
This is a repository copy of SIDE-lib:A Library for Detecting Symptoms of Python
Programming Misconceptions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198882/

Version: Accepted Version

Proceedings Paper:
Evans, Abi orcid.org/0000-0001-8647-3690, Wang, Zihan, Liu, Jieren et al. (1 more author)
(2023) SIDE-lib:A Library for Detecting Symptoms of Python Programming
Misconceptions. In: Proceedings of the 28th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’23). 28th annual ACM conference on
Innovation and Technology in Computer Science Education, 10-12 Jul 2023 ACM , FIN ,
159–165.

https://doi.org/10.1145/3587102.3588838

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SIDE-lib: A Library for Detecting Symptoms of Python
Programming Misconceptions

Abigail C. Evans
abi.evans@york.ac.uk

University of York

York, UK

Zihan Wang
zihan2wang@gmail.com

Northeastern University

Seattle, USA

Jieren Liu∗

liujieren95@gmail.com

Northeastern University

Seattle, USA

Mingming Zheng∗

zheng.mingm@northeastern.edu

Northeastern University

Seattle, USA

ABSTRACT

Extensive prior work has identified and described misconceptions

held by novice programmers. Much of this prior work has involved

at least some automatic detection of potential misconceptions using

a variety of methods such as intercepting compiler error messages,

pattern matching, and black-box testing. To the best of our knowl-

edge, no independent and flexible tool for automatic detection of

misconceptions is currently available to the research community,

meaning that detection must be reimplemented from scratch for

each new project that aims to understand or support novice pro-

grammers using automatic analysis. This is time-consuming work,

particularly for misconceptions that require understanding of the

context of a program beyond localised syntax patterns. In this paper,

we introduce SIDE-lib, a standalone library for detecting symptoms

of Python misconceptions. This library is made available with the

goal of simplifying and speeding up research on Python miscon-

ceptions and the development of tools to support learning. We also

describe example use cases for the library, including how we are

using it in our ongoing research.

CCS CONCEPTS

· Software and its engineering→ Development frameworks

and environments; · Applied computing→ Education.

KEYWORDS

computer science education; novice programmers; library; miscon-

ceptions

ACM Reference Format:

Abigail C. Evans, Zihan Wang, Jieren Liu, and Mingming Zheng. 2023. SIDE-

lib: A Library for Detecting Symptoms of Python Programming Misconcep-

tions. In Proceedings of the 2023 Conference on Innovation and Technology in

∗These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2023, July 8ś12, 2023, Turku, Finland.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588838

Computer Science Education V. 1 (ITiCSE 2023), July 8ś12, 2023, Turku, Finland.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588838

1 INTRODUCTION

Beginner programmers’ misconceptions have been the subject of

decades of research [1ś3, 8, 10ś12, 15ś17, 20ś22, 28, 29, 33]. A sub-

set of the research in this space involves automatic analysis of

code such as testing programs for correct output [1, 11], comparing

student work with pre-defined solutions or concept inventories

[27, 33], and/or analysis of syntax and error messages [2, 5, 9, 13].

Despite the large volume of research on programming misconcep-

tions and a small number of approaches to automatic analysis of

code, there does not exist a standard tool to support misconception

detection. Instead, researchers must implement their own detection

methods leading to significant duplication of effort across projects.

As well as slowing down research on misconceptions themselves,

the lack of shared resources for detecting misconceptions also hin-

ders the development of new tools to support novices as detection

of problems must be implemented before design work can begin.

Our own long term goal is to embed support for novice Python pro-

grammers into mainstream IDEs. As part of this work, we developed

a standalone, task-independent library for detecting symptoms of

misconceptions in Python code, which we are making available

to other researchers with the goal of simplifying some aspects of

misconception research.

Our detection library is designed to be easy to install, simple to

use, and free of external dependencies. It is also flexible enough

to support a variety of use cases out of the box (e.g. research on

misconceptions vs. student-facing learning interventions) in un-

constrained programming environments.

In the following sections, we define what is meant by "symptom"

and "misconception" in this work; we summarise past approaches to

automatic detection of programming misconceptions; we describe

the design and development of our library, which was the result of

an analysis of 1331 Python programs written by novices; and we

present example applications that make use of the library.

2 SYMPTOMS AND MISCONCEPTIONS

Substantial prior work has sought to identify and categorise pro-

gramming errors and misconceptions held by novices. We use "er-

ror" to refer to any code that produces output that is not what the

programmer intended (or what the task required), whether or not it

ITiCSE 2023, July 8–12, 2023, Turku, Finland. Abigail C. Evans, Zihan Wang, Jieren Liu, and Mingming Zheng

causes the program to crash [25]; and "misconception" to describe

inaccuracies in a programmer’s knowledge [29].

From Pea’s [28] description of high level language-independent

"bugs" in novices’ mindset and approach, to the identification of

language-specific errors [3, 5], error categorisation has received a

lot of attention. Errors can be categorised as syntactic, conceptual,

or strategic [1, 4, 26, 29]. Like [8], our work focuses on the first

two error categories only. We exclude strategic errors as they are

generally task dependent.

Syntactic errors are mistakes relating to the syntax rules of a

language. Conceptual errors are misconceptions about a program-

ming construct, such as how a loop works. Albrecht and Grabowski

[1] add sloppiness errors, which are unintentional mistakes such as

typos.

Broad categories are useful to understand the types of knowledge

that learners struggle with but more specific code-level categories

are needed to inform tools or teaching strategies to tackle mis-

conceptions. Studies that enumerate low level errors and deeper

misconceptions identify a varying number of categories e.g. 31 [7],

62 [18], 80 [1], 90 [24, 25], 162 [34]. This indicates that despite a

considerable amount of work in this area, there is still no definitive

list.

Kaczmarczyk et al. [22] argue that there is work to be done

to understand novice’s misconceptions themselves, not just the

errors they cause. Recently, research efforts have shed more light on

misconceptions in Python [15, 20], explored if and how documented

misconceptions apply across programming languages (C, Python,

and Java) [7], and led to the creation of extensive documentation

on misconceptions organised by language [8].

Chiodini et al. [8] define a new subcategory of misconceptions,

programming language misconceptions: statements that "can be dis-

proved by reasoning entirely based on the syntax and/or semantics

of a programming language". Programming language misconcep-

tions are the targets of our detection library.

Although programming language misconceptions relate to lan-

guage specifications, they are properties of learners, not programs

or languages. In order to fully understand a learner’s beliefs or men-

tal model of a programming construct, we must observe what they

do and/or say about that construct. However, as the goal of our li-

brary is to automatically detect misconceptions in an unconstrained

environment without knowledge of the student’s task, the library

is restricted to observing code. Therefore, we focus on identifying

potential misconceptions by looking for their symptoms rather than

the misconceptions themselves. Symptoms are the manifestation

of a learner’s misconception in the code that they write; patterns

in statements or blocks of code that suggest a possible misconcep-

tion. Symptoms relate to both errors and misconceptions but these

concepts are not interchangeable. Symptoms will often contain or

produce errors but symptoms of some misconceptions will not lead

to incorrect output.

In some cases, a single symptom is closely mapped to a single

misconception. For example, a documented misconception is that

a Boolean expression must be compared with a Boolean literal

in order to check if it is true or false [8]. This misconception will

manifest in a single symptom: the use of "== True" or "== False"

in a Boolean expression. Given that this misconception results in

redundant code but will not affect program output, the presence of

this symptom in a learner’s code does not conclusively prove that

the learner holds the associated misconceptionÐit may be a matter

of stylistic preference or a desire for clarity.

The previous example shows how a single symptom in a learner’s

code may indicate a particular misconception. However, some mis-

conceptions require the presence of multiple symptoms and a single

symptom may be associated with more than one misconception.

For example, we consider an unused return value a symptom, but it

may indicate different misconceptions depending on the presence

of other symptoms. Figure 1 shows two examples of an unused

return, each indicating a different possible misconception.

1 def i s _ f o o (word) :

2 i f word == word [: : − 1] :

3 print (" Foo ")

4 return True

5 e l se :

6 print (" Bar ")

7 return F a l s e

8

9 t e s t = input (" En t e r a word ")

10 t e s t . lower ()

11 i s _ f o o (t e s t)

Figure 1: A program that contains two examples of the symp-

tom UnusedReturnValue: the expression on line 10, which

returns a String, and the function call on line 11, which re-

turns a Boolean. Neither value is saved or used. Each case

indicates a different possible misconception.

The first unused return in Figure 1 is found on line 10, where a

method is called to convert a String to lowercase but the converted

String is not saved or used. In this example, the unused return may

indicate a belief that String methods modify the original String.

The second unused return occurs on line 11, where the function

is_foo() is called but its return value is lost. This time, however,

the unused return occurs alongside another symptomÐa function

that prints a message as well as returns a value. This may suggest

confusion about the difference between printing and returning a

value. As with the previous example, neither the symptom or the

associated misconceptions will produce syntax or runtime errors

but they may lead to unexpected output that is difficult to debug.

3 AUTOMATIC DETECTION OF
MISCONCEPTIONS

Approaches to automatic detection of misconceptions include black

box testing, comparison of novice solutions with expert solutions,

interception of compiler errors, and custom parsing, which may be

used in combination with each other and manual analysis.

Black box testing and comparison with expert solutions allow

for the detection of problems beyond programming language mis-

conceptions, including logic errors and strategic misconceptions

e.g. [1, 11, 33]. However, both approaches require knowledge of the

task the learner is working on, which is out of scope for our work.

An approach that does not require knowledge of the learner’s

task is to use error messages produced by the compiler e.g. [9, 11,

SIDE-lib: A Library for Detecting Symptoms of Python Programming Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland.

18, 19, 24]. This approach has several advantages: it is relatively

straightforward to implement, error messages are consistent, pre-

categorised, and contain information about the location and nature

of the problem. However, error messages alone are often not suffi-

cient to identify and understand student misconceptions as they do

not always match the real cause of the error [9]. Another obvious

disadvantage of the error message approach is that it will not catch

symptoms that do not result in error messages, such as both exam-

ples in the previous section. For these reasons, error messages are

often used as a starting point for misconception detection that is

then supplemented with additional analysis.

Another approach is to use custom parsing to identify, for ex-

ample, syntax patterns associated with errors, or changes in the

source code over time. Where the aim of a project is to identify

mistakes and misconceptions characterised by localised patterns

independent of the larger program context, custom parsing has gen-

erally involved searching tokenised source code for clearly defined

syntax patterns, e.g. use of = instead of == in a Boolean expression,

or missing or incorrect use of punctation [5, 6, 9, 18]. Many of the

papers that detect these types of mistakes provide little detail on

the implementation of the parser; descriptions of the mistakes or

misconceptions themselves typically provide enough detail to allow

re-implementation by other researchers.

Detection of some misconceptions requires knowledge of the

program structure as well as localised syntax patterns. For exam-

ple, misunderstanding of variable scope may be indicated by the

attempted use of a local variable in global scope. For these types

of misconceptions, a parser that looks for patterns in tokenised

source code will not provide enough information about the pro-

gram structure. Some prior work has used the Abstract Syntax Tree

of a program to enable easy parsing and identification of the various

constructs and identifiers used as well as the relationships between

them e.g. [16, 23, 31, 32].

For our own detection work, we use a custom parser with el-

ements of an Abstract Syntax Tree. As we developed and tested

the library, we were struck by the hidden complexity, challenging

details, and large number of edge cases that had to be accounted for

to implement reliable detection of many misconception symptoms,

particularly those requiring understanding of the larger program

context and how constructs such as conditionals and loops were

used in combination. Many symptoms that we originally thought

had simple and consistent forms turned out to be much more messy

when tested with novice-written code that was unusually struc-

tured, creatively complicated, or in violation of conventions that

more experienced programmers tend to follow without thought. Ac-

counting for this messiness took a large amount of time and careful

manual identification of edge cases that could easily be overlooked.

The time factor is a primary motivation for the release of our li-

brary; we hope it will save other researchers investigating Python

misconceptions a substantial amount of time. An additional moti-

vation is that several design decisions made during development

had noticeable impacts on the detection frequency of individual

symptoms in our dataset. Due to the impact of detection details

on results, particularly where quantification of misconceptions is a

goal, we believe the detection process itself warrants greater atten-

tion than it has thus far received in misconception research using

automated approaches.

4 DESIGN AND DEVELOPMENT OF SIDE-LIB

At the time of writing, SIDE-lib detects 33 symptoms and 25 po-

tential misconceptions, with more to come. The full details of the

detected symptoms and misconceptions are provided in the library1.

4.1 Identification of Detectable Symptoms

We conducted a manual analysis of Python programs to identify

symptoms of misconceptions that could be detected without knowl-

edge of the programmer’s task. Our dataset contains 1331 fully

anonymised programs written by 123 graduate students in three

different offerings of an introductory programming course. The

first author was a co-instructor of the first offering and instructor

of record for the second and third offerings, but was not involved

in marking. Some programming prompts were used in multiple

offerings, others were unique to one cohort.

Instead of using the full dataset to discover symptoms, we opted

to select a sample of files for close inspection and save the rest for

validation purposes. One team member made a pass through the

full dataset to identify submissions that contained problems. We use

the loose term "problem" to refer to either errors or misconceptions.

This process involved selecting submissions that produced error

messages, submissions that ran without error but produced differ-

ent output than was described in the task instructions, or those

that simply looked much longer or more complex than the sample

solution. Programs with only task-specific problems (e.g. missed

edge cases, output in a slightly different format than specified) were

excluded. The resulting sample contained 186 programs.

We used collaborative coding [30] informed by existing invento-

ries of errors and misconceptions (especially [1, 8, 15]) to develop a

list of problems and their locations (file and line numbers) in the

sample dataset. The resulting list contained 52 problems. The final

step was to extrapolate symptoms from the problems and determine

which could be automatically detected based purely on the code.

We assumed that our detector would have access to variable names,

variable scope and data types, and user defined function names,

parameters, and return types. To identify detectable symptoms, we

selected those that met the following criteria:

• The code that exhibits the problem is isolatedÐthe problem

remains apparent if the line or block of code where it occurs

is viewed out of context of the rest of the file (except for the

basic information described above e.g. variable scope).

• Instances of the problem have a consistent form, allowing

for a small number of variations. This form represents the

symptom.

• The problem can be identified without knowing the program-

mer’s intention.

• The problem occurs more than once in the sample dataset.

Applying the criteria reduced the list of 52 problems to 33 de-

tectable symptoms of problems. It is important to note that while

some symptoms are always errors (e.g. an undefined variable), oth-

ers are better described as code characteristics (e.g. a sequence of if

statements without elif or else branches between) that will not be

of interest unless other symptoms are also present.

1https://github.com/Supportive-IDE/SIDE-lib/

ITiCSE 2023, July 8–12, 2023, Turku, Finland. Abigail C. Evans, Zihan Wang, Jieren Liu, and Mingming Zheng

The symptoms were then mapped to potential misconceptions,

a process that involved listing symptoms and other characteristics

that had to be present in order to identify a misconception. So far,

detection has been implemented for a total of 25 potential mis-

conceptions that can be identified using the symptoms our library

currently detects. 14 of the misconceptions are previously docu-

mented in [8] and [15], and 11 additional potential misconceptions

came from our analysis of our dataset.

The list of symptoms detected by SIDE-lib covers most founda-

tional programming concepts (variables, functions, conditionals,

loops etc.) with one notable exception: classes. The files in our

dataset do not include any examples of class definitions so miscon-

ceptions related to classes and object-oriented programming are

omitted for now. We plan to add support for classes in future.

4.2 Implementation Details

Our detection library is implemented using JavaScript. Although

JavaScript may seem like an odd choice for a Python parser, we felt

that this would allow for easier use of the library in a wider range

of scenarios than using the obvious development choice, Python.

For example, our long term goals are to develop IDE extensions and

browser-based tools for novices. Visual Studio Code, a very popular

general purpose IDE is built with web technologies. Developing

SIDE-lib with Pythonwould have allowed us to take advantage of its

built-in Abstract Syntax Tree capabilities but would complicate use

of the library in other environments. Keeping the library entirely

in JavaScript means that it can be included in web environments

with one line of code. It can also easily be hosted and accessed as a

web API.

The library entry point is a function that accepts Python source

code and returns a JSON object containing information about the

source code’s "blocks", variables, functions, symptoms, and miscon-

ceptions. The information about blocks, variables, and functions

is used internally to decide if and when symptoms indicate poten-

tial misconceptions. This supplemental information is provided to

end users of the library to support additional analysis, including

detecting misconceptions not currently supported by the library.

The detection process begins by tokenising the Python source

code and determining the type and semantics of each token ac-

cording to the language specification e.g. keyword, variable name,

built-in function, assignment operator, literal value etc. During this

process, information about the source code as a whole is collected

in custom JSON objects representing the blocks, variables, and

functions in the document.

The Python documentation defines a block as a piece of a pro-

gram that is executed as a unit, specifically a module, class, or

function [14]. We expand that definition and include any code that

creates a branch, namely loops and conditionals. Information about

blocks is stored as a tree, with each node including the type of block,

the line number that it begins on, and references to child blocks.

Information about each variable includes its name, scope, whether

or not it is a parameter, and a list of objects describing each usage

of the variableÐmost importantly the line number and the data

type at execution.

The collection of function information only includes details of

user-defined functions in the parsed source code. Names and re-

turn types of built in functions and methods, as well as methods

from some commonly used modules, are stored in lookup tables.

For each user-defined function, we track its name, where in the

document it is defined, the names of any parameters, information

about any returns (data type, location), and where in the document

the function is called, if applicable.

Knowledge of expression data type is needed for the detection

of 6 of the symptoms and 7 of the misconceptions implemented so

far. Determining data types in Python can be complex because the

language allows data types of variables to change, compound types

such as lists can store a mix of data types, and functions may return

different data types from different branches. Where an expression is

guaranteed to have a single data type, such as a variable assigned a

literal value or the result of a built-in function with a single possible

return type, the expression is assigned that data type. Otherwise,

if the expression could have more than one possible data type, or

there is not enough information to determine type, it is labelled

"unknown".

The data types of multi-part expressions such as calculations

and concatenations are evaluated but, if any part of the expression

has unknown data type, the resulting data type of the compound

expression will also be labelled unknown. Operations involving

unknown data types are assumed to be appropriate to avoid de-

tecting a problem when none is present. An expression will only

be identified as having invalid data type if it is the result of an

operation involving incompatible known data types, such as adding

a String to an integer. Although our library recognises compound

data types like lists, it does not track the data types of items inside

compound data typesÐthese items are considered to have unknown

data type. Additionally, parameters are always labelled as having

unknown data type at definition, even if the intended data type

can be inferred from subsequent operations or values passed as

arguments when a function is called. This is because the possibility

still remains that the function may be passed a different data type,

e.g., if the function is called by unit tests in a separate file.

Once parsing is complete, symptoms are identified according to

rules unique to each symptom. For the simplest symptoms, it is a

case of looking for clearly defined patterns in sequences of tokens.

Other symptoms involve cross referencing token patterns with the

supplemental program information.

Each instance of a symptom is stored in an object containing

the symptom name, its location in the document, and the affected

snippet of source code. Some symptoms also include additional

fields providing more information. For example, an instance of

an unused return value (see Figure 1) includes the name of the

function that was called and whether it is built-in or user defined.

The information provided about instances of symptoms helps in

the identification of potential misconceptions but it is also intended

to facilitate the development of learner (or teacher) facing systems

that provide feedback about symptoms.

The final step in the detection process is to use the symptoms

to identify potential misconceptions. For each misconception, we

have defined rules about which symptoms should be present and,

if multiple symptoms are involved, how they relate to each other.

SIDE-lib: A Library for Detecting Symptoms of Python Programming Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland.

These rules are similar to the notion of a constraint in constraint-

based modelling, which has been used to identify errors and provide

personalised feedback in intelligent tutoring systems [27].

A symptom can appear multiple times in a single program but a

potential misconception will only be recorded once. Information

about each detected misconception is stored in a JSON object that

contains its name, and a list of symptom occurrences that explain

why the potential misconception has been identified. Each occur-

rence stores information about the location in the file, the specific

symptom instances that caused the misconception to be identified,

and a text explanation that is customised to the symptom instances

involved (see Figure 2). For some misconceptions, there are mul-

tiple combinations of different symptoms that could lead to its

detection. One example is PrintSameAsReturnÐpossible confusion

around printing a value versus returning a value from a function.

There are two combinations of symptoms that may indicate this

misconception:

• The result of a call to a function that does not return a value

is assigned to a variable or otherwise used in an operation

(AssignedNoReturn) AND either the same function contains

print statements (FunctionPrints) OR the function involved

is the built in print function. See Figure 2.

• The result of a call to a function that returns a value is not

assigned to a variable or otherwise used in an operation

(UnusedReturn) AND the same function contains print state-

ments (FunctionPrints). See Figure 1, line 11.

The information provided in each occurrence in the JSON returned

by the library allows for more fine grained analysis of how and

why the misconception has been identified.

4.3 Validation

Validation of SIDE-lib’s symptom detection process was performed

by testing library output for our dataset against the results of our

analysis during the design process (Section 4.1) to match detected

symptoms. We manually checked and fixed all discrepancies.

To validate the misconceptions, we manually checked that all

identified misconceptions matched the results of our analysis, in-

cluding the contributing symptoms of each misconception. It is

important to note that ground truth for misconceptions is less con-

crete than for symptoms as we can’t be sure if the cause behind the

symptoms we identify is really the misconception we think it is.

Many of the misconceptions in our own work and much (though

certainly not all) of the prior research categorising errors and mis-

conceptions is based on the insights of educators who work with

learners, rather than the direct words of the learners themselves.

Therefore, our validation was really a case of checking that poten-

tial misconceptions are identified according to the rules that we

have derived from prior work and our own experiences.

To guard against the influence of factors specific to the courses

in which our dataset was collected, such as style and structure

conventions, or the manner in which particular concepts were

taught, we also manually inspected the output of the library on

programs in a dataset collected in a different setting [31]. The

two datasets are qualitatively quite different. Where our dataset is

made up of homework submissions, featuring complete programs

of varying complexity, the dataset from Rivers et al. contains in

1 def g e t _ d i r e c t i o n (s t a r t , end) :

2 i f s t a r t < end :

3 print (" Southbound ")

4 e l i f s t a r t > end :

5 print (" Northbound ")

6 e l se :

7 s t a r t == end

8 print (" I n v a l i d ")

9

10 d i r e c t i o n = g e t _ d i r e c t i o n (8 , 7)

con t r i bu t ingSymptoms : [

{

l i n e : 9 ,

type : " Ass ignedNoReturn " ,

t e x t : " g e t _ d i r e c t i o n " ,

doc Index : 198 ,

expre s s i onNoVa lue : {

type : " u s e rDe f i n edFunc t i on " ,

v a l u e : " g e t _ d i r e c t i o n "

}

} ,

{

l i n e : 0 ,

type : " F u n c t i o n P r i n t s " ,

t e x t : " g e t _ d i r e c t i o n " ,

doc Index : 4 ,

p r i n t L i n e s : [2 , 4 , 7] ,

f u n c t i o nR e t u r n s : f a l s e

}

] ,

e x p l a n a t i o n : " User − d e f i n e d f u n c t i o n

g e t _ d i r e c t i o n p r i n t s to the con so l e

but does not r e t u r n a va lue . "

Figure 2: A program (top) containing evidence of the mis-

conception PrintSameAsReturn. The function beginning on

line 1 exhibits the symptom FunctionPrints, which is not

an issue unless other symptoms are present. Line 10 has

symptom AssignedNoReturn. Together, these symptoms in-

dicate the potential misconception. The bottom part of the

figure shows a segment of the JSON object returned for this

occurrence of the PrintSameAsReturn misconception. The

contributingSymptoms and explanation fields provide infor-

mation about why the misconception has been detected.

progress solutions to much smaller exercises. This means that we

have been able to verify that our detector is robust against common

characteristics of incomplete code such as mismatched parentheses

and half finished statements.

5 EXAMPLE APPLICATIONS

We have designed SIDE-lib to be useful for a range of use cases

beyond our own long term goals. In this section, we present two

example applications built using the library. The first is an analysis

ITiCSE 2023, July 8–12, 2023, Turku, Finland. Abigail C. Evans, Zihan Wang, Jieren Liu, and Mingming Zheng

Figure 3: The File view visualises detected symptoms and

misconceptions for a single file.

tool aimed at researchers that we are using in our own work. The

second application is an early-stage prototype of basic IDE-based

feedback for learners when a misconception is detected.

5.1 The Symptom Checker Website

The Symptom Checker website2 allows users to upload a dataset of

Python files and view the detected symptoms and misconceptions.

When upload is complete, each file is passed to SIDE-lib for parsing.

The user is then taken to the Summary view, which shows frequency

tables of symptoms and misconceptions detected by SIDE-lib for

the whole dataset.

The File View section of the website (Figure 3) visualises symp-

toms and misconceptions detected in a single file. Files can be

filtered by symptom and misconception. The location of each symp-

tom is highlighted and labelled in the source code and more in-

formation is provided in the cards to the right of the code. Click-

ing a particular misconception highlights the specific symptom

instance(s) that contributed. The Symptom Checker was developed

to simplify our process of identifying and validating symptoms

and misconceptions by visualising SIDE-lib’s output in a human

friendly format. All information displayed, including the in-code

highlights of symptoms is created using the data retrieved from the

JSON object output by SIDE-lib.

5.2 A Visual Studio Code Extension

Another use case is IDE-based support for novice programmers. As

SIDE-lib is written in JavaScript, it is straightforward to include in

browser-based IDEs and desktop applications developed with web

technologies.

Figure 4 shows a prototype of a basic Visual Studio Code exten-

sion that sends the contents of the code editor to SIDE-lib every

time there is a change. If misconceptions are detected, a short action-

oriented message is displayed directly above the affected code. In

the example in Figure 4, a file from the Rivers et al. dataset [31],

the misconception MapToBooleanWithIf [8] is detected due to the

form of the conditional beginning on line 3. As this is not a critical

2https://supportive-ide.github.io/symptom-checker/

Figure 4: A Visual Studio Code extension that notifies users

of detected misconceptions and provides basic feedback.

misconception, the message hints at an opportunity for improve-

ment and invites the user to click on it for tips. When the user

clicks the message, it opens a custom web viewÐthe "Code Help"

area shown in the bottom half of the screen in Figure 4. The web

view provides feedback and guidance. The messaging and feedback

is created independently of the SIDE-lib allowing for a range of

interactive interventions beyond the display of static information

shown in this example.

6 CONCLUSION

This paper has described the design and development of SIDE-lib,

a library that detects task-independent symptoms of potential mis-

conceptions in Python code. Althoughwe are far from the first to im-

plement automatic detection of programming misconceptions, our

contribution is making our detector available to other researchers

as a flexible standalone tool. We found that implementation of the

detection, particularly for symptoms of misconceptions that go be-

yond localised syntax patterns, was extremely time-consuming. We

hope that by releasing our library, we can save other researchers

time and reduce effort required to re-implement detection of mis-

conceptions across projects.

REFERENCES
[1] Ella Albrecht and Jens Grabowski. 2020. Sometimes It’s Just Sloppiness - Studying

Students’ Programming Errors and Misconceptions. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (SIGCSE ’20). ACM,
Portland OR USA, 340ś345. https://doi.org/10.1145/3328778.3366862

[2] Amjad Altadmri and Neil C. C. Brown. 2015. 37 Million Compilations: Investigat-
ing Novice Programming Mistakes in Large Scale Student Data. In Proceedings of

SIDE-lib: A Library for Detecting Symptoms of Python Programming Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland.

the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).
ACM, Kansas City MO USA, 522ś527. https://doi.org/10.1145/2676723.2677258

[3] Piraye Bayman and Richard E. Mayer. 1983. A Diagnosis of Beginning Program-
mers’ Misconceptions of BASIC Programming Statements. Commun. ACM 54, 9
(Sept. 1983), 677ś679. https://doi.org/10.1145/358172.358408

[4] Piraya Bayman and Richard E. Mayer. 1988. Using Conceptual Models to Teach
BASIC Computer Programming. Journal of Educational Psychology 80, 3 (1988),
291ś298.

[5] Neil C. C. Brown and Amad Altadmri. 2014. Investigating Novice Programming
Mistakes: Educator Beliefs vs. Student Data. In Proceedings of the 10th Annual
Conference on International Computing Education Research (ICER ’14).

[6] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, Atlanta GA USA, 223ś228. https://doi.org/10.1145/2538862.2538924

[7] Ricardo Caceffo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. 2019.
Identifying and Validating Java Misconceptions Toward a CS1 Concept Inventory.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, Aberdeen Scotland UK, 23ś29.
https://doi.org/10.1145/3304221.3319771

[8] Luca Chiodini, IgorMoreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.
Santos, and Matthias Hauswirth. 2021. A Curated Inventory of Programming
Language Misconceptions. In Proceedings of the 26th ACM Conference on Innova-
tion and Technology in Computer Science Education (ITiCSE ’21). ACM, Virtual
Event, 380ś386. https://doi.org/10.1145/3430665.3456343

[9] Thomas Dy and Ma Mercedes Rodrigo. 2010. A Detector for Non-Literal Java
Errors. In Proceedings of the 10th Koli Calling International Conference on Com-
puting Education Research (Koli Calling, ’10). ACM, Berlin, Germany, 118ś122.
https://doi.org/10.1145/1930464.1930485

[10] Anna Eckerdal and Michael Thune. 2005. Novice Java programmers’ conceptions
of ’object’ and ’class’, and variation theory. In Proceedings of the 2005 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’05). ACM, Monte de Caparica Portugal. https://doi.org/10.1145/1067445.1067473

[11] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common Logic
Errors Made By Novice Programmers. In Proceedings of the 20th Australasian
Computing Education Conference (ACE ’18). ACM, Brisbane Australia, 83ś89.
https://doi.org/10.1145/3160489.3160493

[12] Ann E. Fleury. 1991. Parameter Passing: The Rules Students Construct. In
Proceedings of the Twenty-Second SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’91). ACM, San Antonio TX USA, 283ś286. https:
//doi.org/10.1145/107004.107066

[13] Ann E. Fleury. 2000. Programming in Java: Student-Constructed Rules. In Pro-
ceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’00). ACM, Austin TX USA, 197ś201. https://doi.org/10.1145/
330908.331854

[14] Python Software Foundation. 2023. Execution Model. Retrieved Jan 17, 2023
from https://docs.python.org/3/referenceexecutionmodel.html

[15] Guilherme Gama, Ricardo Caceffo, Renan Souza, Raysa Benatti, Tales Aparecida,
Islene Garcia, and Rodolfo Azevedo. 2018. An Antipattern Documentation about
Misconceptions related to an Introductory Programming Course in Python. Technical
Report IC-18-19. Institute of Computing, University of Campinas, Campinas
Brazil.

[16] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-Driven Feedback: Results from an Experimental Study. In Pro-
ceedings of the 2018 ACM Conference on International Computing Education Re-
search (ICER ’18). ACM, Espoo Finland, 160ś168. https://doi.org/10.1145/3230977.
3231002

[17] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding Object
Misconceptions. In Proceedings of the 28th ACMTechnical Symposium on Computer
Science Education (SIGCSE ’97). ACM, CA USA, 131ś134. https://doi.org/10.1145/
268084.268132

[18] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003.
Identifying and Correcting Java Programming Errors for Introductory Com-
puter Science Students. In Proceedings of the 34th ACM Technical Symposium
on Computer Science Education (SIGCSE ’03). ACM, Reno NV USA, 153ś156.
https://doi.org/10.1145/611892.611956

[19] Matthew C Jadud. 2005. A First Look at Novice Compilation Behaviour Using
BlueJ. Computer Science Education 15, 1 (2005), 25ś40. https://doi.org/10.1080/
08993400500056530

[20] Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. 2020. Analysis of
StudentMisconceptions using Python as an Introductory Programming Language.
In Proceedings of the 4th Conference on Computing Education Practice 2020 (CEP
2020). ACM, Durham UK, 1ś4. https://doi.org/10.1145/3372356.3372360

[21] Fionnuala Johnson, Stephen McQuistin, John O’Donnell, and Quintin Cutts. 2022.
Experience Report: Identifying Unexpected Programming Misconceptions with
a Computer Systems Approach. In Proceedings of the 2022 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’22). ACM,
Dublin Ireland. https://doi.org/10.1145/3502718.3524775

[22] Lisa Kaczmarczyk, Elizabeth R. Petrick, Philip J. East, and Geoffry L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10).
ACM, Milwaukee WI USA, 107ś111. https://doi.org/10.1145/1734263.1734299

[23] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the Fiftieth SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, Minneapolis MN USA, 666ś671. https:
//doi.org/10.1145/3287324.3287503

[24] Davin McCall and Michael Kölling. 2014. Meaningful Categorisation of Novice
Programming Errors. In Proceedings of the 2014 Frontiers in Education Conference
(FIE ’14). Madrid Spain. https://doi.org/10.1109/FIE.2014.7044420

[25] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer
Errors. ACM Transactions on Computing Education 9, 4 (2019), 1ś30. https:
//doi.org/10.1145/3335814

[26] Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyz-
ing Students’ Knowledge of Programming. Journal of Research on Computing in
Education 29, 3 (1997), 276ś297. https://doi.org/10.1080/08886504.1997.10782199

[27] Antonija Mitrovic. 2012. Fifteen Years of Constraint-Based Tutors: What We
Have Achieved And Where We Are Going. User Modelling and User-Adapted
Interaction 1-2 (2012), 39ś72. https://doi.org/10.1007/s11257-011-9105-9

[28] Roy D. Pea. 1986. Language-Independent Conceptual ’Bugs’ in Novice Pro-
gramming. Journal of Educational Computing Research 2, 1 (Feb. 1986). https:
//doi.org/10.2190/689T-1R2A-X4W4-29J2

[29] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Transactions
on Computing Education 18, 1 (2017), 24. https://doi.org/10.1145/3077618

[30] K. Andrew R. Richards and Michael A. Hemphill. 2018. A Practical Guide to
Collaborative Qualitative Data Analysis. The Journal of Teaching in Physical
Education 37, 2 (2018), 225ś231. https://doi.org/10.1123/jtpe.2017-0084

[31] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning Curve Analy-
sis for Programming: Which Concepts do Students Struggle With?. In Proceed-
ings of the 2016 ACM Conference on International Computing Education Research
(ICER ’16). ACM, Melbourne Australia, 143ś151. https://doi.org/10.1145/2960310.
2960333

[32] Kelly Rivers and Kenneth R. Koedinger. 2015. Data-Driven Hint Generation in
Vast Solution Spaces: A Self-Improving Python Tutor. International Journal of
Artificial Intelligence in Education 27, 1 (2015), 37ś64. https://doi.org/10.1007/
s40593-015-0070-z

[33] Teemu Sirkiä and Juha Sorva. 2012. Exploring Programming Misconceptions:
An Analysis of Student Mistakes in Visual Program Simulation Exercises. In Pro-
ceedings of the 12th Koli Calling International Conference on Computing Education
Research (Koli Calling ’12). ACM, Koli Finland, 19ś28. https://doi.org/10.1145/
2401796.2401799

[34] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Educa-
tion. Ph. D. Dissertation. Aalto University, Espoo Finland.

	Abstract
	1 Introduction
	2 Symptoms and Misconceptions
	3 Automatic Detection of Misconceptions
	4 Design and Development of SIDE-lib
	4.1 Identification of Detectable Symptoms
	4.2 Implementation Details
	4.3 Validation

	5 Example Applications
	5.1 The Symptom Checker Website
	5.2 A Visual Studio Code Extension

	6 Conclusion
	References

