
This is a repository copy of Empirically evaluating flaky test detection techniques 
combining test case rerunning and machine learning models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198846/

Version: Published Version

Article:

Parry, O. orcid.org/0000-0002-0917-1274, Kapfhammer, G.M., Hilton, M. et al. (1 more 
author) (2023) Empirically evaluating flaky test detection techniques combining test case 
rerunning and machine learning models. Empirical Software Engineering, 28. 72. ISSN 
1382-3256 

https://doi.org/10.1007/s10664-023-10307-w

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Empirical Software Engineering           (2023) 28:72 

https://doi.org/10.1007/s10664-023-10307-w

Empirically evaluating flaky test detection techniques
combining test case rerunning andmachine learning
models

Owain Parry1 ·Gregory M. Kapfhammer2 ·Michael Hilton3 ·Phil McMinn1

Accepted: 9 February 2023

© The Author(s) 2023

Abstract

A flaky test is a test case whose outcome changes without modification to the code of

the test case or the program under test. These tests disrupt continuous integration, cause a

loss of developer productivity, and limit the efficiency of testing. Many flaky test detec-

tion techniques are rerunning-based, meaning they require repeated test case executions at

a considerable time cost, or are machine learning-based, and thus they are fast but offer

only an approximate solution with variable detection performance. These two extremes

leave developers with a stark choice. This paper introduces CANNIER, an approach for

reducing the time cost of rerunning-based detection techniques by combining them with

machine learning models. The empirical evaluation involving 89,668 test cases from 30

Python projects demonstrates that CANNIER can reduce the time cost of existing rerunning-

based techniques by an order of magnitude while maintaining a detection performance that

is significantly better than machine learning models alone. Furthermore, the comprehensive

study extends existing work on machine learning-based detection and reveals a number of

additional findings, including (1) the performance of machine learning models for detecting

polluter test cases; (2) using the mean values of dynamic test case features from repeated

measurements can slightly improve the detection performance of machine learning models;

and (3) correlations between various test case features and the probability of the test case

being flaky.

Keywords Software testing · Flaky tests · Machine learning

1 Introduction

A flaky test is a test case that can exhibit both passing and failing behavior without changes

to the code of the test case or the program under test (Parry et al. 2021). They are a serious

problem for software developers because they disrupt continuous integration, cause a loss of
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productivity, and limit the efficiency of testing. The pain of flaky tests is felt by developers in

both the open-source domain (Durieux et al. 2020) and in large companies such as Google,

Microsoft, and Facebook (Lam et al. 2019; Machalica et al. 2019; Memon et al. 2017). A

survey of developers found that 56% observed flaky tests on at least a monthly basis in the

projects on which they were currently working (Parry et al. 2022b).

Flaky tests that depend on the prior execution of other test cases in the test run order are

known as order-dependent flaky tests. Another term for such flaky tests is victim, and the

prior test cases that affect their outcome are known as polluters (Shi et al. 2019)1. Victim

flaky tests are very prevalent, with one study finding that 51% of the 422 flaky tests in 82

Java projects were victims (Lam et al. 2019). They are a major snag to techniques that split-

up or reorder a test suite, such as test case prioritization, selection, and parallelization (Bell

et al. 2015; Candido et al. 2017; Lam et al. 2020).

The research community has introduced a multitude of automated techniques to detect

flaky tests. Many are rerunning-based, meaning they may require an excessive number of

repeated test case executions, making them expensive for deployment in large software

projects (Lam et al. 2019; Zhang et al. 2014). Alshammari et al (Alshammari et al. 2021)

repeatedly executed the test suites of 24 Java projects and were still detecting non-order-

dependent (NOD) flaky tests after 10,000 reruns. We estimated that the single-core time

cost of detecting the 158 NOD flaky tests in our subject set of 89,668 test cases by rerun-

ning them up to 2,500 times is 1.6 years. The time cost of rerunning-based detection led

researchers to investigate techniques that do not require test case runs but are instead based

on machine learning models trained on features of the test case code (Bertolino et al. 2021;

Pinto et al. 2020). Later studies found that combining these with dynamic test case fea-

tures, such as execution time and line coverage, increases detection performance at the cost

of a single instrumented test suite run to measure these features (Alshammari et al. 2021;

Parry et al. 2022a). Despite this, machine learning models in this domain offer only an

approximate solution. For example, for detecting NOD flaky tests in Java projects, one pre-

vious study’s evaluation shows a Matthews correlation coefficient (MCC), a reliable metric

for evaluating a machine learning model (Chicco and Jurman 2020), of 0.65 (Alshammari

et al. 2021). Another, focusing on Python projects, shows an MCC of 0.53 (Parry et al.

2022a). For these results, we would expect a perfect machine learning model to score 1 and

a model no better than random guessing to score 0. The prohibitive time cost of rerunning-

based techniques and the limited performance of machine learning-based techniques leaves

practitioners with a stark choice when it comes to detecting flaky tests.

This paper introduces CANNIER (maChine leArNiNg assIsted tEst Rerunning), a high-

level approach for reducing the time cost of rerunning-based detection techniques by

combining them with machine learning models. It does this by using the output of the

models as a heuristic to reduce the problem space for the rerunning-based technique.

We demonstrate the applicability of CANNIER by instantiating it for three previously

established detection techniques. We implemented these within an automated tool and

empirically evaluated them using 30 Python projects as subjects. We found that CAN-

NIER could significantly reduce time cost at the expense of only a minor reduction in

detection performance. For example, by applying CANNIER to the Classification stage of

IDFLAKIES (Lam et al. 2019) (that distinguishes NOD flaky tests from victim flaky tests),

we were able to reduce its time cost by 84% at the expense of misclassifying just 8 flaky

1The paper that introduced the victim/polluter terminology (Shi et al. 2019) also introduced the terms brit-

tle/state-setter for when the order-dependent test fails in isolation. In this paper, we use the victim/polluter

terms generally, regardless of the order-dependent test’s outcome.
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tests out of 1,130. Therefore, CANNIER represents a “best of both worlds” solution to flaky

test detection.

In summary, the main contributions of this paper are:

Contribution 1: Approach. A novel approach, called CANNIER, that significantly

reduces the time cost of rerunning-based flaky test detection with a minimal decrease in

detection performance. See Section 3 for more details. Contribution 2: Tooling. To facil-

itate our empirical evaluation and allow for replication of our results, we developed an

extensive framework of automated tools that we make freely available (CANNIER frame-

work 2022). See Section 4 for more details. Contribution 3: Empirical Evaluation. A

comprehensive empirical evaluation demonstrates the effectiveness of CANNIER’s combi-

nation of re-running and machine learning techniques, revealing further novel findings about

machine learning-based flaky test detection, such as the performance of machine learning

models for detecting polluter test cases. See Section 5 for more details. Contribution 4:

Dataset. A dataset containing 89,668 tests from 30 Python projects taking over six weeks

of compute time to produce. We make this available as part of our replication package

(CANNIER experiment 2022). See Section 5.1 for more details.

2 Background

2.1 Rerunning-Based Flaky Test Detection

2.1.1 RERUN

The research community has presented many automated flaky test detection techniques that

are based on rerunning test cases. The most straight-forward such technique is to repeatedly

execute a test case until it exhibits both passing and failing behavior. In its most basic form,

this technique involves rerunning the test cases of a test suite in the same test run order

and under the same environmental conditions each time (Bell et al. 2018). We refer to this

specific technique as RERUN. Since the test run order remains constant, RERUN can only

identify non-order-dependent (NOD) flaky tests. As its only parameter, RERUN requires an

upper-limit on the number of times to execute a test case without observing an inconsistent

outcome. If the upper-limit is reached, the technique classifies the test case as non-flaky and

stops rerunning it. Since many test cases may require hundreds or even thousands of runs to

manifest their flakiness (Alshammari et al. 2021), this technique can become very expensive

for long-running test suites with numerous tests, thus limiting the technique in practice.

2.1.2 IDFLAKIES

Lam et al. (2019) presented IDFLAKIES, a technique for detecting flaky tests and classi-

fying them as NOD or a victim. The technique consists of three stages: Setup, Running,

and Classification. In the Setup stage, IDFLAKIES repeatedly executes the test suite in its

original order to identify and filter any consistently-failing test cases. In the Running stage,

IDFLAKIES continues to rerun the test suite, but this time in modified test run orders. In the

Classification stage, for every test case that failed during the Running stage, IDFLAKIES

re-executes the test suite in both the original order and in the modified order that witnessed

the failure, truncated up to and including the failing test case. We refer to this stage as IDF-

CLASS (IDFCLASS). Should the test case fail again in the truncated modified order and pass
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again in the truncated original order, IDFLAKIES classifies it as a victim. Otherwise, it clas-

sifies the test case as NOD. Should a test case fail multiple times during the Running stage,

IDFLAKIES can repeat the Classification stage for a percentage of the additional failures for

greater confidence in the final label.

IDFLAKIES has several parameters: the number of reruns during the Setup stage, the

number of reruns during the Running stage, the method of generating the modified test run

orders during the Running stage (e.g., shuffle), and the percentage of additional failures

to recheck in the Classification stage. Depending on the choice of values for these param-

eters, IDFLAKIES can require a significant number of test executions and thus impose a

prohibitive time cost.

2.1.3 PAIRWISE

While the IDFLAKIES technique can detect victim flaky tests, it cannot identify their associ-

ated polluters. Zhang et al (Zhang et al. 2014) proposed a technique that can detect a subset

of a test suite’s victims and their polluters (although the authors designed the technique pri-

marily for detecting victims). It involves executing every permutation of test cases of length

two (every pair in both orders) in isolation, such as in separate Java Virtual Machine or

Python interpreter processes. We refer to this technique as PAIRWISE. Initially, PAIRWISE

requires an expected outcome for every test case. It could obtain these by executing each

test case in isolation to observe their outcome independent of the possible side-effects of

other test cases. Once every test case has an expected outcome, PAIRWISE executes every

2-permutation of test cases, such that each test case has a turn at being both the first and sec-

ond to be executed in the pair — the candidate polluter and victim, respectively. For more

reliable results, PAIRWISE ought to filter out any pairs with a known NOD flaky test as the

candidate victim because they do not have a reliable expected outcome (although Zhang

et al did not propose this filtering stage in their paper). For a given pair, if the second test

yields an outcome different from expected, PAIRWISE classifies it as a victim and classifies

the first test as one of its polluters.

Previous work has determined that an order-dependency can involve more than two test

cases (Shi et al. 2019), though as part of their empirical study, Zhang et al found that

76% of order-dependencies did involve just two. Considering only pairs of test cases, the

time complexity of PAIRWISE is already quadratic in the size of the test suite and hence

very expensive, and so to consider longer permutations would quickly render the technique

intractable.

2.2 The FLAKE16 Feature Set

Alshammari et al. (2021) introduced FLAKEFLAGGER, a tool for detecting flaky tests using

a machine learning model. To encode test cases for model training and evaluation, they

used a feature set initially consisting of eight numerical test case features and eight boolean

features indicating the presence of test smells (Garousi and Ku̇ċu̇k 2018). However, hav-

ing found the eight test smell features to offer very little information gain, they eventually

discarded them. Their empirical evaluation involving 24 Java projects showed that their

machine learning model achieved a Matthews correlation coefficient (MCC) of 0.65. In our

previous work, we introduced the FLAKE16 feature set for encoding test cases (Parry et al.

2022a). It subsumes the feature set used by the FLAKEFLAGGER tool and introduces addi-

tional metrics such as the number of times the filesystem performed input/output operations

during test case execution and the peak memory usage. Our previous evaluation involving
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26 Python projects showed that models based on FLAKE16 generally outperformed models

based on the FLAKEFLAGGER feature set for detecting both NOD and Victim flaky tests.

3 The CANNIER Approach

CANNIER (maChine leArNiNg assIsted tEst Rerunning) is a high-level approach that com-

bines a rerunning-based flaky test detection technique and one or more machine learning

models. The models must provide a predicted probability that a given test case is flaky.

The general concept behind CANNIER is to use the predicted probabilities as a heuristic to

reduce the problem space for the rerunning-based technique. As attested by our later empir-

ical evaluation (see Section 5), this approach can dramatically reduce the number of test

case executions, and therefore time cost, at the expense of only a minor decrease in detec-

tion performance. The specifics of how CANNIER uses the predicted probabilities depends

on the nature of the rerunning-based technique. Figure 1 provides a visual summary of the

application of CANNIER to the three rerunning-based detection techniques introduced in

Section 2.1.

3.1 Motivating Example

We used the AIRFLOW project, developed by the Apache Software Foundation, as one of

the subjects in our empirical evaluation (apache/airflow at c743b95 2022). Its test suite con-

tains 3,251 test cases as of version 1.10.14. We executed the test suite 2,500 times in its

original order and identified 66 NOD flaky tests. Following our empirical evaluation, we

found that the single-core time cost to detect these flaky tests, using RERUN with a maxi-

mum of 2,500 reruns per test case, is 1.69 × 106 seconds. This is based on the time cost of

each individual test case that we measured on a machine with a 24-core AMD Ryzen 5900X

CPU. Having the same number of virtual cores and a comparable single-core performance,

M5ZN.6XLARGE is arguably the most similar cloud instance offered by Amazon Web Ser-

vices (New EC2 M5zn instances 2022). As of August 2022, Amazon offers this instance

at the on-demand hourly rate of 1.982 USD. This means that to detect the NOD flaky tests

in AIRFLOW using RERUN would take ((1.69 × 106) ÷ 24) ÷ 602 ≈ 19.56 hours and cost

19.56 × 1.982 ≈ 38.77 USD on this instance.

Given the cost in both time and money of using RERUN to detect flaky tests, a developer

may instead opt to use a machine learning model. We trained an extra trees model, a varia-

tion of random forest (Geurts et al. 2006), to detect NOD flaky tests and evaluated it using

stratified 10-fold cross validation. Within AIRFLOW, we found that it misclassified 26 test

cases that were flaky as non-flaky, and 26 test cases that were non-flaky as flaky. With only

40 of the 66 NOD flaky tests cases actually classified as such, the model achieved a preci-

sion of 40÷(40+26) ≈ 61% and a recall of 40÷(40+26) ≈ 61%. In this context, precision

is the percentage of detected flaky tests that are genuinely flaky and recall is the percentage

of genuinely flaky tests that were detected. Therefore, machine learning-based detection

offers a very approximate solution. Because the model uses dynamic features, the time cost

of applying it is approximately equal to the time cost of a single test suite run to produce a

feature vector for each test case. We observed a single-core time cost for this of 7.77 × 102

seconds for AIRFLOW. This would require ((7.77 × 102) ÷ 24) ÷ 602 ≈ 0.01 hours on an

M5ZN.6XLARGE instance, costing 0.01 × 1.982 ≈ 0.02 USD. We do not consider the time

cost associated with applying the extra trees model to each test case. This is because it is

negligible relative to the time taken to execute the test suite (typically less than one second),
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Fig. 1 CANNIER uses the predicted probabilities from one or more machine learning models as a heuristic

to reduce the problem space of a rerunning-based flaky test detection technique. A single machine learning

model is suitable for RERUN and the Classification stage of IDFLAKIES (IDFCLASS) (a). Two machine

learning models are required for PAIRWISE (b)

as we found in our previous work (Parry et al. 2022a). We also do not consider the time

taken to train the extra trees model. This is because the model only needs to be trained once

and can then be applied any number of times. For this reason, we consider training to be an

off-line stage that does not contribute to the time cost of applying the model to test cases.

Rerunning-based detection and machine learning-based detection represent opposite

extremes. As shown in this example, RERUN is very expensive and the extra trees model

is cheap but very approximate. By applying CANNIER to RERUN (CANNIER+RERUN),

developers get a flaky test detection technique that is much cheaper than RERUN and much
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more accurate than the extra trees model. Following our empirical evaluation, we found

that the single-core time cost to detect the 66 NOD flaky tests in AIRFLOW using CAN-

NIER+RERUN is 7.71 × 105 seconds. This would require ((7.71 × 105)÷ 24)÷ 602 ≈ 8.92

hours on an M5ZN.6XLARGE instance at a cost of 8.92 × 1.982 ≈ 17.68 USD. Therefore,

CANNIER reduces the cost in USD of RERUN by 54%. We also found that it misclas-

sified three flaky tests as non-flaky but correctly classified the remaining 62. This leads

to a precision of 63 ÷ (63 + 0) = 100% and a recall of 63 ÷ (63 + 3) ≈ 95%.

This is far more accurate than the extra trees model that only achieved a precision and

recall of 61%.

Our empirical evaluation demonstrates that CANNIER is effective for multiple projects

and the three rerunning-based detection techniques introduced in Section 2.1. For our

whole dataset of 89,668 test cases from 30 projects, we found that CANNIER was able to

reduce the time cost (and therefore monetary cost) by an average of 88% across the three

techniques.

3.2 Single-Model CANNIER

Using CANNIER with a single machine learning model is suitable for reducing the time

cost of RERUN and IDFCLASS (the classification stage of IDFLAKIES). In the case of

RERUN, the flaky test classification problem is that of distinguishing NOD flaky tests

from the rest of the test cases. Since it is a binary problem, NOD flaky tests are the

positive class and the rest of the test cases are the negative. For IDFCLASS, it is telling

apart NOD and victim flaky tests. In this case, NOD flaky tests are the positive class and

victims are the negative. For both RERUN and IDFCLASS, the machine learning model

should provide a predicted probability of belonging to the positive class for each test case.

CANNIER assigns a positive predicted label to a test case if this probability is above

an upper threshold and a negative predicted label if it is below a lower threshold. This

leaves an ambiguous region between the two thresholds. CANNIER delegates any test

cases with predicted probabilities within this ambiguous region to the rerunning-based

technique.

3.3 Multi-Model CANNIER

Using two models, CANNIER can reduce the time cost of PAIRWISE. The first model is

used to predict the probability of each test case being a victim. In other words, it addresses

the classification problem of distinguishing victims from non-victims. The second is used

to do the same but for being a polluter. For both models, CANNIER classifies every test

case above a threshold as the positive class (a victim or a polluter) and every other test case

as the negative (not a victim or not a polluter). In this way, CANNIER produces two non-

mutually exclusive sets, one of victims, TV , and one of polluters, TP (there is no reason

why a test case cannot be both a victim and a polluter (Wei et al. 2022)). Then, CANNIER

applies PAIRWISE with only the members of TP as the first test in each pair and only the

members of TV as the second. Therefore, CANNIER can reduce the time complexity of

PAIRWISE from O(|T |2), where T is the set of all test cases in the test suite, to O(|TV | ×

|TP |), that is considerably faster even when TV and TP are not significantly smaller

than T .
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4 Tooling

To produce our dataset and facilitate our empirical evaluation, we developed our own

suite of automated tools including a plugin for the Python testing framework PYTEST

(Pytest 2022), named PYTEST-CANNIER (pytest-CANNIER 2022), and a command-

line tool named CANNIER-FRAMEWORK (CANNIER framework 2022). The purpose of

PYTEST-CANNIER is to add the functionality to PYTEST necessary for our evaluation.

This includes recording test case outcomes and measuring feature values. The purpose of

CANNIER-FRAMEWORK is to automate every aspect of our evaluation, including executing

PYTEST-CANNIER on the subject test suites, collating raw data, and training and evaluating

machine learning models.

4.1 PYTEST-CANNIER

We decided to target PYTEST due to its compatibility with test suites written for other frame-

works such as UNITTEST (Unittest 2022). PYTEST-CANNIER takes a test suite T as input

and offers four execution modes: Baseline, Shuffle, Features, and Victim. In the Baseline

mode, the plugin executes the test suite as normal. For each test case t ∈ T , PYTEST-

CANNIER records its outcome bt , that is either pass, bt = 0, or fail, bt = 1. In the Shuffle

mode, the plugin randomizes the order of the test cases and records the outcome of every

test case st .

In the Features mode, PYTEST-CANNIER produces a feature vector xt ∈ R
18, for each

test case t . This contains the 16 features of FLAKE16 alongside two additional metrics.

The first of these is Wait Time. This is the amount of time during test case execution

spent waiting for input/output (I/O) operations to complete. Previous research identified

I/O in test cases as being potentially associated with flakiness (Luo et al. 2014). The sec-

ond additional feature is Max. Children. This measures the peak number of concurrently

running child processes. A finding that many empirical studies have in common is that

asynchronous operations and concurrency are very frequent causes of flaky tests (Eck et al.

2019; Lam et al. 2020; Luo et al. 2014; Romano et al. 2021). This was our rationale for

the inclusion of Max. Threads into FLAKE16. However, due to the global interpreter lock

implemented within the CPython interpreter (Glossary 2022), it may be necessary for devel-

opers to achieve concurrency with child processes. Table 1 offers a description of all 18

features. In the Victim mode, the plugin takes a test case v, executes the test sequence 〈v〉,

and records the outcome of v, ov . This is to ascertain the expected outcome of v when

executed in isolation from the rest of the test suite. Following this, PYTEST-CANNIER

executes the sequences 〈p, v〉 for every test case p in T −{v}, while recording the outcome

of v when executed immediately after each p, op,v . This is to identify the polluters of v

where op,v �= ov . For isolation between sequence runs, the plugin executes them in sepa-

rate Python processes (Bell et al. 2018; Zhang et al. 2014). This implements the PAIRWISE

technique with respect to a single candidate victim v. Figure 2 provides a visual summary of

PYTEST-CANNIER.

4.2 CANNIER-FRAMEWORK

4.2.1 Model Training and Evaluation Data

As input, CANNIER-FRAMEWORK takes a subject set of test suites U . With every test suite

T ∈ U as input, the framework executes the plugin NB times in the Baseline mode, resulting
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Table 1 The 18 features measured by PYTEST-CANNIER

# Feature Description

1 Read Count Number of times the filesystem had to perform input (I/O statistics

fields 2022).

2 Write Count Number of times the filesystem had to perform output (I/O statistics

fields 2022).

3 Run Time Elapsed wall-clock time of the whole test case execution.

4 Wait Time Elapsed wall-clock time spent waiting for input/output operations to

complete.

5 Context Switches Number of voluntary context switches.

6 Covered Lines Number of lines covered.

7 Source Covered Lines Number of lines covered that are not part of test cases.

8 Covered Changes Total number of times each covered line has been modified in the last

75 commits.

9 Max. Threads Peak number of concurrently running threads.

10 Max. Children Peak number of concurrently running child processes.

11 Max. Memory Peak memory usage.

12 AST Depth Maximum depth of nested program statements in the test case code.

13 Assertions Number of assertion statements in the test case code.

14 External Modules Number of non-standard modules (i.e., libraries) used by the test case.

15 Halstead Volume A measure of the size of an algorithm’s implementation (Al-Qutaish

and Abran 2010; Peitek et al. 2021; Pontillo et al. 2021).

16 Cyclomatic

Complexity

Number of branches in the test case code (Gill and Kemerer 1991;

Peitek et al. 2021; Pontillo et al. 2021).

17 Test Lines of Code Number of lines in the test case code (Peitek et al. 2021; Pontillo et al. 2021).

18 Maintainability A measure of how easy the test case code is to support and modify

(Welcome to radon’s documenation! 2022; Welker 2001).

in NB values of bt , (bt,1, bt,2, . . . , bt,NB
), for each test case t ∈ T . Similarly, CANNIER-

FRAMEWORK runs every test suite NS times in the Shuffle mode, leading to NS values of

st , (st,1, st,2, . . . , st,NS
). In both cases, the framework counts the number of times that every

test case fails in the Baseline mode Bt , and the number of times in the Shuffle mode St . The

definition of both values is given in the following equation.

Bt =

NB
∑

i=1

bt,i St =

NS
∑

i=1

st,i (1)

CANNIER-FRAMEWORK also executes each test suite NF times with PYTEST-

CANNIER in the Features mode, resulting in NF feature vectors for every test case t

(xt,1, xt,2, . . . , xt,NF
). As an additional input, the framework takes I , a random sample of

nF indices ranging from 1 to NF inclusive without replacement. With this, the framework

produces a mean feature vector Xt (I), to encode each test case according to the following

equation.



   72 Page 10 of 52 Empir Software Eng           (2023) 28:72 

Fig. 2 As input, PYTEST-CANNIER takes a test suite T =(t1, t2, t3) and can be launched in four modes:

Baseline, Shuffle, Features, or Victim. In the Baseline mode, the plugin runs the test suite in its original order

and records the pass/fail outcome of every test case (b1, b2, b3). In the Shuffle mode, PYTEST-CANNIER

executes the test suite in a random order and also records test case outcomes (s1, s2, s3). In the Features

mode, the plugin produces a feature vector for each test case (x1, x2, x3). In the Victim mode, PYTEST-

CANNIER takes a victim test case as an additional input (t1) and initially executes it in isolation to ascertain

its expected outcome (o1). Then, the plugin executes every other test case in a separate process with the

victim immediately following and records its outcome (o2,1, o3,1). This is to identify polluters of the victim

Xt (I) =
1

nF

∑

i∈I

xt,i (2)

For each T ∈ U , the framework runs the Victim mode of PYTEST-CANNIER with

every test case that had a consistent outcome in the Baseline mode (Bv = 0 ∨ Bv =

NB ) and an inconsistent outcome in the Shuffle mode (Bv �= Sv) as the candidate

victim v. The former condition is to ensure that every v has the reliable expected out-

come that PAIRWISE requires. The latter is a time saving measure — if a test case

is consistent in the Shuffle mode then it is very unlikely to be a victim and there-

fore would have no polluters. For the purposes of greater reproducibility and isolation,

CANNIER-FRAMEWORK executes the plugin in a separate Docker container for every run

of a test suite (Docker documentation 2022). Our Dockerfile contains all the commands

needed to reproduce our Docker image and is available as part of the replication package

(CANNIER experiment 2022).

Once the plugin has finished performing the test suite runs, CANNIER-FRAMEWORK

determines a ground-truth label yt,φ , for every test case t in the whole subject set, t ∈
⋃

T ∈U T , and flaky test classification problem φ. Recall from Section 3 that these problems

are: NOD flaky tests versus the rest of the test cases (NOD-vs-Rest, φ = 1), NOD flaky tests

versus victim flaky tests (NOD-vs-Victim, φ = 2), victim flaky tests versus the rest (Victim-

vs-Rest, φ = 3), and polluters versus the rest (Polluter-vs-Rest, φ = 4). Each problem has

a domain Tφ ⊆ T , that is the subset of test cases in a given test suite T that are relevant.

Since the problems are binary classifications, they also have a positive class, T +
φ ⊂ Tφ ,

and a negative class, T −
φ = Tφ − T

+
φ . The ground-truth label for a test case is positive

if it is in the positive class of a problem (yt,φ = 1) and negative otherwise (yt,φ = 0).

For a test case t belonging to test suite T , the following equation defines the ground truth

label yt,φ .

yt,φ =

{

0 if t ∈ T
−

φ

1 if t ∈ T
+

φ

(3)
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Table 2 The four flaky test classification problems

φ Name Domain (Tφ ) Positive Class (T +
φ )

1 NOD-vs-Rest T {t |t ∈ Tφ , 0 < Bt < NB }

2 NOD-vs-Victim {t |t ∈ T , Bt < NB ∧ St > 0} {t |t ∈ Tφ , 0 < Bt < NB }

3 Victim-vs-Rest T {t |t ∈ Tφ , (Bt = 0 ∨ Bt = NB ) ∧ Bt �= St }

4 Polluter-vs-Rest T {p|p ∈ Tφ , ∃v ∈ Tφ − {p}(op,v �= ov)}

For test suite T , the domain Tφ is the subset of T that is relevant to the problem φ. For a specific Tφ , the

negative class for each problem (T −
φ ) is the complement of the positive

For the NOD-vs-Rest problem (φ = 1), the positive class is the set of NOD flaky tests,

that we define as those with an inconsistent outcome in the Baseline mode (0 < Bt < NB ).

The only test cases that are relevant to the NOD-vs-Victim problem (φ = 2) are those that

did not consistently fail during the runs in the Baseline mode (Bt < NB ) and failed at

least once in Shuffle mode (St > 0). The former condition corresponds to the Setup stage

of IDFLAKIES where such test cases would be excluded from further analysis. The latter

corresponds to the Running stage, where any test case that fails at least once goes on to the

Classification stage. For this problem, the positive class is also the set of NOD flaky tests.

For the Victim-vs-Rest problem (φ = 3), the positive class is the set of test cases with a

consistent outcome in the Baseline mode (Bt = 0 ∨ Bt = NB ) and an inconsistent outcome

in the Shuffle mode (Bt �= St ). This represents the set of victims. Finally, for the Polluter-

vs-Rest problem (φ = 4), the positive class is the set of test cases that behaved as polluters

in the Victim mode. Table 2 gives a definition of each problem.

4.2.2 Model Training and Evaluation Procedure

CANNIER-FRAMEWORK follows a general machine learning pipeline for model training

and evaluation. The pipeline leaves the specific model and data balancing technique unspec-

ified, such that it can be instantiated with a choice for both of these components to create

a concrete pipeline. The pipeline performs stratified 10-folds cross validation. This cre-

ates ten folds where 90% of the test cases in the whole subject set are for training and the

other 10% are for evaluation. The class proportion of each fold roughly follows that of

the whole subject set, and since that is highly imbalanced for every classification problem,

the framework applies the data balancing technique to the training set only (Chawla et al.

2002). For each fold, the framework fits the machine learning model with the training set

and applies it to every test case in the evaluation set. For a given problem φ, this results in

a predicted probability P(yt,φ = 1|Xt (I)), of each test case in the evaluation set being of

the positive class. Since the evaluation portion of every fold is unique, after ten folds each

test case in the whole subject set has a prediction. Figure 3 offers an overview of the general

pipeline. Given a lower-threshold ωl and an upper-threshold ωu on the predicted probabil-

ity as further inputs, CANNIER-FRAMEWORK assigns a predicted label zt,φ(I, ωl, ωu), to

every test case, as previously shown in Fig. 1. The following equation defines the predicted

label for a test case, denoted zt,φ .

zt,φ(I, ωl, ωu) =

⎧

⎨

⎩

0 if P(yt,φ = 1|Xt (I)) < ωl

1 if P(yt,φ = 1|Xt (I)) ≥ ωu

yt,φ if ωl ≤ P(yt,φ = 1|Xt (I)) < ωu

(4)
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Fig. 3 CANNIER-FRAMEWORK performs stratified k-folds cross validation upon the set of all test cases

in the subject set,
⋃

T ∈U T . Following this, it applies a data balancing technique to the training portion

of each fold. The framework then trains a machine learning model using the mean feature vectors Xt (I),

and ground-truth labels yt,φ , of every test case t in each training portion. Finally, for each fold, CANNIER-

FRAMEWORK applies the trained model to the feature vectors of every test case in the evaluation portion.

Since the evaluation portion of each fold is unique, every test case ends up with a predicted probability of

being in the positive class, P(yt,φ = 1|Xt (I))
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Using the ground-truth and predicted labels for each test case in a given test suite T , the

framework calculates the frequencies of the four confusion matrix categories: true-positive

(TP), false-positive (FP), false-negative (FN), and true-negative (TN). From these, it calcu-

lates the Matthews correlation coefficient (MCC) to assess the detection performance of the

machine learning model for a given problem φ. The possible values of MCC are the closed

real range between -1 and 1, where 1 indicates a model with perfect agreement between

the ground-truth labels and the predicted labels and 0 indicates a model that is no better

than random guessing of the predicted labels. A model with an MCC of -1 indicates perfect

disagreement between the ground-truth labels and the predicted labels, such that taking a

model with an MCC of 1 and inverting the predicted labels would yield an MCC of -1. We

selected MCC as the overall performance metric, as opposed to F1 score, because it only

produces a high value if the model performs well in terms of all four confusion matrix cate-

gories, whereas F1 score ignores true-negatives (Chicco and Jurman 2020). See Fig. 4 for a

summary of how CANNIER-FRAMEWORK combines PYTEST-CANNIER and the general

machine learning pipeline from Fig. 3 to produce this data. The following equation defines

MCCTφ with respect to the four confusion matrix categories respectively denoted as TPTφ ,

FPTφ , FNTφ , and TNTφ .

TPTφ (I, ωl, ωu) =
∑

t∈Tφ

yt,φ zt,φ(I, ωl, ωu),

FPTφ (I, ωl, ωu) =
∑

t∈Tφ

[1 − yt,φ] zt,φ(I, ωl, ωu),

FNTφ (I, ωl, ωu) =
∑

t∈Tφ

yt,φ [1 − zt,φ(I, ωl, ωu)],

TNTφ (I, ωl, ωu) =
∑

t∈Tφ

[1 − yt,φ] [1 − zt,φ(I, ωl, ωu)],

MCCTφ (I, ωl, ωu) =
TPTφ TNTφ − FPTφ FNTφ

√

(TPTφ + FPTφ )(TPTφ + FNTφ )(TNTφ + FPTφ )(TNTφ + FNTφ )

(5)

4.2.3 Technique Evaluation Procedure

CANNIER-FRAMEWORK evaluates the application of CANNIER to RERUN

(CANNIER+RERUN), the Classification stage of IDFLAKIES (CANNIER+IDFCLASS),

and PAIRWISE (CANNIER+PAIRWISE). We developed a mathematical model, that we

implemented within the framework, to estimate the detection performance and single-core

time cost associated with a set of parameters for the three techniques. CANNIER-

FRAMEWORK uses the ground-truth labels and predicted probabilities for each test from

the NOD-vs-Rest problem (φ = 1) to model CANNIER+RERUN. It uses the data from

the NOD-vs-Victim problem (φ = 2) to model CANNIER+IDFCLASS in an equiva-

lent fashion. In both of these cases, the ground-truth labels represent the output from

the “RERUN/IDFCLASS” block and the predicted probabilities represent the output from

the “Model” block in Fig. 1a. The parameters of CANNIER+RERUN are the lower- and

upper-thresholds on the model prediction, ωl and ωu, the sample size to produce the mean

feature vectors for each test case, denoted nF , and the maximum number of times to
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Fig. 4 An overview of how CANNIER-FRAMEWORK combines PYTEST-CANNIER and the general

machine learning pipeline, with subject set U , random sample I, and thresholds ωl and ωu as input. It

references previously defined figures and equations (e.g., Equ. 1 through 5 and Fig. 2 and 3)
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execute a test case without observing an inconsistent outcome, written as Rmax. For CAN-

NIER+IDFCLASS, the parameters are ωl , ωu, nF , and the percentage of additional failures

to recheck, denoted γ . The framework uses the outcomes from the Victim mode and the

predicted probabilities from the Victim-vs-Rest (φ = 3) and Polluter-vs-Rest (φ = 4) prob-

lems to model CANNIER+PAIRWISE. The outcomes represent the “PAIRWISE” block and

the predicted probabilities represent the “Victim model” and “Polluter model” blocks in

Fig. 1b. For CANNIER+PAIRWISE, the parameters are the threshold for the victim model

ωV , the threshold for the polluter model ωP , and nF .

Given a random sample I of size nF along with ωl and ωu, CANNIER-FRAMEWORK

estimates the detection performance of CANNIER+RERUN and CANNIER+IDFCLASS

as an MCC value. For every test case t in a given test suite T , the framework needs

its individual time cost Ct , and the number of times RERUN is expected to execute it

Rt (I, ωl, ωu), to estimate the time cost of CANNIER+RERUN, CRerun
T

(I, ωl, ωu). It can

find Ct from the output of PYTEST-CANNIER in the Features mode, since this is the third

feature in Table 1. As for Rt (I, ωl, ωu), when P(yt,1 = 1|Xt (I)) is not in the ambigu-

ous region between ωl and ωu, CANNIER+RERUN does not delegate to RERUN and so

it never executes t (Rt (I, ωl, ωu) = 0). Otherwise, when yt,1 = 0, RERUN would exe-

cute t exactly Rmax times since t is not NOD flaky and therefore RERUN would never

observe an inconsistent outcome (Rt (I, ωl, ωu) = Rmax). If yt,1 = 1, RERUN would exe-

cute t until it either observes an inconsistent outcome or reaches a limit of Rmax runs.

We refer to the final run number where either of these conditions are met as rt . In this

case, Rt (I, ωl, ωu) is the expected value of the discrete, finite distribution P(rt = x).

The probability of t giving an inconsistent outcome after exactly x runs is Exact(t, x).

This is the probability of t failing x − 1 times and then passing once, or passing x − 1

times and then failing once. When x < Rmax, P(rt = x) = Exact(t, x). However,

when x = Rmax, P(rt = x) is the probability of t giving an inconsistent outcome after

exactly Rmax runs, Exact(t, Rmax), or not giving an inconsistent outcome after reaching

the limit of Rmax runs. Where E[P ] is the expected value of the distribution P , the def-

inition of the time cost of CANNIER+RERUN, denoted CRerun
T

, is given by the following

equation.

Ct =
1

NF

NF
∑

i=1

xt,i,3,

Exact(t, x) =

(

Bt

NB

)x−1 (

1 −
Bt

NB

)

+

(

1 −
Bt

NB

)x−1
Bt

NB

,

P (rt = x) =

{

Exact(t, x) if 1 < x < Rmax

Exact(t, Rmax) + (1 −
∑Rmax

r=2 Exact(t, x)) if x = Rmax
,

Rt (I, ωl, ωu) =

⎧

⎨

⎩

0 if P(yt,1 = 1|Xt (I)) < ωl ∨ P(yt,1 = 1|Xt (I)) ≥ ωu

Rmax if ωl ≤ P(yt,1 = 1|Xt (I)) < ωu ∧ yt,1 = 0

E[P(rt = x)] if ωl ≤ P(yt,1 = 1|Xt (I)) < ωu ∧ yt,1 = 1

,

CRerun
T (I, ωl, ωu) =

∑

t∈T

Ct Rt (I, ωl, ωu) (6)

To estimate the time cost of CANNIER+IDFCLASS, CiDFClass
T

(I, ωl, ωu), for a given

test suite T , CANNIER-FRAMEWORK requires the number of times that IDFCLASS

is expected to attempt to classify each test case t ∈ T2 as either NOD or a vic-

tim, Ŵt (I, ωl, ωu). As before, when P(yt,2 = 1|Xt (I, ωl, ωu)) is not in the ambiguous

region, CANNIER+IDFCLASS does not delegate to IDFCLASS and so it never classifies

t (Ŵt (I, ωl, ωu) = 0). Otherwise, IDFCLASS will classify a test case after its first failure

during the Classification stage and will reclassify a percentage of the additional failures
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as determined by γ . We assume that any test case undergoing classification by IDFCLASS

has a uniform probability of appearing at any position in the original and modified test run

orders. Under this assumption, the mean length of the truncated original and modified orders

would both be equal to half the size of the test suite. Therefore, the mean time cost of clas-

sifying a single test case is equal to that of one full test suite run, as given by the following

equation.

Ŵt (I, ωl, ωu) =

{

0 ifP(yt,2 = 1|Xt (I)) < ωl ∨ P(yt,2 = 1|Xt (I)) ≥ ωu

1 + γ (St − 1) if ωl ≤ P(yt,2 = 1|Xt (I)) < ωu
,

CiDFClass
T

(I, ωl, ωu) =

⎛

⎝

∑

t∈T2

Ŵt (I, ωl, ωu)

⎞

⎠

∑

t∈T

Ct (7)

CANNIER-FRAMEWORK estimates the detection performance of CANNIER+PAIRWISE

as the ratio of victim-polluter pairs that would be detected by PAIRWISE to all such pairs

in a given test suite T . We selected this simpler metric, as opposed to MCC, because we

assume that CANNIER+PAIRWISE will never incorrectly label a pair of test cases as hav-

ing a victim-polluter relationship when they do not (false-positive). Under this assumption,

this metric is equivalent to true-positive rate (TPR), also known as sensitivity. It has a

range between 0 and 1, where 0 indicates that CANNIER+PAIRWISE detected none of the

victim-polluter pairs and 1 indicates that it detected all of them. Since we designed the

framework to only consider non-NOD flaky tests as candidate victims, such that they all

have a reliable expected outcome, we have sufficient assurance that the assumption holds.

Recall from Section 3.3 that CANNIER+PAIRWISE builds a set of victims TV (I, ωV ),

and polluters TP (I, ωP ), given victim- and polluter-thresholds ωV and ωP . It then exe-

cutes PAIRWISE with only the pairs in TP (I, ωP ) × TV (I, ωV ). CANNIER-FRAMEWORK

builds these sets using the predicted probabilities from the Victim-vs-Rest (φ = 3) and

Polluter-vs-Rest (φ = 4) problems. The framework calculates TPR by dividing the num-

ber of victim-polluter pairs in TP (I, ωP ) × TV (I, ωV ) by the number of such pairs in

T × T . In other words, it divides the number of true-positives (TP) by the number of pos-

itives (P). To know how many pairs are in both sets, CANNIER-FRAMEWORK relies on

the outcomes recorded by PYTEST-CANNIER in the Victim mode. The framework esti-

mates the time cost of CANNIER+PAIRWISE, CPairwise
T

(I, ωV , ωP ), based on the sizes

of both sets and the individual time costs of their members. The definition of TPRT and

the time cost of CANNIER+PAIRWISE, denoted CPairwise
T

, is provided by the following

equation.

TV (I, ωV ) = {v|v ∈ T , P (yt,3 = 1|Xt (I)) >= ωV },

TP (I, ωP ) = {p|p ∈ T , P (yt,4 = 1|Xt (I)) >= ωP },

TPT (I, ωV , ωP ) =
∑

p∈TP (I,ωP )

|{v|v ∈ TV (I, ωV ) − {p}, op,v �= ov}|,

PT =
∑

p∈T

|{v|v ∈ T − {p}, op,v �= ov}|,

TPRT (I, ωV , ωP ) =
TPT (I, ωV , ωP )

PT

,

CPairwise
T

(I, ωV , ωP ) =

⎛

⎝|TP (I, ωP )|
∑

v∈TV (I,ωV )

Cv

⎞

⎠ +

⎛

⎝|TV (I, ωV )|
∑

p∈TP (I,ωP )

Cp

⎞

⎠(8)
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5 Empirical Evaluation

We conducted experiments to answer the following research questions:

RQ1. How effective is machine learning-based flaky test detection?

RQ2. What impact do mean feature vectors have on the performance of machine learning-

based flaky test detection?

RQ3. What contribution do individual features have on the output values of machine

learning models for detecting flaky tests?

RQ4. What impact does CANNIER have on the performance and time cost of rerunning-

based flaky test detection?

5.1 Subject Set

For this paper’s subject set, we used the test suites of the 26 open-source Python projects

studied in our previous work (Parry et al. 2022a)2. We selected these at random from a

list of projects critical to open-source infrastructure created by the Open Source Security

Foundation of (Open source project criticality score (beta) 2022). For this paper, we ran-

domly selected four more projects to improve the generalizability of the results. We used

CANNIER-FRAMEWORK to produce a dataset from these 30 test suites that contains 89,668

tests. We set the framework to perform 2,500 runs of each test suite in the Baseline mode

of PYTEST-CANNIER (NB = 2500), 2,500 runs in the Shuffle mode (NS = 2500), and

30 runs in the Features mode (NF = 30). Table 3 shows each project’s GitHub repository;

the total number of tests (|T |); the number of NOD flaky tests (|T +
1 |), victims (|T +

3 |), and

polluters (|T +
4 |); the number of victim-polluter pairs (

∑

p∈T |{v|v ∈ T −{p}, op,v �= ov}|);

and the combined mean time cost of every test in seconds (
∑

t∈T

[

1
NF

∑NF

i=1 xt,i,3

]

).

The projects of our subject set cover a wide variety of topics. All are hosted on the Python

Package Index (2022) that allows developers to associate them with zero or more “topic clas-

sifiers”. Topic classifiers are multi-level, for example: Software Development :: Libraries

:: Python Modules. A developer may also specify a parent classifier on its own (e.g., just

Software Development). Table 4 lists the topic classifiers of the 30 Python subjects. It also

provides the frequencies of each classifier, taking into account their hierarchical nature.

5.2 Methodology

5.2.1 RQ1. How Effective is Machine Learning-Based Flaky Test Detection?

The motivation behind this question is to establish a baseline for the performance of machine

learning models for detecting flaky tests. While several studies have addressed this question

for NOD flaky tests (Alshammari et al. 2021; Bertolino et al. 2021; Parry et al. 2022a;

Pinto et al. 2020), and we addressed it for victims in our previous work (Parry et al. 2022a),

no previous study has addressed it for polluters. It is important to consider polluters when

answering RQ1 since they offer developers useful information when repairing victim flaky

tests and are a necessary input to techniques for mitigating them (Lam et al. 2020; Parry

et al. 2020; Shi et al. 2019).

2We only reused the projects themselves as subjects. We did not reuse any of the data from our previous study.
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We used CANNIER-FRAMEWORK to evaluate 24 concrete machine learning pipelines

for each of the four flaky test classification problems. We derived these from the combina-

tion of two choices of model type, four choices of model configuration, and three choices

of data balancing technique. These choices form the concrete instantiations of the “Data

Balancing” and “Model” blocks in our general pipeline from Fig. 3. The two model types

Table 3 The 30 open-source Python projects examined in this paper’s study

GitHub repository Tests NOD Victims Polluters Pairs Cost (s)

apache/airflow 3251 66 279 3241 45819 7.77 × 102

celery/celery 2332 − 15 17 24 1.31 × 102

quantumlib/Cirq 12048 − 17 2 32 8.67 × 102

conan-io/conan 3687 − 13 13 18 1.48 × 103

dask/dask 8015 1 1 37 37 1.34 × 103

encode/django-rest-framework 1402 − 1 3 3 2.63 × 103

spesmilo/electrum 542 1 1 2 2 5.99 × 101

Flexget/Flexget 1330 1 4 3 4 1.73 × 103

fonttools/fonttools 3448 1 42 − − 1.19 × 102

graphql-python/graphene 346 − 1 1 1 1.73 × 101

facebookresearch/hydra 1538 − 19 348 952 1.77 × 102

HypothesisWorks/hypothesis 4348 5 6 3699 7401 3.92 × 103

ipython/ipython 807 6 297 796 118869 1.10 × 102

celery/kombu 1024 2 23 20 63 3.62 × 101

apache/libcloud 9809 3 133 471 1686 2.66 × 102

Delgan/loguru 1255 4 21 6 26 6.23 × 101

mitmproxy/mitmproxy 1232 − 18 338 735 3.12 × 101

python-pillow/Pillow 2567 − 26 2 26 9.38 × 101

PrefectHQ/prefect 7035 25 20 227 230 1.56 × 103

PyGithub/PyGithub 711 − 4 678 2712 5.55 × 101

Pylons/pyramid 2633 − 4 252 383 5.98 × 101

psf/requests 535 5 − − − 1.40 × 102

saltstack/salt 2672 12 4 65 65 2.52 × 102

scikit-image/scikit-image 6275 − 12 5882 5890 2.54 × 103

mwaskom/seaborn 1020 − 8 1 7 5.01 × 102

pypa/setuptools 694 1 23 4 4 2.08 × 102

sunpy/sunpy 1857 − 2 9 9 4.31 × 102

tornadoweb/tornado 1159 1 1 − − 4.03 × 101

urllib3/urllib3 1320 15 1 − − 8.57 × 101

xonsh/xonsh 4776 9 19 3114 9459 1.81 × 102

Overall 89668 158 1015 19231 194457 1.99 × 104

The Tests column is the total number of test cases. The following three indicate the number of NOD flaky

tests, Victims, and Polluters. The Pairs column gives the number of victim-polluter pairs. The Cost column

is the combined mean time cost of every test case in seconds. The final row gives the totals for the whole

subject set. Since PYTEST-CANNIER identifies polluters the same way as PAIRWISE, only considering pairs

of test cases, polluters involved in more complex order-dependencies are not included. This is why the table

shows that some projects appear to have victims without polluters
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Table 4 The topic classifiers of the subject projects and their frequencies

Topic classifier Frequency

Communications 1

Education 1

Education :: Testing 1

Internet 5

Internet :: Proxy Servers 1

Internet :: WWW/HTTP 5

Internet :: WWW/HTTP :: WSGI 1

Multimedia 3

Multimedia :: Graphics 3

Multimedia :: Graphics :: Capture 1

Multimedia :: Graphics :: Capture :: Digital Camera 1

Multimedia :: Graphics :: Capture :: Screen Capture 1

Multimedia :: Graphics :: Graphics Conversion 2

Multimedia :: Graphics :: Viewers 1

Scientific/Engineering 4

Scientific/Engineering :: Physics 1

Scientific/Engineering :: Visualization 1

Security 1

Software Development 12

Software Development :: Build Tools 1

Software Development :: Libraries 7

Software Development :: Libraries :: Python Modules 3

Software Development :: Object Brokering 1

Software Development :: Testing 2

System 9

System :: Archiving 1

System :: Archiving :: Packaging 1

System :: Clustering 1

System :: Distributed Computing 4

System :: Logging 1

System :: Monitoring 1

System :: Networking 2

System :: Networking :: Monitoring 1

System :: Shells 1

Text Processing 1

Text Processing :: Fonts 1

Utilities 1

If a project declares derived classifiers we also incremented the frequencies of the parent classifiers. For a

example, if a project declares Internet, Internet :: Proxy Servers, and Software Development :: Libraries, we

would increment the frequencies of Internet, Internet :: Proxy Servers, Software Development, and Software

Development :: Libraries
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we considered were random forest (Breiman 2001; Shi and Horvath 2006) and extra trees

(Geurts et al. 2006) (the latter being a more randomized variant of the former). These are

ensemble models that fit a number of decision trees (Safavian and Landgrebe 1991) on sub-

sets of the training data. We selected these particular model types due to their success in our

previous work (Parry et al. 2022a) and the related work of other authors (Alshammari et al.

2021). The choices of model configuration were four values for the number of decision trees

used by the random forest or extra trees model. These values were 25, 50, 75, and 100. In

our previous work, we only considered random forest and extra trees models with 100 deci-

sion trees — the default value of our selected implementation (Scikit-learn 2022). Finally,

for the three choices of data balancing, we evaluated the synthetic minority oversampling

technique (SMOTE) (Chawla et al. 2002), SMOTE combined with edited nearest-neighbors

(SMOTE+ENN), and SMOTE with Tomek links (Tomek 1976) (SMOTE+Tomek). SMOTE

performs oversampling, meaning it produces synthetic data points of the minority class via

interpolation. The ENN and Tomek techniques on their own perform undersampling, mean-

ing they remove data points of the majority class based on similarity with their neighbors.

The combination of these with SMOTE produces a hybrid balancing approach.

For each of the 24 × 4 = 96 concrete machine learning pipelines, we fixed the fea-

ture sample size at a single sample (nF = 1) and had the framework repeat the model

training and evaluation procedure 30 times (see Fig. 3), using a different random sample

I to produce the mean feature vectors every time. In each instance, this resulted in 30 val-

ues of P(yt,φ = 1) for every test case t and problem φ. To evaluate the performance of

the pipelines, CANNIER-FRAMEWORK needed predicted labels to calculate the confusion

matrix category frequencies and MCC against the ground-truth labels for each problem. To

produce the predicted labels to address this research question, we substituted zt,φ(I, ωl, ωu)

in Eq. 5 for the following definition of zt,φ(I) that assigns a test case to its most likely

class:

zt,φ(I) =

{

0 if P(yt,φ = 1|Xt (I)) < 0.5

1 if P(yt,φ = 1|Xt (I)) ≥ 0.5
(9)

With these predicted labels, we used CANNIER-FRAMEWORK to calculate the confusion

matrix category frequencies and the MCC of the 96 pipelines with respect to each of the

30 subject test suites in turn. We also had the framework calculate this with respect to the

whole subject set for each pipeline by summing the category frequencies for each project

and calculating the overall MCC from this total. This is to provide an individual assessment

with respect to each test suite as well as an overview for the whole subject set. For the per-

project and overall evaluations, CANNIER-FRAMEWORK calculated mean values for the

category frequencies and the MCC over the 30 repeats of model training and evaluation.

This is to offer an evaluation that is more reliable given the non-determinism inherent to

the machine learning models, the data balancing techniques, and potentially the dynamic

feature values.

5.2.2 RQ2. What Impact do Mean Feature Vectors have on the Performance
of Machine Learning-Based Flaky Test Detection?

In previous studies on machine learning-based flaky test detection with dynamic test case

features (Alshammari et al. 2021; Parry et al. 2022a), researchers performed only a single

instrumented test suite run to create the feature vectors. The rationale for this question is

to investigate the impact of using feature vectors that are the mean from multiple instru-

mented test suite runs. In the context of this study, that is multiple runs in the Features mode

of PYTEST-CANNIER. This is to mitigate against the possible variance in the dynamic
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features. As an example, previous studies have found that the line coverage of test cases can

vary across repeated executions (Hilton et al. 2018; Shi et al. 2019; Vysali et al. 2020). Since

three features in Table 1 are based on line coverage, we expect there to be some degree of

noise in their values for each test case that could impact the detection performance of the

model.

We took the best machine learning pipeline (in terms of the overall MCC) for each clas-

sification problem from the previous research question and followed the same methodology

for training and evaluation, except we gave CANNIER-FRAMEWORK a range of values for

nF to produce I between 1 and 15 samples inclusive. With 30 repeats of model training

and evaluation for each value of nF , this resulted in 15 × 30 = 450 rounds of stratified 10-

fold cross validation for each problem. This process enabled us to investigate the correlation

between the number of repeated measurements to produce the mean feature vectors and the

MCC of the resultant model.

5.2.3 RQ3. What Contribution do Individual Features have on the Output Values
of Machine Learning Models for Detecting Flaky Tests?

In the interest of model explainability, we set out to investigate the impact of each individual

feature in Table 1. To address this question, we applied the Shapely Additive Explanations

(SHAP) technique (Lundberg et al. 2020). It leverages concepts from game theory to quan-

tify the contribution of an individual feature to the output value of a machine learning model

for an individual data point. As inputs, SHAP takes a feature matrix and a model and returns

a matrix of SHAP values in the same shape as the feature matrix. The SHAP value at (i, j)

in the matrix represents the contribution of the j th feature on the model output for the ith

data point relative to the mean output value over the dataset. This is such that summing the

rows of the SHAP value matrix and adding the mean output value gives the original model

output values.

In the context of this study, the features are those in Table 1, the data points are test cases,

and the model output values are the predicted probabilities of each test case being in the

positive class for a given flaky test classification problem. As the feature matrix, we used the

mean feature vector for each test case over the 30 runs of PYTEST-CANNIER in the Features

mode (nF = NF ). As the machine learning model, we used CANNIER-FRAMEWORK to

train the best pipeline from RQ1 using the mean feature matrix. We did this for each of the

four classification problems.

Once we had a SHAP value matrix for each problem, we ranked every feature in terms of

their mean absolute SHAP value over every test case. A high value would indicate that the

feature has a significant impact on the model’s decision (regardless of whether the impact is

in favour of the negative class or the positive) and a low value would suggest the opposite.

We then retrained the best pipeline for each problem with just the top 15, 12, 9, 6, and 3

features (with 30 repeats in each case). This is to observe the effect of dropping the less

impactful features on the performance of the model.

5.2.4 RQ4. What Impact Does CANNIER have on the Performance and Time Cost
of Rerunning-Based Flaky Test Detection?

The motivation behind this research question is to investigate if CANNIER is able to

reduce the time cost of rerunning-based flaky test detection techniques while maintaining

good detection performance. For the application of CANNIER to the three techniques from

Section 2.1, we used CANNIER-FRAMEWORK to calculate the detection performance and
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single-core time cost associated with every point in a sample of their parameter spaces.

For CANNIER+RERUN and CANNIER+IDFCLASS, the space represents the values of the

3-tuple (ωl, ωu, nF ), that is, the lower-threshold, the upper-threshold, and the number of

samples to produce the mean feature vectors. In the case of CANNIER+RERUN, since

Rmax (the maximum number of times to execute a test case without observing an inconsis-

tent outcome) is a parameter of the underlying RERUN technique, rather than a parameter

introduced by CANNIER, we kept its value fixed at NB (the number of test suite runs in

the Baseline mode: 2,500). Similarly, for CANNIER+IDFCLASS, we fixed the value of γ

(the percentage of additional failures to recheck) to 20% because it is a parameter of IDF-

CLASS and not one introduced by CANNIER. This particular value was recommended by

the authors of IDFLAKIES (Lam et al. 2019). For the detection performance and time cost

of a given point for CANNIER+RERUN/CANNIER+IDFCLASS, CANNIER-FRAMEWORK

calculated the mean over the 30 sets of predicted probabilities for the NOD-vs-Rest/NOD-

vs-Victim problem from the 30 repeats of model training and evaluation for the given value

of nF from RQ2. For CANNIER+PAIRWISE, the parameter space represents (ωV , ωP , nF ),

the victim-threshold, the polluter-threshold, and the number of samples once more. In this

case, the framework calculated the mean detection performance and time cost over 30 ran-

dom pairs of the 30 sets of predicted probabilities for the Victim-vs-Rest problem and the

30 sets for the Polluter-vs-Rest problem for the given value of nF .

For the sample of points in (ωl, ωu, nF ), we used the values for ωl from 0 to 1 inclusive

with a step of 0.01, the values for ωu from ωl to 1.01 inclusive with a step of 0.01, and the

values for nF in the closed integer range from 1 to 15, except when ωl = 0 ∧ ωu = 1.01,

in which case nF = 0. The reason for starting from ωl and going up to 1.01 for ωu is to

ensure that ωl ≤ ωu always holds and so that CANNIER-FRAMEWORK evaluates the points

where there is no upper-threshold on P(yt,1 = 1|Xt (I)) (see the second clause of Eq. 4).

The reason that nF = 0 when ωl = 0 ∧ ωu = 1.01 is to indicate that the machine learning

model, and therefore feature collection, is redundant because the ambiguous region is the

entire range of P(yt,1 = 1|Xt (I)) under these conditions. Therefore, CANNIER+RERUN

and CANNIER+IDFCLASS reduce to the original rerunning-based RERUN and IDFCLASS

respectively (see the third clause of Eq. 4). As the sample of points in (ωV , ωP , nF ), we

used the values for both ωV and ωP from 0 to 1 inclusive with a step of 0.01. This excludes

1.01, since when one or both thresholds is greater than 1, the set of victims and/or polluters

is empty and therefore PAIRWISE has nothing to do since TV (I, ωV ) × TP (I, ωP ) = ∅.

For nF , the framework considers from 1 to 15, except when ωV = ωP = 0, where

nF = 0. The reason that nF = 0 in this case is to indicate that the model is redundant

because TV (I, ωV ) = TP (I, ωP ) = T and thus CANNIER+PAIRWISE reduces to original

PAIRWISE.

We had CANNIER-FRAMEWORK add the time taken to collect features to the overall

time cost for each point. Since many features are dynamic, they require nF test suite runs to

measure, making the time cost of doing so nF

∑

t∈T Ct for some test suite T . For the points

where nF = 0, where the other parameters render the machine learning model redundant,

this additional time cost is zero. We did not consider the time cost associated with applying

the model to each test case because it is negligible relative to the time taken to execute the

test suite (Parry et al. 2022a). We also did not consider the time taken to train the model as

part of the time cost of applying it. This is because the model only needs to be trained once

and can then be applied any number of times, making training an off-line stage with a cost

that can be amortized across uses.

We used CANNIER-FRAMEWORK to compute the two-dimensional Pareto fronts of

detection performance and time cost, with respect to the whole subject set, for the sample
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of points for CANNIER+RERUN, CANNIER+IDFCLASS, and CANNIER+PAIRWISE. In

this context, the Pareto front represents the subset of points such that, for each point, the

detection performance is the greatest compared to all other points with the same time cost.

To answer this research question, we compared the detection performance and time cost

associated with the point representing the balanced application of CANNIER to the point

where it reduces to the original rerunning-based detection technique, for each of the three

fronts. As the point representing balanced CANNIER, we used the knee point. The knee

point is the point with the smallest Euclidean distance to the utopia point on the Pareto

front (Zavala and Flores-Tlacuahuac 2012). The utopia point represents a “perfect” solu-

tion that doesn’t necessarily exist. In the context of this study, that would be the point with

a detection performance of 1, for either MCC or true-positive rate (TPR), and a time cost

of 0 seconds. For CANNIER+RERUN and CANNIER+IDFCLASS, we also considered the

point where they reduce to pure machine learning-based detection as an additional baseline.

For this special case, we used the point on the Pareto front with the greatest MCC that also

satisfies ωl = ωu. For all points that satisfy this condition, the techniques never defer to

RERUN or IDFCLASS because there is no ambiguous region between the two thresholds.

For CANNIER+PAIRWISE, there is no such point, because it only limits the problem space

for PAIRWISE but nevertheless always defers to it.

5.3 Threats to Validity

When deciding the ground-truth labels, CANNIER-FRAMEWORK could incorrectly label

some flaky tests as non-flaky. We used the framework to execute every test suite 2,500

times in their original test run orders to identify NOD flaky tests and 2,500 times in shuffled

orders to identify victims. Given the non-deterministic nature of flaky tests, it is generally

not possible to label a test case as non-flaky with complete certainty (Harman and O’hearn

2018). We mitigated this issue by having CANNIER-FRAMEWORK perform as many reruns

as possible within the limits of our available computational resources. In total, this stage

required over six weeks of computational time on a computer with a 24-core AMD Ryzen

5900X CPU. While confidence in the label increases with the number of reruns, so too does

the computational cost. In our previous work (Parry et al. 2022a), we found the relation-

ship between the number of detected flaky tests and the number of test suite reruns to be

sublinear. This finding supports another previous study, the authors of which identified a

similar relationship (Alshammari et al. 2021). This implies that continuing to re-execute a

test suite gives diminishing returns with respect to the confidence of labelling a test case as

non-flaky. This encourages us that the overall results of this paper would be the same had

the plugin performed more reruns, because it’s unlikely that it would have detected signifi-

cantly more flaky tests. Furthermore, PYTEST-CANNIER is unlikely to detect certain flaky

test categories by rerunning alone. For example “implementation-dependent” flaky tests

may require changes to standard library implementations to manifest (Shi et al. 2016; Zhang

et al. 2021). The only category we made specific arrangements to detect were victims and

their polluters; other special categories are out of the scope of this paper’s empirical study.

Our concrete machine learning pipelines of the random forest/extra trees model with

SMOTE data balancing and the 18 features in Table 1 may unfairly represent machine

learning-based flaky test detection. A whole host of previous studies (Alshammari et al.

2021; Camara et al. 2021a; 2021b; Haben et al. 2021; Pinto et al. 2020; Pontillo et al.

2022) identified random forest to be the most suitable type of machine learning model for

detecting flaky tests. In our previous work (Parry et al. 2022a), we found that the extra trees

model, a variant of random forest, was better suited for detecting flaky tests in some cases.
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Furthermore, the 18 features are based on the 16 features of FLAKE16 that we found to yield

better detection performance when used to encode test cases compared to the previous state-

of-the-art feature set (Alshammari et al. 2021). This implies that our choice of pipeline and

features is among the most suitable for detecting flaky tests currently in the literature.

There is a chance that CANNIER-FRAMEWORK and PYTEST-CANNIER contain bugs

that may go on to influence the results of our evaluation. Naturally, it is impossible to be

totally sure that any non-trivial software system is totally free of bugs. However, we made

sure to use well-established Python libraries for the bulk of the framework’s important

functionality. These included COVERAGE.PY (Coverage.py 2022) to measure line coverage,

PSUTIL (Psutil documentation 2022) to measure many other dynamic test case proper-

ties, RADON (Welcome to radon’s documenation! 2022) to measure source code metrics,

SCIKIT-LEARN (Scikit-learn 2022) for an implementation of the random forest and extra

trees model, and SHAP (Welcome to the SHAP documenation! 2022) to calculate the SHAP

value matrices for RQ3. These are all popular open-source projects with many contribu-

tors, giving us confidence that any bugs would be identified, documented, and patched in a

timely manner. We also wrote unit tests for greater confidence in the bespoke elements of

CANNIER-FRAMEWORK and PYTEST-CANNIER.

It is possible that the results of our study would not generalize to other Python projects

outside of the 30 that we sampled, or to projects written in other programming languages.

We randomly sampled 30 Python projects from a list of the top-200 most critical to open-

source infrastructure, as determined by the Open Source Security Foundation (Open source

project criticality score (beta) 2022). Part of their metric for determining the criticality of

a project is based on how many other projects declare a dependency on it. Therefore, any

issues caused by flaky tests in these projects could potentially impact a wider portion of

the Python ecosystem. Of course, this does not guarantee that our sample generalizes to all

Python projects, but does give us some assurance that the flaky tests we examined could

represent a more serious problem compared to flaky tests in less critical projects. Without

extending our subject set to include projects written in other languages, we cannot make any

assurances that our results generalize outside of Python. Broadly speaking, however, our

approach is language-agnostic. Considering Table 1, our 18 features could apply to almost

any commonly used programming language. Therefore, we see no compelling reason to

suggest that our results couldn’t be reproduced with projects written in other languages,

such as Java. In addition, it is possible that individual projects in our subject set with sig-

nificantly more test cases than others could bias the overall results. For example, AIRFLOW

had the highest number of NOD flaky tests at 66 — 264% of the second highest. To resolve

this concern, CANNIER-FRAMEWORK calculated performance metrics with respect to each

individual project.

Given the empirical nature of this paper’s study, it may be difficult to reproduce our

results. We took steps to make our methodology as repeatable as possible. Firstly, we

included all scripts and software that we developed to facilitate this study in the replica-

tion package (CANNIER experiment 2022). This includes our Dockerfile and requirements

files for generating Python virtual environments (Virtual environments and packages 2022).

Secondly, any aspects of the study that could be impacted by non-determinism, such as

producing the predicted probabilities of test cases being flaky, we repeated 30 times. As

such, the final results reported in this paper involve taking the mean across these 30

repeats. Finally, where any aspects of CANNIER-FRAMEWORK relied on random number

generators (such as when instantiating machine learning models), we made sure to set the

seed to a constant value to ensure that the results are the same across repeated runs.
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6 Results

6.1 RQ1. How Effective is Machine Learning-Based Flaky Test Detection?

Table 5 shows the top-12 concrete machine learning pipelines (out of 24) for each flaky

test classification problem in terms of overall MCC. Recall from Section 5.2.1 that these

MCC values are with respect to the entire subject set and are the mean over 30 repeats of

model training and evaluation (see Eq. 5). Extra trees appears to be the best model for the

NOD-vs-Rest and Victim-vs-Rest problems, and pipelines using extra trees are consistently

at the top of these tables. For NOD-vs-Victim and Polluter-vs-Rest, the most performant

model appears to be random forest, though with less consistency. In terms of data bal-

ancing, the best pipelines for each problem used plain SMOTE. Unlike SMOTE+Tomek,

SMOTE+ENN did not make it into the top-12 for any problem. In all cases, the negative

gradient of detection performance going down the table is small, such that the difference in

overall MCC between the best pipeline and the 12th best pipeline is not that significant.

Tables 6 and 7 show the per-project and overall confusion matrix category frequencies

(TN, FN, FP, TP) and MCC of the best pipeline for each flaky test classification problem.

Table 6a shows the performance for the NOD-vs-Rest problem. The table lists relatively few

projects with a defined value for MCC because many in the subject set contain zero or only

very few NOD flaky tests (see Table 3). The overall MCC for this problem is 0.53 and the

mean per-project MCC is close at 0.52. Recall that CANNIER-FRAMEWORK calculated the

overall MCC from the overall confusion matrix category frequencies, that are the sum of the

per-project frequencies. An MCC of 1 indicates a perfect model and an MCC of 0 indicates

a model no better than random guessing. Therefore, the detection performance of the best

pipeline for this problem was fairly lackluster. Furthermore, the standard deviation of the

per-project MCC is relatively high at 0.29, suggesting that the performance of the pipeline is

quite variable between projects. This is further evident from the wide range of MCC values

among the different projects. Table 6b shows the results for the NOD-vs-Victim problem.

Once again, the table contains relatively few projects with an MCC value for the same

reason as before. At 0.69, the overall MCC for this problem is greater than that for NOD-

vs-Rest. Also, the standard deviation of the per-project MCC is lower at 0.22. However, the

mean of 0.55 is considerably lower than the overall MCC.

Table 7a gives the performance for the Victim-vs-Rest problem. At 0.52, the overall

MCC is very close to the mean per-project MCC of 0.51 and is comparable to that of NOD-

vs-Rest. Unlike the previous two problems, there are many more projects with a defined

value for MCC, since most test suites in the subject set contained victim flaky tests. Finally,

Table 7b gives the results for the Polluter-vs-Rest problem. While the overall MCC is very

high at 0.95, the mean per-project MCC is much lower at 0.46 and the standard deviation is

the greatest of all four problems at 0.34.
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Table 5 The top-12 pipelines (out of 24) for each flaky test classification problem in terms of overall MCC

Model Trees Balancing MCC

(a) NOD-vs-Rest

ExtraTrees 100 SMOTE 0.532

ExtraTrees 100 +Tomek 0.529

ExtraTrees 75 SMOTE 0.527

ExtraTrees 50 SMOTE 0.526

ExtraTrees 25 SMOTE 0.521

ExtraTrees 50 +Tomek 0.519

ExtraTrees 75 +Tomek 0.519

ExtraTrees 25 +Tomek 0.507

RandomForest 100 SMOTE 0.488

RandomForest 75 SMOTE 0.479

RandomForest 50 SMOTE 0.479

RandomForest 25 SMOTE 0.477

(b) NOD-vs-Victim

RandomForest 75 SMOTE 0.693

RandomForest 100 SMOTE 0.690

ExtraTrees 100 SMOTE 0.689

ExtraTrees 50 SMOTE 0.686

ExtraTrees 75 SMOTE 0.686

RandomForest 50 SMOTE 0.685

RandomForest 75 +Tomek 0.684

RandomForest 25 SMOTE 0.679

RandomForest 100 +Tomek 0.675

ExtraTrees 100 +Tomek 0.673

ExtraTrees 75 +Tomek 0.669

RandomForest 25 +Tomek 0.668

(c) Victim-vs-Rest

ExtraTrees 75 SMOTE 0.520

ExtraTrees 100 SMOTE 0.519

ExtraTrees 50 SMOTE 0.518

ExtraTrees 100 +Tomek 0.515

ExtraTrees 75 +Tomek 0.513

ExtraTrees 50 +Tomek 0.511

ExtraTrees 25 SMOTE 0.510

ExtraTrees 25 +Tomek 0.502

RandomForest 50 SMOTE 0.501

RandomForest 75 SMOTE 0.498

RandomForest 100 SMOTE 0.498

RandomForest 25 SMOTE 0.490



Empir Software Eng           (2023) 28:72 Page 27 of 52   72 

Table 5 (continued)

Model Trees Balancing MCC

(d) Polluter-vs-Rest

RandomForest 100 SMOTE 0.946

RandomForest 75 SMOTE 0.945

RandomForest 50 SMOTE 0.944

RandomForest 25 SMOTE 0.943

RandomForest 100 +Tomek 0.941

ExtraTrees 100 SMOTE 0.941

RandomForest 75 +Tomek 0.940

ExtraTrees 75 SMOTE 0.940

RandomForest 50 +Tomek 0.940

ExtraTrees 50 SMOTE 0.939

RandomForest 25 +Tomek 0.937

ExtraTrees 100 +Tomek 0.937

The MCC values are the mean over 30 repeats of model training and evaluation, rounded to three significant

figures

6.2 RQ2. What Impact doMean Feature Vectors have on the Performance
of Machine Learning-based Flaky Test Detection?

Figure 5 shows the relationship between the sample size to produce the mean feature vectors

(nF ) and the overall detection performance (MCC) of the best pipeline for each classifica-

tion problem. Recall from Section 4.2.2 that CANNIER-FRAMEWORK encoded test cases

with feature vectors that were the mean of a random sample (I) of the output from 30 test

suite runs in the Features mode of PYTEST-CANNIER. Figure 5a shows the relationship for

the NOD-vs-Rest problem. At 0.86, the Spearman’s rank correlation coefficient (ρ) indi-

cates that the relationship is positive. However, the gradient (a) of the line of best fit (in red)

is small at just 0.0014. The MCC when nF = 15 on the line of best fit is only 4% greater

than the MCC when nF = 1. For the NOD-vs-Victim problem, Fig. 5b indicates that the

relationship is weaker with a correlation coefficient of 0.71. In this case, the gradient is even

smaller (0.0007), with just a 1% increase in MCC from nF = 15 to nF = 1.

Figure 5c shows the relationship for Victim-vs-Rest. The correlation coefficient of 1.00

indicates a very strong positive correlation, as is clear from the plot. The gradient of the

line of best fit is comparable to NOD-vs-Rest (0.0019). In the case of the Polluter-vs-Rest

problem, Fig. 5d also shows a very strong positive relationship between nF and MCC with

a corresponding correlation coefficient of 1. However, the gradient is very small (0.0008).
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Table 6 The per-project and overall results of the best pipelines from Table 5 for the NOD-vs-Rest (a) and

NOD-vs-Victim (b) problems

Project TN FN FP TP MCC

(a) NOD-vs-Rest (μ = 0.52, σ = 0.29)

airflow 3159 26 26 40 0.59

celery 2332 − − − ⊥

Cirq 12048 − − − ⊥

conan 3687 − 0 − ⊥

dask 8014 1 0 − ⊥

django-rest-... 1402 − − − ⊥

electrum 540 1 1 − ⊥

Flexget 1329 1 − − ⊥

fonttools 3447 1 − − ⊥

graphene 346 − − − ⊥

hydra 1538 − − − ⊥

hypothesis 4341 5 2 − 0.00

ipython 800 2 0 4 0.76

kombu 1022 2 − − ⊥

libcloud 9806 3 − − ⊥

loguru 1250 2 1 2 ⊥

mitmproxy 1232 − − − ⊥

Pillow 2567 − 0 − ⊥

prefect 7005 13 5 12 0.58

PyGithub 711 − − − ⊥

pyramid 2633 − − − ⊥

requests 530 2 − 3 0.82

salt 2660 4 0 8 0.82

scikit-image 6275 − 0 − ⊥

seaborn 1020 − − − ⊥

setuptools 693 1 − − ⊥

sunpy 1857 − − − ⊥

tornado 1157 1 1 − ⊥

urllib3 1295 13 10 2 0.16

xonsh 4763 5 4 4 0.45

Overall 89460 83 50 75 0.53

(b) NOD-vs-Victim (μ = 0.55, σ = 0.22)

airflow 250 11 25 45 0.66

celery 14 − 1 − ⊥

Cirq 17 − − − ⊥

conan 13 − 0 − ⊥

dask 1 − − − ⊥

django-rest-... 0 − 1 − ⊥

electrum 0 1 1 0 ⊥
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Table 6 (continued)

Project TN FN FP TP MCC

Flexget 3 1 1 − ⊥

fonttools 42 − − − ⊥

graphene 1 − − − ⊥

hydra 19 − − − ⊥

hypothesis 6 3 0 0 ⊥

ipython 296 2 1 4 0.71

kombu 23 1 − − ⊥

libcloud 133 3 0 − ⊥

loguru 20 1 1 2 0.55

mitmproxy 6 − 0 − ⊥

Pillow 26 − 0 − ⊥

prefect 17 1 3 16 0.79

PyGithub 4 − − − ⊥

pyramid 4 − − − ⊥

requests − 0 − 4 ⊥

salt 3 1 1 11 0.69

scikit-image 12 − − − ⊥

seaborn 8 − 0 − ⊥

setuptools 23 0 0 1 ⊥

sunpy 2 − − − ⊥

tornado 0 − 1 − ⊥

urllib3 − 3 1 12 0.12

xonsh 14 3 5 6 0.33

Overall 957 32 42 99 0.69

The tables give the confusion matrix category frequencies (i.e., column labels TN, FN, FP, TP), rounded

to the nearest integer, and the Matthews correlation coefficient (i.e., column label MCC). Captions give the

mean (μ) and standard deviation (σ ) of the per-project MCC. Values are the mean over 30 repeats of model

training and evaluation. Dashes indicate that the value is exactly zero. The “⊥” symbol indicates that the

value is not defined, which was caused by a division by zero when a project does not have any test cases of

certain categories

6.3 RQ3. What Contribution do Individual Features have on the Output Values
of Machine LearningModels for Detecting Flaky Tests?

Figure 6 shows the SHAP values for the four flaky test classification problems as beeswarm

plots. In each plot, every feature in Table 1 is represented by a row, with each value in its

corresponding column in the SHAP value matrix plotted as a colored dot, for which there is

one for every test case in the whole subject set. The horizontal position of each dot repre-

sents the SHAP value itself, with negative SHAP values towards the left and positive SHAP

values towards the right, as indicated by the x-axis labels. Recall from Section 5.2.3 that a

positive SHAP value means the contribution of the feature to the model output value from

the best pipeline for a given test case and problem was positive (increased it). Conversely, a

negative SHAP value means the contribution was negative (decreased it). In this context, the

output value is the predicted probability of the test case belonging to the positive class of the
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Table 7 The per-project and overall results of the best pipelines from Table 5 for the Victim-vs-Rest (a) and

Polluter-vs-Rest (b) problems

Project TN FN FP TP MCC

(a) Victim-vs-Rest (μ = 0.51, σ = 0.24)

airflow 2880 81 92 198 0.67

celery 2316 9 1 6 0.59

Cirq 12030 3 1 14 0.88

conan 3666 8 8 5 0.38

dask 8013 1 1 − ⊥

django-rest-... 1400 1 1 − ⊥

electrum 539 1 2 − ⊥

Flexget 1325 3 1 1 ⊥

fonttools 3395 6 11 36 0.82

graphene 345 1 0 − ⊥

hydra 1513 13 6 6 0.37

hypothesis 4341 3 1 3 0.57

ipython 377 206 133 91 0.05

kombu 1000 12 1 11 0.68

libcloud 9612 86 64 47 0.38

loguru 1225 5 9 16 0.69

mitmproxy 1213 13 1 5 0.50

Pillow 2530 18 11 8 0.37

prefect 7014 16 1 4 0.40

PyGithub 707 1 0 3 ⊥

pyramid 2629 3 0 1 ⊥

requests 535 − − − ⊥

salt 2668 4 0 − ⊥

scikit-image 6261 5 2 7 0.69

seaborn 1009 8 3 0 ⊥

setuptools 668 5 3 18 0.81

sunpy 1855 2 − − ⊥

tornado 1156 1 2 − 0.00

urllib3 1318 1 1 − ⊥

xonsh 4753 14 4 5 0.36

Overall 88292 529 361 486 0.52

(b) Polluter-vs-Rest (μ = 0.46, σ = 0.34)

airflow 0 5 10 3236 0.01

celery 2311 15 4 2 0.20

Cirq 12032 1 14 1 0.12

conan 3621 6 53 7 0.25

dask 7947 0 31 37 0.73

django-rest-... 1397 3 2 − ⊥

electrum 525 2 15 − 0.01
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Table 7 (continued)

Project TN FN FP TP MCC

Flexget 1327 3 0 − ⊥

fonttools 3443 − 5 − ⊥

graphene 344 1 1 − ⊥

hydra 1186 13 4 335 0.97

hypothesis 563 11 86 3688 0.91

ipython 7 165 4 631 0.13

kombu 1002 15 2 5 0.42

libcloud 9315 195 23 276 0.73

loguru 1249 6 0 0 ⊥

mitmproxy 880 71 14 267 0.82

Pillow 2534 2 31 0 0.02

prefect 6781 184 27 43 0.33

PyGithub 17 8 16 670 0.58

pyramid 2355 52 26 200 0.82

requests 530 − 4 − ⊥

salt 2605 16 2 49 0.85

scikit-image 331 191 62 5691 0.71

seaborn 990 1 29 0 0.01

setuptools 686 2 4 2 0.39

sunpy 1835 6 13 2 0.21

tornado 1156 − 3 − ⊥

urllib3 1310 − 10 − ⊥

xonsh 1608 102 54 3012 0.93

Overall 69889 1077 548 18154 0.95

See Table 6 caption for more details

problem. This means if a feature contributes positively to the output, it “pushes” the model

towards predicting the positive class, and if it contributes negatively, it pushes towards the

negative class. The color of the dots represent the feature value relative to the mean feature

value, with lower values colored blue and higher values colored red. For example, a blue

dot on the left side of the x-axis indicates a test case with a relatively low feature value and

a positive contribution. The vertical positions of the dots represent density, such that dots

with similar SHAP values “swarm” around one another. From top-to-bottom, the features

are in descending order of mean absolute SHAP value. In other words, the features closer

to the top have a greater overall impact on the model output.

For the NOD-vs-Rest problem, the contribution of AST Depth, Run Time, Read Count,

Context Switches, Write Count, Wait Time, Max. Children, and Test Lines of Code appears

positive (towards predicting NOD flaky) when their values are high and negative when their

values are low. This is evident from how the dots on the left side of their rows in Fig. 6a

are mostly blue and those on the right are mostly red. Conversely, the contribution of Asser-

tions appears negative when high and positive when low, as visualized by mostly red dots

on the left and mostly blue on the right. The contribution of some features appears more

nuanced. For example, when the contribution of Covered Change is negative its value is
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Fig. 5 Plots showing that the relationship between the number of samples to produce the mean feature vectors

(nF ) and the overall detection performance (MCC) of the best machine learning pipeline is positive but

variable in terms of strength and gradient across the four problems. MCC values are the mean over 30 repeats.

Captions give the coefficients of the red least-squares best-fit line (MCC = a × nF + b) and the Spearman’s

rank correlation coefficient (ρ)

mostly high. However, when its contribution is positive its value is mixed. For the NOD-

vs-Victim problem (Fig. 6b), Context Switches, Run Time, Max. Threads, Read Count,

Write Count, Cyclomatic Complexity, External Modules, Max. Children, and Halstead Vol-

ume appear to contribute positively (towards predicting NOD flaky) when their values are

high and negatively when low. The contribution of the individual features for this problem

appear considerably less well-defined compared to NOD-vs-Rest. There are some similar-

ities between the results for these two problems, such as Run Time, Read Count, Context

Switches, Write Count, and Max. Children mostly contributing positively when high and

negatively when low.
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Fig. 6 SHAP values for the four flaky test classification problems as beeswarm plots. These are based on

the models from best pipelines for each problem from RQ1. Blue dots represent lower feature values and

red dots represent higher feature values. Purple dots represent feature values closer to the mean value. The

vertical positions of the dots represent density, such that dots with similar SHAP values “swarm” around one

another. Features are in descending order of their mean absolute SHAP value, which each beeswarm plot

gives in parentheses. This is a measure of their overall impact on the model’s decision
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As shown by Fig. 6c the contribution of Maintainability, Write Count, Read Count, and

Wait Time features appear broadly positive when their values are high (towards predicting

victim flaky) and negative when low. On the other hand, Source Covered Lines, Cyclomatic

Complexity, and Halstead Volume show the opposite behavior with moderate consistency.

The impact of the features for this problem differs significantly compared to the NOD-

vs-Victim problem. For example, the Maintainability and Cyclomatic Complexity feature

appears to have nearly the exact opposite contribution pattern. Finally, for the Polluter-vs-

Rest problem (Fig. 6d), Run Time, Assertions, Halstead Volume, and Wait Time contribute

positively when high. Covered Lines, Source Covered Lines, and Max. Children show the

opposite contribution.

Figure 7 shows how the overall MCC of the best pipelines for each problem decreases

as the number of features used by CANNIER-FRAMEWORK to train the model are reduced,

starting from the least impactful in terms of mean absolute SHAP value. For example, for the

NOD-vs-Rest problem, the MCC value at 6 on the x-axis corresponds to a model that only

considers AST Depth, Max. Threads, Run Time, Max. Memory, Read Count, and Context

Switches. Initially, the detriment to detection performance is fairly small as only the least

important features are pruned. However, at around 9 features, the overall MCC begins to

plummet quite considerably for every problem.

Fig. 7 The relationship between the overall MCC of the best machine learning pipelines for each flaky test

classification problem and the number of top features used by CANNIER-FRAMEWORK to train the model in

terms of mean absolute SHAP value. On the left side of the plot, only the less impactful features are removed,

which has little effect on detection performance. Towards the right, the more impactful features are dropped,

resulting in a significant reduction of MCC. MCC values are the mean over 30 repeats of model training and

evaluation
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6.4 RQ4. What Impact Does CANNIER have on the Performance and Time Cost
of Rerunning-Based Flaky Test Detection?

Figure 8 shows the Pareto fronts of overall detection performance and time cost for the

application of CANNIER to the three rerunning-based detection techniques (see Eqs. 5,

6, 7, and 8). From right-to-left, the first pin on each curve is at the point representing the

original rerunning-based technique (where the machine learning model becomes redun-

dant). The second is at the point representing the balanced application of CANNIER (the

knee point). Tables 8, 9, and 10 give the per-project and overall results at this point. For

CANNIER+RERUN and CANNIER+IDFCLASS, the third is at the point representing pure

machine learning-based detection (greatest MCC where ωl = ωu). Above each pin in square

brackets is the detection performance and time cost associated with the point (its coordinates

on the axes). Below in parentheses are its parameters.

Figure 8a and Table 8a give the results for CANNIER+RERUN. As shown by the figure,

the time cost associated with the point representing balanced CANNIER+RERUN (middle

pin) is 89% lower than the time cost associated with the point representing original RERUN

(right pin). At 0.92, the MCC at the balanced CANNIER+RERUN point is significantly

greater than the MCC at the point representing pure machine learning-based detection (left

pin), which is 0.55. As shown by the table, the per-project MCC is very consistent. Naturally,

the MCC at the original RERUN point is exactly 1, since the predicted labels are the same

as the ground-truth labels in this case (see Eq. 4). Furthermore, the time cost at the pure

machine learning point is significantly lower than the time cost at the other points of interest.

This is because the only time cost associated with this point is that of collecting feature data.

These results demonstrate that applying CANNIER to RERUN can significantly reduce its

time cost while maintaining a detection performance that is far greater than the extra trees

model alone.

Figure 8b and Table 8b show the results for CANNIER+IDFCLASS. As shown by the

figure, the general picture is similar to CANNIER+RERUN but somewhat attenuated. The

reduction in time cost from original IDFCLASS to balanced CANNIER+IDFCLASS is 84%,

slightly less than that for CANNIER+RERUN. In addition, the difference in MCC between

the balanced CANNIER+IDFCLASS point (0.97) and the pure machine learning point (0.71)

is slightly less significant. The per-project MCC is broadly consistent, as shown by the table.

The overall implications of these results are the same as before, namely that applying CAN-

NIER to IDFCLASS scarifies a minimal degree of detection performance for a considerable

reduction in time cost.

Figure 8c and Table 8c give the results for CANNIER+PAIRWISE. Again, the overall

story is similar to the two prior techniques. In this case, the drop in time cost between

original PAIRWISE and balanced CANNIER+PAIRWISE is the greatest at 92%. Furthermore,

the true-positive rate (TPR) at the point representing balanced CANNIER+PAIRWISE is

very high at 0.94. Yet, the table shows that the per-project detection performance varies

significantly, far more than the previous two techniques. This could be explained by the

relatively high variance in the per-project detection performance of the machine learning

pipeline for the Polluter-vs-Rest problem (see Table 7b).
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Fig. 8 The Pareto fronts of detection performance and time cost for the application of CANNIER to the

three rerunning-based detection techniques. From right-to-left, the first pin on each curve is at the point

representing the original rerunning-based technique. The second is at the point representing the balanced

application of CANNIER. For CANNIER+RERUN (a) and CANNIER+IDFCLASS (b), the third is at the

point representing pure machine learning-based detection. There is no third pin for CANNIER+PAIRWISE (c)

because it is not possible to use a pure machine learning-based approach in this context (see Section 5.2.4).

Above each pin in square brackets is the detection performance and time cost with respect to the whole

subject set. Below in parentheses are the parameters
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Table 8 The per-project and overall results for CANNIER+RERUN

Time cost (seconds)

Project TN FN FP TP MCC CANNIER+ Original

airflow 3185 3 − 63 0.98 7.71 × 105 1.69 × 106

celery 2332 − − − ⊥ 8.53 × 104 3.28 × 105

Cirq 12048 − − − ⊥ 2.32 × 105 2.17 × 106

conan 3687 − − − ⊥ 2.42 × 105 3.70 × 106

dask 8014 − − 1 1.00 3.01 × 105 3.34 × 106

django-rest-... 1402 − − − ⊥ 8.85 × 104 6.57 × 106

electrum 541 1 − − ⊥ 5.12 × 104 1.39 × 105

Flexget 1329 1 − − ⊥ 7.25 × 104 4.32 × 106

fonttools 3447 1 − − ⊥ 1.09 × 104 2.97 × 105

graphene 346 − − − ⊥ 2.55 × 103 4.31 × 104

hydra 1538 − − − ⊥ 2.34 × 104 4.42 × 105

hypothesis 4343 4 − 1 ⊥ 1.68 × 106 9.57 × 106

ipython 801 0 − 6 0.98 5.04 × 104 2.63 × 105

kombu 1022 1 − 1 ⊥ 1.27 × 104 9.05 × 104

libcloud 9806 1 − 2 ⊥ 5.00 × 103 6.66 × 105

loguru 1251 2 − 2 ⊥ 4.73 × 104 1.48 × 105

mitmproxy 1232 − − − ⊥ 2.11 × 103 7.79 × 104

Pillow 2567 − − − ⊥ 2.89 × 104 2.35 × 105

prefect 7010 2 − 23 0.96 4.05 × 105 3.80 × 106

PyGithub 711 − − − ⊥ 1.41 × 104 1.39 × 105

pyramid 2633 − − − ⊥ 1.10 × 103 1.49 × 105

requests 530 0 − 5 1.00 8.48 × 104 3.46 × 105

salt 2660 1 − 11 0.96 8.75 × 104 6.27 × 105

scikit-image 6275 − − − ⊥ 5.73 × 105 6.36 × 106

seaborn 1020 − − − ⊥ 6.41 × 104 1.25 × 106

setuptools 693 1 − − ⊥ 1.40 × 105 4.75 × 105

sunpy 1857 − − − ⊥ 3.89 × 105 1.08 × 106

tornado 1158 1 − − ⊥ 6.44 × 103 1.01 × 105

urllib3 1305 3 − 12 0.89 3.53 × 104 2.13 × 105

xonsh 4767 1 − 8 0.94 2.94 × 104 4.50 × 105

Overall 89510 24 − 134 0.92 5.54 × 106 4.91 × 107

The table gives the confusion matrix categories, rounded to the nearest integer, and the MCC at the point in

the parameter space representing balanced CANNIER+RERUN (ωl = 0.07, ωu = 1.01, nF = 15). It also

gives the time cost (in seconds) at this point (CANNIER+) and at the point representing original RERUN

(Original). The time cost is significantly reduced when using CANNIER. Values are the mean over 30

repeats of model training and evaluation. Dashes indicate that the value is exactly zero. The “⊥” symbol

indicates that the value is not defined, which was caused by a division by zero when a project does not have

any test cases of certain categories
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Table 9 The per-project and overall results for CANNIER+IDFCLASS

Time cost (seconds)

Project TN FN FP TP MCC CANNIER+ Original

airflow 275 3 − 53 0.97 9.22 × 106 7.24 × 107

celery 15 − − − ⊥ 6.95 × 104 2.06 × 105

Cirq 17 − − − ⊥ 3.23 × 104 4.47 × 106

conan 13 − − − ⊥ 2.47 × 104 4.84 × 105

dask 1 − − − ⊥ 1.87 × 104 6.60 × 105

django-rest-... 1 − − − ⊥ 1.00 × 106 9.66 × 105

electrum 1 1 − 0 ⊥ 1.11 × 103 3.95 × 102

Flexget 4 1 − 0 ⊥ 1.44 × 106 1.75 × 106

fonttools 42 − − − ⊥ 2.91 × 104 2.48 × 106

graphene 1 − − − ⊥ 2.42 × 102 4.27 × 103

hydra 19 − − − ⊥ 2.93 × 104 1.31 × 106

hypothesis 6 1 − 2 0.85 6.32 × 105 9.55 × 105

ipython 297 0 − 5 0.99 1.80 × 104 7.84 × 105

kombu 23 1 − − ⊥ 4.63 × 103 1.38 × 105

libcloud 133 1 − 2 ⊥ 8.73 × 104 8.74 × 106

loguru 21 0 − 3 0.98 4.15 × 104 2.35 × 105

mitmproxy 6 − − − ⊥ 2.61 × 103 3.70 × 104

Pillow 26 − − − ⊥ 2.55 × 103 1.51 × 104

prefect 20 − − 17 1.00 7.84 × 105 1.04 × 106

PyGithub 4 − − − ⊥ 7.82 × 102 3.11 × 102

pyramid 4 − − − ⊥ 8.37 × 102 3.54 × 104

requests − − − 4 ⊥ 1.81 × 104 1.61 × 104

salt 4 − − 12 1.00 1.26 × 106 1.33 × 106

scikit-image 12 − − − ⊥ 4.89 × 105 6.98 × 105

seaborn 8 − − − ⊥ 7.64 × 104 1.29 × 105

setuptools 23 − − 1 1.00 7.53 × 104 1.95 × 105

sunpy 2 − − − ⊥ 6.20 × 103 1.94 × 105

tornado 1 − − − ⊥ 6.05 × 102 4.03 × 101

urllib3 1 0 − 15 0.99 1.25 × 104 1.13 × 104

xonsh 19 1 − 8 0.95 5.18 × 105 5.75 × 105

Overall 999 8 − 123 0.97 1.59 × 107 9.98 × 107

The table gives the confusion matrix categories, rounded to the nearest integer, and the MCC at the point in

the parameter space representing balanced CANNIER+IDFCLASS (ωl = 0.18, ωu = 1.01, nF = 14). It also

gives the time cost (in seconds) at this point (CANNIER+) and at the point representing original IDFCLASS

(Original). See Table 8 caption for more details

7 Discussion

7.1 RQ1. How Effective is Machine Learning-based Flaky Test Detection?

As shown by Table 5, there is not much difference in terms of overall MCC between con-

secutive pipelines in the top-12 for each classification problem. Nonetheless, there are some
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patterns that have emerged from our choice of pipeline configurations. For NOD-vs-Rest

and Victim-vs-Rest, it appears that extra trees is the clear winner for the type of model,

consistently occupying the top positions in both tables. Extra trees is a more randomized

variant of random forest, an ensemble model based on decision trees (Breiman 2001; Geurts

Table 10 The per-project and overall results for CANNIER+PAIRWISE

Time cost (seconds)

Project TP P TPR CANNIER+ Original

airflow 45490 45819 0.99 2.60 × 106 5.05 × 106

celery 7 24 0.31 2.95 × 104 6.12 × 105

Cirq 30 32 0.94 1.15 × 105 2.09 × 107

conan − 18 − 2.13 × 105 1.09 × 107

dask 1 37 0.03 2.39 × 105 2.15 × 107

django-rest-... 0 3 0.07 4.92 × 104 7.37 × 106

electrum − 2 − 7.57 × 103 6.49 × 104

Flexget 2 4 0.43 1.70 × 104 4.60 × 106

fonttools − − ⊥ 1.93 × 104 8.19 × 105

graphene − 1 − 3.66 × 102 1.19 × 104

hydra 839 952 0.88 3.48 × 104 5.44 × 105

hypothesis 4071 7401 0.55 2.07 × 106 3.41 × 107

ipython 112497 118869 0.95 1.56 × 105 1.78 × 105

kombu 44 63 0.70 8.20 × 103 7.42 × 104

libcloud 984 1686 0.58 1.42 × 105 5.23 × 106

loguru 3 26 0.13 3.77 × 103 1.56 × 105

mitmproxy 90 735 0.12 1.13 × 104 7.68 × 104

Pillow 23 26 0.88 4.57 × 104 4.82 × 105

prefect 103 230 0.45 5.29 × 105 2.19 × 107

PyGithub 2703 2712 1.00 1.45 × 104 7.89 × 104

pyramid 262 383 0.68 4.34 × 103 3.15 × 105

requests − − ⊥ 6.63 × 103 1.50 × 105

salt 50 65 0.78 2.96 × 104 1.34 × 106

scikit-image 5887 5890 1.00 6.30 × 106 3.19 × 107

seaborn 5 7 0.72 8.31 × 104 1.02 × 106

setuptools 4 4 1.00 1.76 × 104 2.89 × 105

sunpy − 9 − 1.48 × 105 1.60 × 106

tornado − − ⊥ 3.05 × 103 9.35 × 104

urllib3 − − ⊥ 7.90 × 103 2.26 × 105

xonsh 9442 9459 1.00 1.15 × 105 1.73 × 106

Overall 182538 194457 0.94 1.30 × 107 1.73 × 108

The table gives the number of detected victim-polluter pairs (TP), the total number of such pairs (P), and

the true-positive rate (TPR) at the point in the parameter space representing balanced CANNIER+PAIRWISE

(ωV = 0.06, ωP = 0.09, nF = 9). It also gives the time cost (in seconds) at this point (CANNIER+) and at

the point representing original PAIRWISE (Original). See Table 8’s caption for more details about the entities

in this table



   72 Page 40 of 52 Empir Software Eng           (2023) 28:72 

et al. 2006; Safavian and Landgrebe 1991; Shi and Horvath 2006). Both fit individual trees

on a random subset of the features from a random sample of the data points from the train-

ing data. The major difference between the two models is how nodes in the decision tree

are split. Random forest uses an optimal split, whereas extra trees uses a random split. The

additional randomness introduced by extra trees trades increased bias for reduced variance.

Increased bias means the model may fail to recognize relationships between feature data

and labels, known as underfitting. Reduced variance means the model may be less sensitive

to noise and outliers, avoiding overfitting. The fact that extra trees was more performant

with respect to NOD-vs-Rest and Victim-vs-Rest could suggest that this particular trade-off

was more beneficial when tackling these two problems, compared to NOD-vs-Victim and

Polluter-vs-Rest. The reason for this however would require further investigation.

The pipelines with more trees tended to yield greater detection performance than those

of the same model type and balancing but with fewer trees. This is expected, since the moti-

vation behind random forest and extra trees is to fit decision trees with decoupled prediction

errors, such that taking an average of their individual predictions leads to some errors can-

celling out. Therefore, it stands to reason that more trees would lead to greater performance.

Of course, increasing the number of trees can only improve the model up to a point — and,

moreover, there are some instances in our results where more trees did not lead to better

performance.

Plain SMOTE (without additional underbalancing) appeared to yield better pipelines

compared to SMOTE+ENN and SMOTE+Tomek. Recall from Section 5.2.1 that SMOTE

(Chawla et al. 2002) synthetically increases the number of data points in the minority

class via interpolation. However, the combination of SMOTE with additional underbalanc-

ing techniques produces both synthetic members of the minority class but also discards

some members of the majority class. It could be that the removal of real data points was

detrimental to the performance of the pipelines that used these techniques, though further

investigation would be required to be sure.

Table 6b shows the per-project and overall results of the best pipeline for the NOD-vs-

Victim problem. There is a fairly significant difference between the overall MCC of 0.69

and the per-project mean MCC of 0.55. Recall that CANNIER-FRAMEWORK calculates the

overall MCC from the sum of the per-project confusion matrix category frequencies. This

disparity is probably caused by the individual results for IPYTHON and AIRFLOW having a

disproportionate impact on the overall result since they have significantly more victim flaky

tests than the other subject projects (see Table 3). This is also seen in Table 7b for Polluter-

vs-Rest, though in this case the difference between the mean and overall MCC is much

larger. Once again, this is likely due to the influence of individual projects with relatively

many polluters.

The per-project MCC varies quite considerably, with a standard deviation ranging from

0.22 to 0.34 across the four problems. We would expect that projects with fewer flaky tests

would have a poorer MCC than those with more, simply because they have fewer positive

examples to train the model. However, our results do not appear to show this trend. There-

fore, further investigation is required to fully understand why the MCC for some projects is

so much greater than that of others.

7.2 RQ2. What Impact doMean Feature Vectors have on the Performance
of Machine Learning-based Flaky Test Detection?

Our conclusion for RQ2, as illustrated by Fig. 5, is that increasing the sample size to produce

the mean feature vectors increases the overall MCC of the best pipeline for the four flaky test
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classification problems. This is not surprising, given how the literature has already estab-

lished a degree of non-determinism in some of the dynamic features in Table 1 (Hilton et al.

2018; Shi et al. 2019; Vysali et al. 2020). What is more interesting is how weak the effect on

MCC appears to be, despite being clearly positive, as illustrated by the very small gradient

of the line of best fit. Despite this, at the point representing balanced CANNIER for all three

flaky test detection techniques in RQ4, the number of samples to produce the mean feature

vectors (nF ) is fairly high (15, 14, and 9 for CANNIER+RERUN, CANNIER+IDFCLASS,

and CANNIER+RERUN, respectively). This suggests that the added time cost of performing

the extra feature measurements may be a worthwhile trade-off for the increased detection

performance.

7.3 RQ3. What Contribution do Individual Features have on the Output Values
of Machine LearningModels for Detecting Flaky Tests?

Figure 6 gives the SHAP value beeswarm plots based on the best pipelines for the four flaky

test classification problems. These visualize the contribution of the 18 features in Table 1

towards the output value of the model for a given test case. It is important to remember

that random forest and extra trees are not causal models and therefore it is not appropriate

to infer causality by applying SHAP without considering confounding (Dillon et al. 2021).

Furthermore, as demonstrated by our results for RQ1, the detection performance of the

models is limited and therefore the SHAP values may not even offer a reliable insight into

the correlations between the feature values and the probability of a test case being flaky.

Despite this, some of our findings support general intuition and the consensus of the flaky

test literature.

For the NOD-vs-Rest problem, we found that Wait Time appears to contribute positively

to the extra trees model output (towards predicting NOD flaky) when its value is high and

negatively when low. This feature measures the elapsed wall-clock time spent waiting for

input/output (I/O) operations to complete. Many empirical studies have pointed to “asyn-

chronous waiting” as a leading cause of NOD flaky tests (Eck et al. 2019; Lam et al. 2020;

Luo et al. 2014; Romano et al. 2021), where a test case waits for an insufficient amount

of time for an asynchronous operation, such as I/O, to complete. We also found Context

Switches and Max. Children to have a similar contribution pattern. Both of these features

are associated with concurrency, another leading cause of flakiness as attested by the same

studies. Furthermore, Read Count and Write Count, that measure the number of times the

filesystem performed input and output respectively, also appear to contribute positively to

the model output when high and negatively when low. Previous work has identified I/O

itself as a cause of flaky tests (Luo et al. 2014), but this behavior could also be related to

asynchronous waiting, since Wait Time is time spent waiting for I/O and could correlated

with Read Count and Write Count.

For NOD-vs-Rest and NOD-vs-Victim, Run Time has a positive contribution when high

and a negative contribution when low and ranks highly in terms of overall contribution

(i.e., the mean absolute SHAP value). In their evaluation of FLAKEFLAGGER, Alshammari

et al. (2021) also found the execution time of test cases to be correlated with the probabil-

ity of being NOD flaky. However, they were unable to establish any casual link. For the

Victim-vs-Rest problem, Write Count, Read Count, and Wait Time seem to contribute have

a similar contribution pattern, but to varying degrees of consistency. Since these features are

associated with I/O, this correlation could be explained by the relationship between filesys-

tem activity and victim flaky tests established in previous studies (e.g., (Bell et al. 2015;

Biagiola et al. 2019; Gambi et al. 2018; Luo et al. 2014; Zhang et al. 2014)).
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Fig. 9 Two test cases with different values for the AST depth feature. This feature measures the maximum

depth of nested program statements

Seven of the 18 features are static, meaning they are based on the test case code and

do not require a test case execution to measure. One of these is AST Depth that measures

the maximum depth of nested program statements. Figure 9 compares two test cases with

different values for the AST depth feature. In terms of mean absolute SHAP value, AST

Depth was the most impactful for the NOD-vs-Rest problem. While no previous study has

examined the relationship between AST Depth and flakiness, intuitively we might expect a

high AST Depth to be associated with a higher chance of flakiness. This is simply because

a test case with a higher AST Depth is likely to be more complex and therefore offer more

opportunities for flakiness to arise. The beeswarm plot for NOD-vs-Rest appear to broadly

support this notion yet the plots for the other problems do not indicate a clear relationship.

This suggests that AST Depth may be correlated with the probability of a test case being

NOD flaky.

There appear to be some tentative relationships between the contribution patterns of fea-

tures for the four problems. For NOD-vs-Rest and NOD-vs-Victim, the contribution of Run

Time, Read Count, Context Switches, Write Count, and Max. Children are broadly positive

when high and negative when low. This could be due to the positive class being the same
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for both problems and the negative class of NOD-vs-Victim being a subset of the negative

class of NOD-vs-Rest. Moreover, the contribution pattern of the features for the NOD-vs-

Victim differs significantly that of the Victim-vs-Rest problem. As we saw in Section 6.3,

the Maintainability and Cyclomatic Complexity features appear to have nearly opposite con-

tribution patterns between the two problems. This is expected, because the positive class of

Victim-vs-Rest is the negative of NOD-vs-Victim, and the negative class of Victim-vs-Rest

is a superset of the positive of NOD-vs-Victim.

It is clear from Fig. 7 that dropping the less impactful features (in terms of mean absolute

SHAP value) has little impact on the detection performance of the best pipeline for each

problem. Since the time to fit a random forest/extra trees model grows linearly with the

number of features, this is a useful result for expediting the training stage. This is not directly

relevant to the conclusions of this paper’s study however, as we are not concerned with

the time cost of model training since that is performed off-line from the perspective of a

developer using the CANNIER approach.

7.4 RQ4. What Impact Does CANNIER have on the Performance and Time Cost
of Rerunning-Based Flaky Test Detection?

We presented CANNIER+IDFCLASS as a drop-in replacement for the Classification stage

of IDFLAKIES. In theory, the combination of the NOD-vs-Rest and Victim-vs-Rest models

could be a substitute for the entire IDFLAKIES pipeline. This could be realized as CAN-

NIER+IDFLAKIES, a multi-model approach with a multi-label output: NOD, Victim, or

Rest (non-flaky). In practice, the difficulty arises when either of the models are ambiguous

for a given test case. To delegate the prediction for such a test case to IDFLAKIES in this

hypothetical scenario, CANNIER+IDFLAKIES would need to rerun the entire test suite in

different orders until the test case fails or the upper-limit is reached. This corresponds to

the Running stage of IDFLAKIES. As with the single-model CANNIER+IDFCLASS given

in the paper, it would then execute the prefix of the failing test order, representing the

Classification stage of IDFLAKIES. Naturally, with even a handful of ambiguous cases, the

hypothetical multi-model CANNIER+IDFLAKIES would be unlikely to noticeably reduce

the time cost of the Running stage, but would reduce the time cost of the Classification

stage in the same way as the existing single-model CANNIER+IDFCLASS. Therefore, the

benefit of CANNIER+IDFLAKIES is effectively the same as CANNIER+IDFCLASS, since

the latter makes no attempt to expedite the Running stage. For these reasons, we opted to

focus on CANNIER+IDFCLASS due to its simplicity and the fact that it would require fewer

modifications to IDFLAKIES to implement.

As shown in Fig. 8a and Table 8, for the point representing balanced CANNIER+RERUN,

the lower-threshold (ωl) is very low at 0.07 and the upper-threshold (ωu) is at its maximum

value of 1.01. The latter means that there effectively is no upper-threshold on the predicted

probability (see the second clause of Eq. 4). Figure 10 illustrates the distribution of pre-

dicted probabilities for test cases in, and gives the frequencies of, each confusion matrix

category, for each of the four flaky test classification problems. We produced this figure

from the results of RQ1, such that the figure for each classification problem corresponds

to its respective table in Tables 6 and 7. Figure 10a focuses on the NOD-vs-Rest problem.

The distribution for true-negatives (TN) is focused largely around 0 and represents the vast

majority of test cases. Furthermore, the distribution for false-negatives (FN) appears highly

separable from true-negatives. This might explain why ωl is so low, because it means CAN-

NIER+RERUN labels most true-negative test cases as negative and prevents them from being

delegated to RERUN, significantly reducing time cost. It also means CANNIER+RERUN
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Fig. 10 The distribution of predicted probabilities for test cases in, and the frequencies of, each confusion

matrix category, for each of the four flaky test classification problems. The data is based on the best pipelines

from RQ1. Whiskers represent the range from the 5th to the 95th percentile and boxes represent the 25th to

the 75th. Middle lines represent the median (50th)

labels only a handful of false-negatives as negative, limiting the reduction in detection per-

formance. The distribution for true-positives (TP) is clearly different from false-positives

(FP) but not as easily separable. However, there are few test cases in both categories rela-

tive to true-negatives. Therefore, by setting ωu to its maximum value, CANNIER+RERUN

makes no false-positive predictions, ensuring no decrease in detection performance at the

expense of a minor increase in time cost. This could explain why there are no false-positive

predictions in Table 8.

Figure 10b illustrates the distribution of predicted probabilities for NOD-vs-Victim. The

situation for this problem and the thresholds for the point representing balanced CAN-

NIER+IDFCLASS is very similar to NOD-vs-Rest and CANNIER+RERUN. The biggest

difference is that the frequency of the true-negative category for NOD-vs-Victim is two

orders of magnitude smaller than that for NOD-vs-Rest. The distribution for true-negatives

also spreads much further into the distribution for false-negatives. This may explain why

the lower-threshold for CANNIER+IDFCLASS is greater at 0.18 and why the reduction in

time cost from IDFCLASS to CANNIER+IDFCLASS is smaller.

Figure 10c and d are for Victim-vs-Rest and Polluter-vs-Rest respectively. Once again,

the overall picture is similar for both problems. That is, the true-negative category contains

the vast majority of test cases and its distribution is broadly separable from the false-negative

category. This explains why the victim-threshold (ωV ) and polluter-threshold (ωP ) for the

balanced CANNIER+PAIRWISE point are low at 0.06 and 0.08 respectively. Uniquely for

Polluter-vs-Rest, the true-positive distribution appears very distinct from the false-positive



Empir Software Eng           (2023) 28:72 Page 45 of 52   72 

distribution. Perhaps because this problem has significantly more positive examples in the

dataset compared to the other problems, the machine learning model can discern unseen

positive cases with greater confidence.

7.5 Implications

7.5.1 Researchers

Our findings for RQ1 extend the existing body of work in machine learning-based flaky test

detection into the detection of polluter test cases. Identifying polluters is vital for mitigating

test-order dependencies (Lam et al. 2020; Parry et al. 2020; Shi et al. 2019) and so our results

demonstrate the wider applicability of machine learning models for tackling flaky tests.

Our results for RQ2 (and supported by RQ4) demonstrate that using mean feature vectors

can improve the detection performance of machine learning models. We therefore suggest

that researchers consider the implications of this when evaluating machine-learning based

techniques that use dynamic features. Our results for RQ3 tentatively identify correlations

between test case metrics and the probability of a test case being flaky. This is an important

foundation for future work in elevating flaky test detection techniques to comprehensive

flaky test root causing techniques, a vital intermediate step towards automated flaky test

repair. While such root causing and repair techniques exist (Lam et al. 2019; Terragni et al.

2020; Wei et al. 2022), they are expensive and limited in scope.

7.5.2 Developers

Our findings for RQ4 demonstrate that CANNIER is a “best of both worlds” approach

between rerunning-based and machine learning-based flaky test detection. As shown by

Fig. 8, CANNIER reduces time cost by an average of 88% across the three rerunning-based

techniques while maintaining good detection performance. For developers, this means not

having to trade high time cost for limited detection performance. Furthermore, while we

used the knee-point of the Pareto front to represent CANNIER in our evaluation, developers

could customize the approach towards lower time cost or greater detection performance by

selecting a different point.

8 RelatedWork

Luo et al. (2014) performed one of the earliest empirical studies of test flakiness. Using 51

projects of the Apache Software Foundation as subjects, they classified 201 commits that

repaired flaky tests into 10 categories based on the cause of the flakiness. The most common

cause they identified was related to waiting for asynchronous operations. For example, a test

case that launches a thread to perform input/output (I/O) and waits a fixed amount of time

for it to finish may fail when it takes longer than expected. One of our findings for RQ3

was that the amount of time spent waiting for I/O operations to complete was positively

correlated with the probability of a test case being NOD flaky.

Gruber et al. (2021) repeatedly executed the test suites of 22,352 open-source projects

and automatically identified 7,571 flaky tests. Like our study, these projects were primarily

written in the Python programming language. They randomly sampled 100 NOD flaky tests

in their dataset to classify their causes using the categories introduced by Luo et al. (2014).
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Unlike Luo et al, they found causes related to networking and randomness to be the most

prevalent.

Bell et al. (2018) presented an automated technique, called DEFLAKER, for detecting

NOD flaky tests. The key advantage of DEFLAKER over RERUN is that it does not require

repeated test case executions. Instead, the technique takes advantage of a project’s history

in a version control system. When a test case that passed on a previous version of the

software now fails, and does not cover modified code, DEFLAKER labels it as flaky. Natu-

rally, DEFLAKER requires a test suite run with code instrumentation to measure coverage.

Detecting flaky tests using extra trees models with CANNIER-FRAMEWORK also requires

an instrumented run to measure coverage and the other metrics in Table 1. In both cases,

this test suite run introduces time overhead. However, DEFLAKER requires a run every

time a change is made, whereas CANNIER-FRAMEWORK requires at least one to produce

encodings for each test case that would likely remain relevant over a series of changes.

Furthermore, DEFLAKER can only detect flaky tests after they fail. In contrast, the models

trained by the CANNIER-FRAMEWORK can detect flaky tests preemptively.

Pinto et al. (2020) and Bertolino et al. (2021) both presented machine learning-based

flaky test detection techniques based purely on static features of the test case code. Both

techniques encoded test cases using a bag-of-words approach. This represents test cases as

sparse vectors where each element corresponds to the frequency of a particular identifier or

keyword in its source code. Pinto et al used additional static features such as the number

of lines of code. Bertolino et al used a k-nearest neighbor classifier (Keller et al. 1985) for

the machine learning model and Pinto et al evaluated a range of different models, including

random forest. They found random forest to yield the best detection performance, of which

we use the extra trees variant in this paper’s study, having found it to be the most effective in

our prior work (Parry et al. 2022a). Alshammari et al. (2021) presented FLAKEFLAGGER, a

detection technique using a random forest model and encoding test cases with a feature set

containing a mixture of static and dynamic test case metrics. Their evaluation showed that

their feature set offered a 347% improvement in overall F1 score compared to Pinto et al’s

purely static feature set at the cost of a single instrumented test suite run to measure the

dynamic features. For this reason, we included both static and dynamic test metrics in our

feature set instead of relying on purely static features.

Shi et al. (2019) presented IFIXFLAKIES, a technique for automatically generating

patches for victim flaky tests. Their approach uses delta-debugging (Zeller and Hildebrandt

2002) to identify a victim’s polluters and other test cases that may contain the statements

needed to repair the victim, known as cleaners. CANNIER+PAIRWISE could provide a drop-

in replacement for this aspect of IFIXFLAKIES. However, we cannot say for certain if our

approach would be faster than using delta-debugging because we have not yet evaluated it

in this context.

Lam et al. (2019) presented IDFLAKIES, a technique for detecting flaky tests and clas-

sifying them as either NOD or Victim. The overall process involves repeatedly executing a

test suite in a modified order (e.g., shuffled) to identify flaky test cases. Following this, the

tool enters a Classification stage where it attempts to determine the category of each flaky

test. In this paper’s study, we evaluated the application of CANNIER to the Classification

stage of this tool (CANNIER+IDFCLASS). Our empirical results demonstrated that CAN-

NIER was able to significantly reduce the execution time overhead of the Classification

stage at minimal detriment to its detection performance.
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9 Conclusion and FutureWork

This paper expanded the existing work on machine learning-based flaky test detection and

introduced CANNIER, an approach for significantly reducing the time cost of rerunning-

based detection techniques by combining them with machine learning models. Initially,

using a variety of machine learning pipelines and a feature set of 18 static and dynamic test

case metrics, we performed a baseline evaluation of machine learning-based detection on

our dataset of 89,668 test cases from 30 Python projects. We evaluated their performance

with respect to detecting NOD flaky tests, victim flaky tests, and polluter test cases. Our

results suggested that the performance of the machine learning models was lackluster and

variable between projects. We then went on to investigate the impact of mean feature vec-

tors on machine learning-based flaky test detection. We identified a positive relationship

between the sample size to produce the mean feature vectors and the detection perfor-

mance of the machine learning model. In the interest of model explainability, we applied

the SHAP technique (Lundberg et al. 2020) to quantify the contribution of each individual

feature to the output value of the model. While this technique can only reveal correlations

and is not appropriate for inferring causality, we made several findings that support both the

general intuition of developers and results from the flaky test literature. Finally, we evalu-

ated CANNIER’s impact on three rerunning-based methods for flaky test detection RERUN,

the Classification stage of IDFLAKIES, and PAIRWISE. We found that CANNIER was able

to significantly reduce time cost at the expense of only a minor decrease in detection

performance.

As future work, we intend to further investigate the features associated with test flaki-

ness. In doing so, we will consider applying causal inference techniques (Yao et al. 2021)

for a deeper understanding into the processes that lead to test flakiness. We will also

consider evaluating the performance of machine-learning-based detection with respect to

more specific categories of flaky tests, such as “implementation-dependent” flaky tests (Shi

et al. 2016; Zhang et al. 2021). Finally, we plan to evaluate the efficiency and effective-

ness of integrating CANNIER into a wider range of existing flaky test techniques, such as

IFIXFLAKIES (Shi et al. 2019).
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Zhang S, Jalali D, Wuttke J, Muşlu K, Lam W, Ernst MD, Notkin D (2014) Empirically revisiting the

test independence assumption. In: Proceedings of the international symposium on software testing and

analysis (ISSTA), pp 385–396

Zhang P, Jiang Y, Wei A, Stodden V, Marinov D, Shi A (2021) Domain-specific fixes for flaky tests with

wrong assumptions on underdetermined specifications. In: Proceedings of the international conference

on software engineering (ICSE), pp 50–61

airflow/test (2022) airflow/test local client.py at c743b95. https://github.com/apache/airflow/blob/

c743b95a02ba1ec04013635a56ad042ce98823d2/tests/api/client/test local client.py#L127

apache/airflow at c743b95 (2022). https://github.com/apache/airflow/tree/c743b95a02ba1ec04013635a56ad0

42ce98823d2

ipython/test (2022) ipython/test async helpers.py at 95d2b79. https://github.com/ipython/ipython/blob/

95d2b79a2bd889da7a29e7c3cf5f49c1d25ff43d/IPython/core/tests/test async helpers.py#L135

pytest-CANNIER (2022). https://github.com/flake-it/pytest-cannier

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Owain Parry I am a PhD student at the University of Sheffield, UK,

where I am part of the testing research group. My research focuses

on software testing, specifically techniques for detecting and miti-

gating flaky tests. My other research interests include automatic test

generation and machine learning.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://radon.readthedocs.io/en/stable/index.html
https://radon.readthedocs.io/en/stable/index.html
https://shap.readthedocs.io/en/stable/index.html
https://shap.readthedocs.io/en/stable/index.html
https://github.com/apache/airflow/blob/c743b95a02ba1ec04013635a56ad042ce98823d2/tests/api/client/test_local_client.py#L127
https://github.com/apache/airflow/blob/c743b95a02ba1ec04013635a56ad042ce98823d2/tests/api/client/test_local_client.py#L127
https://github.com/apache/airflow/tree/c743b95a02ba1ec04013635a56ad042ce98823d2
https://github.com/apache/airflow/tree/c743b95a02ba1ec04013635a56ad042ce98823d2
https://github.com/ipython/ipython/blob/95d2b79a2bd889da7a29e7c3cf5f49c1d25ff43d/IPython/core/tests/test_async_helpers.py#L135
https://github.com/ipython/ipython/blob/95d2b79a2bd889da7a29e7c3cf5f49c1d25ff43d/IPython/core/tests/test_async_helpers.py#L135
https://github.com/flake-it/pytest-cannier


Empir Software Eng           (2023) 28:72 Page 51 of 52   72 

Gregory M. Kapfhammer Innovating in technical areas such as

software engineering and software testing, I teach courses, conduct

research, write papers and a blog, give presentations, create software,

and serve organizations. Working as an Associate Professor in the

Department of Computer Science at Allegheny College, I am an asso-

ciate editor for the Journal of Software: Evolution and Process, an

academic editor for the PeerJ Computer Science journal, a program

committee member for conferences like the International Conference

on Software Testing, Verification and Validation and the International

Conference on Automated Software Engineering, and a reviewer for

journals like Transactions on Software Engineering.

Michael Hilton I am an associate teaching professor with the Insti-

tute for Software Research, in the School of Computer Science

at Carnegie Mellon University. I am the director for the Software

Engineering Minor and the Software Engineering Concentration.

My research is focused on making the world better for developers.

Currently one area of interest for me is investigating flaky tests.

Phil McMinn I am a Professor of Software Engineering at the

University of Sheffield, UK, where I lead the software testing

research group. My research focuses on software testing and search-

based software engineering (SBSE). I have received funding for

my research projects from the Engineering and Physical Sciences

Research Council (EPSRC) and Meta (Facebook).



   72 Page 52 of 52 Empir Software Eng           (2023) 28:72 

Affiliations

Owain Parry1 ·Gregory M. Kapfhammer2 ·Michael Hilton3 ·Phil McMinn1

Gregory M. Kapfhammer

gkapfham@allegheny.edu

Michael Hilton

mhilton@cmu.edu

Phil McMinn

p.mcminn@sheffield.ac.uk

1 University of Sheffield, Sheffield, UK

2 Allegheny College, Meadville, PA, USA

3 Carnegie Mellon University, Pittsburgh, PA, USA

http://orcid.org/0000-0002-0917-1274
mailto: gkapfham@allegheny.edu
mailto: mhilton@cmu.edu
mailto: p.mcminn@sheffield.ac.uk

	Evaluating flaky test detection combining rerunning and ML models
	Abstract
	Introduction
	Background
	Rerunning-Based Flaky Test Detection
	Rerun
	iDFlakies
	Pairwise

	The Flake16 Feature Set

	The CANNIER Approach
	Motivating Example
	Single-Model CANNIER
	Multi-Model CANNIER

	Tooling
	pytest-CANNIER
	CANNIER-Framework
	Model Training and Evaluation Data
	Model Training and Evaluation Procedure
	Technique Evaluation Procedure


	Empirical Evaluation
	Subject Set
	Methodology
	RQ1. How Effective is Machine Learning-Based Flaky Test Detection?
	RQ2. What Impact do Mean Feature Vectors have on the Performance of Machine Learning-Based Flaky Test Detection?
	RQ3. What Contribution do Individual Features have on the Output Values of Machine Learning Models for Detecting Flaky Tests?
	RQ4. What Impact Does CANNIER have on the Performance and Time Cost of Rerunning-Based Flaky Test Detection?

	Threats to Validity

	Results
	RQ1. How Effective is Machine Learning-Based Flaky Test Detection?
	RQ2. What Impact do Mean Feature Vectors have on the Performance of Machine Learning-based Flaky Test Detection?
	RQ3. What Contribution do Individual Features have on the Output Values of Machine Learning Models for Detecting Flaky Tests?
	RQ4. What Impact Does CANNIER have on the Performance and Time Cost of Rerunning-Based Flaky Test Detection?

	Discussion
	RQ1. How Effective is Machine Learning-based Flaky Test Detection?
	RQ2. What Impact do Mean Feature Vectors have on the Performance of Machine Learning-based Flaky Test Detection?
	RQ3. What Contribution do Individual Features have on the Output Values of Machine Learning Models for Detecting Flaky Tests?
	RQ4. What Impact Does CANNIER have on the Performance and Time Cost of Rerunning-Based Flaky Test Detection?
	Implications
	Researchers
	Developers


	Related Work
	Conclusion and Future Work
	Declarations
	References
	Affiliations


