins regulate nonspecific host defense mechanisms by enhancing the
phagocytosis of pathogens [88].

3.4.2. Balancing of Pro- and Anti-Inflammatory Cytokines

Cytokines are small proteins released by immune cells such as macrophages, T cells,
B cells, and natural killers in order to regulate and influence the immune response [92].
Cytokine production can lead to the modulation of the host immune system, as it is involved
in the regulation of cell activation, growth, and differentiation, as well as inflammation [86].
The inflammatory process depends on the balance between pro-inflammatory and anti-
inflammatory cytokines. Interleukin-1 (IL-1), IL-2, IL-6, IL-12, IL-18, gamma interferon
(IFN-γ), and tumor necrosis factor alpha (TNF-α) are involved in pro-inflammatory action.
The anti-inflammatory cytokines such as IL-10, transforming growth factor-β (TGF-β)
produced by monocytes, T cells, B cells, macrophages, natural killer cells, and dendritic
cells inhibit pro-inflammatory cytokines, chemokines, and chemokine receptors [93].

Probiotics regulate the innate and adaptive immune systems by interacting with ente-
rocytes and dendritic cells, Th1, Th2, and Treg cells in the intestine, thus inducing the release
of cytokines [13]. Streptococcus thermophilus ST285 has been shown to significatively in-
crease the expression of anti-inflammatory IL-4, IL-5, and IL-10 cytokines, and decrease the
secretion of pro-inflammatory IL-1β and IFN-γ, thus altering pro-inflammatory secretion
to anti-inflammatory secretion against multiple sclerosis peptide in mice [94].

Moreover, S. thermophilus ST285 increased the anti-inflammatory cytokine production
by human monocytes (IL-4, IFN-γ, and TNF-α) [95].

As the most generally accepted cultured dairy product, yogurt has been amended with
specific strains of lactic acid bacteria to stimulate cytokine production, such as interferon γ

(IFN-γ) by human blood mononuclear cells and also by monocytes [96].
Probiotic Lactobacillus kefiri CIDCA 8348 isolated from kefir induced immunomodula-

tory effects on CD4+ T lymphocytes from the lamina propria of intestinal bowel disease
(IBD) patients. L. kefiri decreased the secretion of IL-6 and IL-8 from inflamed biopsies
ex vivo and reduced the secretion of TNF-α, IL-6, IFN-γ, and IL-13. In addition, L. kefiri
induced an increased frequency of activated CD4+ with high levels of IL-10 [97].

3.4.3. Enhancing Immunoglobulin A (IgA) Production

IgA is produced by the plasma cells while representing the first-line defense against
infection in the digestive tract. Secretory IgA (SIgA) protects against the adhesion of
pathogens and their penetration into the intestinal barrier. In contact with bacteria present
in the digestive tract, SIgA traps pathogens and pathogenic material through agglutination,
disrupting adhesive complex substances, and also by setting adhesive proteins on the
surface of bacteria [98].

Probiotics are able to improve host defense by enhancing the production of specific
antibodies against pathogens and total IgA. It has been demonstrated that LABs induced
IL-6 and IL-10 production by dendritic cells, which contribute to upregulating the secretory
IgA concentration at mucosal sites in humans [99]. For example, L. gasseri SBT2055 induced
TGF-β expression in dendritic cells and activated TLR2 signaling to produce IgA in the
small intestine [100].

Evidence of the immune-stimulating effect of fermented milk kefir made with a wide
variety of bacteria such as lactobacilli, lactococci, leuconostocs, aceterobacteria, as well
as some potentially beneficial yeast has been reported. After the ingestion of kefir by
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young and senescent rats, a significant increase in IgA antibody titers in young rats was
noticed [101]. Furthermore, it has also been shown that IgA production by plasma cells can
be altered in a dose-dependent manner by consuming yogurt [102].

Administration of viable (L. salivarius subsp. salicinius AP-32, B. animalis subsp. lactis
CP-9, and Lacticaseibacillus paracasei ET-66) and heat-killed (L. salivarius subsp. salicinius
AP-32 and L. paracasei ET-66) probiotics in healthy adults increased salivary IgA levels after
6 weeks and inhibited oral pathogens such as S. mutans, P. gingivalis, F. nucleatum subsp.
polymorphum, and A. actinomycetemcomitans [103].

A study conducted on children with acute rotavirus diarrhea showed that administra-
tion of L. rhamnosus GG fermented milk product caused stimulatory effects on IgA-specific
antibody-secreting cells [104]. Table 4 lists recent in/ex vivo studies on probiotic effects on
the immune system.

Table 4. In/ex vivo immunomodulation effects of probiotics.

Probiotics Studied Model Effects on Immunity Reference

Bifidobacterium longum
Bar33 and L. helveticus

Bar13

Older adults (over
75 years)

Increase naive T cells
Increase activated memory, regulatory T cells, B cells, and natural

killer (NK) activity
Decrease memory T cells

[105]

L. paracasei SD1 Children Decrease of Streptococcus mutans pathogens
Increase of salivary IgA [106]

Limosilactobacillus reuteri
D8 Piglets

Increase of goblet cells and antimicrobial peptides (AMPs),
expressions of Muc2, Lyz1, and porcine β-defensins 1 (pBD1)

Increase of CD3+ T cells, combined with increased expression of
IL-4 and IFN-γ

[107]

Lactobacillus fermentum
UCO-979C Mice

Increase the production of intestinal IFN-γ, stimulate intestinal
and peritoneal macrophages, increase the number of Peyer’s

patches CD4+ T cells
Increase intestinal IL-6, intestinal IgA, and the number of mature

B cells

[108]

L. acidophilus and
L. plantarum

Freshwater
crayfish

Upregulation of cytokine gene families (IL1β, IL8, IL10, and
IL17F), proPO, and cytMnSOD [109]

L. acidophilus Broilers challenged
with E. coli

Reduce the mortality rate caused by E. coli challenge
Decrease the serum C-reactive protein, diamine oxydase, and
endotoxin lipopolysaccharide levels at 14 days and 21 days

Upregulate the mRNA expression of occludin and zona occludens
protein 1 (ZO-1) in the jejunum and ileum (tight junction)

Downregulate the mRNA expression of inducible nitric oxide
synthase (iNOS), IL-8, and IL-1β in the jejunum in E. coli

challenged birds at 21 days

[110]

4. Advantages and Disadvantages of Probiotics as Antibiotic Alternatives

While antibiotics are active substances directly used to fight pathogens, probiotics
are live microorganisms that can act directly by producing antimicrobial metabolites and
competing microbes for sites/nutrients, or/and indirectly by stimulating host immune
systems. In addition, probiotics help to repopulate the gut with healthy microbiota and
reduce dysbiosis caused by antibiotics. In this situation, probiotics can compensate for
antibiotic side effects. Moreover, probiotic activities are multiple and may include antibac-
terial, antifungal, and antiviral effects, whereas those of antibiotics are only intended to
inhibit or destroy bacteria [17,111–113]. Other aspects distinguishing them arise from their
status. Antibiotics are used as drugs requiring medical prescription, while probiotics are
freely available and mainly consumed as diet supplements or through fermented products,
even if some strains are prescribed as drugs, such as S. boulardii as an antidiarrheal [114].
In terms of dose, effects, and treatment duration, an effective antibiotic is a short-time
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and low-dose-acting antimicrobial, but it might cause progressive antimicrobial resistance
and host microbiota imbalance by inducing a pathogen’s defense mechanisms and killing
also good microbes. Conversely, the positive effects of probiotics are often perceptible
after long-term uptake, without the side effects observed after antibiotic treatment. In fact,
probiotics can control pathogenic targets through competitive exclusion of nutrients and
space, and ensure the host’s microbiota balance. Among probiotics’ disadvantages are
their sensitivity under extreme stress conditions (e.g., temperature, acidity, moisture, etc.),
which reduce their survival rate and therefore their capacity to colonize the gut. Table 5
compares the strengths and weaknesses of antibiotics and probiotics regarding their usage
for fighting pathogen growth and infections.

Table 5. Comparison between antibiotics and probiotics: characteristic features, action mechanisms,
strengths, and weakness.

Antibiotic Probiotic

Characteristic
features

Active substance
Natural or synthetic

One function
Non-growth over time

(static process)

Live microorganism
Natural

Multifunction
Growth over time
(dynamic process)

Action
mechanisms

Cell membrane breakdown
Cell wall synthesis inhibition

Nucleic acid structure/function and protein synthesis inhibition
Key metabolic pathway blockage

Gut barrier protection
Nutrient/space competitive exclusion

Antimicrobial substance secretion
Immunomodulation

Strength Specificity
Short-time treatment

No side effects
Antibacterial and antiviral properties
Generally recognized as safe (GRAS)

Natural and biodegradable

Weakness

Destroy beneficial microbes
Antimicrobial resistance induction

Not effective on viruses
Low biodegradability for synthetic compounds

Cell viability maintaining challenge
Long-term treatment

Sensitivity under stress conditions
Antimicrobial resistance risk if genes transfer

5. Human Applications

The potential use of probiotics as antibiotic alternatives for human applications has
been shown through many in and ex vivo experiments reported in the literature, as illus-
trated in Table 6. For instance, lactic acid- and soil-based bacteria are capable of exerting
bacteriostatic and bactericidal activities to certain pathogens such as S. aureus, L. mono-
cytogenes, P. aeruginosa, and Candida albicans, reducing their colonization of the human
body. Some clinical trials have also proven their efficacy for disease treatments (Table 7).
However, it is important to distinguish different scenarios where probiotics are used for
supporting antibiotics from other situations where they are used as substitute options.
For many situations in human health, the use of antibiotics remains the first choice for
controlling bacterial infections, and probiotics are useful for repopulating the gut micro-
biota [115]. Other situations indicate no clear or controversial use of antibiotics, whereas
the use of probiotics may constitute an alternative in cases such as periodontal disease,
acne, recurrent infections with Helicobacter pilori, and bacterial vaginosis [116–119]. Finally,
there are other situations for which the antibiotic use is non-indicated and probiotics appear
as an appropriate option, such as in the case of acute and Clostridium difficile-associated
diarrhea [120,121].
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Table 6. In vivo antimicrobial activity of probiotics against human pathogens.

Probiotics Pathogens Observation Reference

B. subtilis MB40 S. aureus Significant reduction of S. aureus colonization in
body human without modification of microbiome [122]

L. casei C. albicans Fungicidal effect in vulvovaginal candidiasis (VVC)
murine model [123]

L. reuteri DSM 17938
S. aureus, S. pyogenes M1,
Cutibacterium acnes AS12,

P. aeruginosa

Antimicrobial action against pathogenic skin
bacteria and reduction of proinflammatory IL-6 and
IL-8 in reconstructed human epidermis and native

skin models

[124]

Pediococcus acidilactici HW01 P. aeruginosa
Inhibition of biofilm formation by bacteriocin and

decrease of the production of virulence factors, such
as pyocyanin, protease, and rhamnolipid

[125]

Ped. acidilactici HW01 L. monocytogenes
Inhibition of biofilm formation, adhesion, and

invasion of HT-29 cells (human-intestinal-epithelial
cell line) by bacterial lysate

[126]

Table 7. Some clinical trials and uses of probiotics in human health.

Disease Probiotics Outcome Reference

Oral and
dental
health

Chronic periodontitis B. animalis subsp. lactis (B. lactis)
HN019

Decreasing significantly the periodontal
pathogens of red and orange complexes;

reducing proinflammatory cytokine levels;
promoting clinical, microbiological, and
immunological benefits in the treatment

of chronic periodontitis

[127]

Skin Atopic dermatitis
L. plantarum PBS067

L. reuteri PBS072
L. rhamnosus LRH020

Improvement in skin smoothness, skin
moisturization, self-perception, and
decrease in scoring atopic dermatitis

(SCORAD) index and levels of
inflammatory markers

[128]

Acne vulgaris

B. lactis W51, B. lactis W52, L.
acidophilus W55, L. casei W56, L.

salivarius W57, L. lactis W58
combined with rice starch and

maltodextrin

Increasing serum IL-10 levels after oral
probiotic in acne vulgaris [129]

Surgical wound
infection

L. acidophilus BCMC® 12130 L.
lactis BCMC® 12451, L. casei

subsp BCMC® 12313, B. longum
BCMC® 02120, B. bifidum

BCMC® 02290, and B. infantis
BCMC® 02129

Reduction of pro-inflammatory cytokines
(except for IFN-gamma) in colorectal
cancer patients after consumption for

4 weeks

[130]

Respiratory
tract

Ventilator-associated
pneumonia (VAP)

L. acidophilus LA-5, L. plantarum
UBLP-40, B. animalis subsp. lactis

BB-12, and S. boulardii

Decreasing the incidence of VAP induced
by Acinobacter baumannii and P. aeruginosa

in patients subjected to prolonged
mechanical ventilation for severe multiple

trauma, including brain injury

[131]

Acute respiratory
tract infection B. lactis Probio-M8

Reducing antibiotic prescription,
preventing antibiotic new prescription in

non-prescribed patients,
decreasing oral cytokine levels of TNF-α,

and increased IL-10 (over 4 weeks
post-discharge)

[132]

Virus associated
respiratory tract

infection

L. plantarum HEAL9
L. paracasei 8700

No effect on symptom severity but
significantly fewer colds [133]



Encyclopedia 2023, 3 573

Table 7. Cont.

Disease Probiotics Outcome Reference

Stomach Helicobacter pylori
infection, gastritis L. reuteri DSM 17648

Effectively reducing H. pylori load and
improving gastrointestinal symptoms in

adults and children
[134]

Intestines Inflammatory bowel
syndrome (IBS)

L. paracasei, L. salivarius, and
L. plantarum

Effective global relief of IBS symptoms
and abdominal pain without significant

adverse events
[135]

C. difficile-associated
diarrhea (CDAD) L. casei Reduction of the incidence rates of CDAD [121]

Acute diarrhea S. boulardii combined with
bifidobacterium

Shortening the duration of diarrhea and
hospital stay,

reducing the number of diarrhea,
enhancing cellular immune function

[136]

Female
urogenital

tract
Bacterial vaginosis L. crispatus CTV-05 (Lactin-V) Prevention of the recurrence of

bacterial vaginosis [137]

6. Animal Applications

Antibiotics are often used in animal farming as antimicrobial agents for enhancing
animal growth and production, as well as controlling diseases [138]. An evident use of
probiotics instead of antibiotics is supported in the case of promoting animal growth, for
which the goal consists of health development without specific infection targets [139,140].
A considerable number of probiotic strains are also capable of inhibiting diverse animal
pathogens and may be potentially used as antibiotic alternatives in the farming sectors
of poultry, swine, cattle, and others for enhancing immune function and disease preven-
tion [10]. The benefits and inputs from probiotics as alternatives to antibiotics in animal
health are outlined in Figure 4.
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Table 8 illustrates some recent examples of animal feed being supplemented with lactic
acid and soil-based bacteria, the form of administration, and the probiotic strain effects.
The use of probiotics as feed supplements in animal farming allows not only the reduction
of AMR apparition due to the excessive use of antibiotics, but also the diminution of the
residue transfer risk to animal products such as eggs, milk, and meat.
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Table 8. Animal applications of antimicrobial probiotics.

Animals Probiotics Form of
Administration Effects Reference

Poultry

Broilers L. casei, L. acidophilus,
and Bifidobacterium

Supplementing 1% of
probiotics in water

Increasing growth performance, carcass
traits, immune function, gut microbial
population, and antioxidant capacity

[139]

Laying hens Bifidobacterium spp.
and L. casei Feeding Improving the growth performance,

increase of egg weight, and feed efficiency [140]

Newly hatched chicks L. plantarum LTC-113 Oral vaccination
Protection from Salmonella colonization by

regulating expression of tight junction
genes and inflammatory mediators

[141]

Chickens
L. paracasei ssp.
paracasei and L.

rhamnosus
Feeding Improving growth performance [142]

Broiler L. johnsonii BS15 Feeding Preventing subclinical necrotic enteritis [143]

Bacillus licheniformis Feeding

Alleviating intestinal damage caused by
SNE challenge, modulating intestinal

microflora structure and barrier function,
and regulating intestinal mucosal

immune responses

[144]

Chickens C. butyricum Feeding

Promoting anti-inflammatory expression
and tight junction protein genes

Inhibiting pro-inflammatory genes in C.
perfringens-challenged chickens

[145]

Swine

Weaning piglets B. subtilis, E. faecium Liquid feed Improve growth performance [146]

Piglets
L. plantarum (strains

22F and 25F) and Ped.
acidilactici (strain 72N)

Feeding
Reducing the infection severity with

enterotoxigenic E. coli (ETEC) in
weaned pigs

[147]

Cattle

Cattle

L. gallinarum JCM
2011(T), S. infantarius
subsp. coli HDP90246
(T), S. salivarius subsp.

thermophilus ATCC
19258(T), and S.

equinus ATCC 9812(T)
Saccharomyces cerevisiae

Improving the growth and
haemato-biochemical parameters of

growing cattle
[148]

Dairy cows

S. cerevisiae, B. subtilis,
B. lichenformis, E.

faecium, L. acidophilus,
L. plantarum, B. tedium
and calcium carbonate

Feeding
Improving reproductive performance
Increasing milk yield and milk fat and

protein percentage
[149]

L. rhamnosus, P.
acidilactici, and

L. reuteri
Ex vivo bovine

endometrial explants
Reducing acute inflammation under E. coli
infection, decreasing IL-8, IL-1β, and IL-6 [150]

Sheep

Sheep, Lamb

Enzimsporin™
(B. subtilis B-2998D,

B-3057D, and B.
licheniformis B-2999D)

Feeding Increasing body weight gain and
improving intestinal microbiota [151]

Fish

Nile Tilapia
(Oreochromis niloticus) S. cerevisiae Feeding Increasing growth performance and feed

utilization indices [152]

Nile Tilapia
(Oreochromis niloticus)

DBA® (B. sp., L.
acidophilus and

E. faecium)
Feeding Protection against A. hydrophila infection

without growth reduction [153]

Common carp
(Cyprinus carpio) Ped. pentosaceus Feeding

Improving growth performance, digestive
enzyme activity, and

haemato-immunological responses
[154]

Rohu fingerlings
(Labeo rohita)

B. amyloliquefaciens
BN06, B. subtilis

WN07, and
B. megaterium

Feeding Improving growth and
haemato-immunological parameters [155]



Encyclopedia 2023, 3 575

Table 8. Cont.

Animals Probiotics Form of
Administration Effects Reference

Shrimp

Whiteleg shrimp,
(Litopenaeus vannamei)

B. subtilis, Ped.
pentosaceus, and

L. lactis
Feeding

Improving growth, immunity, histology,
gene expression, digestive enzyme

activity, and disease resistance
[156]

Pacific white shrimp
(Litopenaeus vannamei)

B. subtilis
AQAHBS001 Feeding

Improving the growth performance,
immune response, and resistance to

Vibrio parahaemolyticus
[157]

7. Conclusions

Inappropriate and excessive use of antibiotics increases pathogen resistance cases
and dysbiosis phenomena, which constitute a real threat to human and animal health and
wellbeing. As alternatives, probiotics appear to be reliable candidates, owing to numer-
ous features and functions that these live and multifunctional microorganisms possess
compared to antibacterial substances. In addition to their capacity to produce multiple
antimicrobial metabolites comparable to antibiotics, probiotics have other mechanisms
of action against pathogens, including nutrient competition and space exclusion, as well
as immunomodulation activities. Such multi-action mechanisms minimize the risk of
pathogen AMR and increase the potential for the use of probiotics as substitutes for antibi-
otics. Moreover, the use of probiotics as antimicrobials is not limited to bacteria but is also
applicable to viruses. Plentiful evidence indicates their efficacy in inhibiting human and
animal pathogens through experimental models and clinical trials and confirms their po-
tential applications to prevent diseases, treat infections, and promote growth performance,
immune systems, and nutrient efficiency. Despite such advantages, the maintenance of cell
viability and dose optimization remain industrial challenges to achieving high specificity
and short-time treatment with probiotics compared to antibiotics.
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