
This is a repository copy of Deep Residual Compensation Convolutional Network without
Backpropagation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198786/

Version: Accepted Version

Proceedings Paper:
Alotaibi, Mubarakah and Wilson, Richard Charles orcid.org/0000-0001-7265-3033 (2023)
Deep Residual Compensation Convolutional Network without Backpropagation. In:
International Joint Conference on Neural Networks. IEEE Computer Society

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Deep Residual Compensation Convolutional

Network without Backpropagation

1st Mubarakah Alotaibi

Computer Science

University of York, Taif University

York, UK, Taif, Saudi Arabia

mmma512@york.ac.uk

2nd Richard C Wilson

Computer Science

University of York

York, UK

richard.wilson@york.ac.uk

Abstract—PCANet and its variants provided good accuracy
results for classification tasks. However, despite the importance
of network depth in achieving good classification accuracy, these
networks were trained with a maximum of nine layers. In
this paper, we introduce a residual compensation convolutional
network, which is the first PCANet-like network trained with
hundreds of layers while improving classification accuracy. The
design of the proposed network consists of several convolutional
layers, each followed by post-processing steps and a classifier.
To correct the classification errors and significantly increase the
network’s depth, we train each layer with new labels derived from
the residual information of all its preceding layers. This learning
mechanism is accomplished by traversing the network’s layers
in a single forward pass without backpropagation or gradient
computations. Our experiments on four distinct classification
benchmarks (MNIST, CIFAR-10, CIFAR-100, and TinyIma-
geNet) show that our deep network outperforms all existing
PCANet-like networks and is competitive with several traditional
gradient-based models.

Index Terms—PCANet, DCTNet, DCCNet, CCANet, OSNet,
LDANet, Multi-layer PCANet, Image Classification

I. INTRODUCTION

A. Background and Related Works

Deep learning is a non-task-specific learning technique that

uses hierarchical structures to automatically learn representa-

tions from raw data [1]. Since Alexnet [14] won the 2012

ImageNet challenge, convolutional neural networks (CNNs)

have been widely used for image classification with great

success. VGG [19], ResNet [10] and Network in network [16]

are a few examples of standard CNNs. Despite their success,

CNNs are usually trained with a large number of parameters,

requiring intensive parameter updates and a lot of data for

training, which might increase the computational cost even

with GPU-equipped computing resources [7].

Chan et al. [3] presented PCANet as an alternative to deep

CNNs for classification tasks on small datasets. The network

structure comprises two cascaded principal component anal-

ysis (PCA) layers followed by binary hashing, block-wise

histogram and a classifier. Unlike CNNs, PCANet learns its

filter bank in a non-iterative layer-by-layer fashion through

PCA applied to image-based patches. This training mechanism

provides a faster training time advantage to PCANet over

conventional CNNs. With its simple architecture, PCANet has

achieved state-of-the-art performance across several datasets,

including MNIST, extended Yale B, AR and FERET.

The success of PCANet has inspired a family of related

strategies. Generally speaking, PCANet-related research has

fallen into one of two categories: those focusing on improving

the features representation process or those attempting to

increase network depth. The work in this paper fits within

the second category.

In an effort to enhance PCANet’s feature representation,

several articles studied networks that maintained PCANet’s

fundamental structure while producing different features using

different convolutional filters. DCTNet [18], CCANet [20]

and ICANet [22] are examples of PCANet-like networks that

create their filter banks using unsupervised approaches. The

LDANet [3], DCCNet [6] and OSNet [8] are a few examples

of those that use supervised approaches to produce their filter

banks. DFSNet [7] is a good example of a network that uses

semi-supervised filters.

In order to increase the network depth, several studies have

attempted to address PCANet’s primary issue, the features

explosion problem, which limits its depth to only two layers.

The block-wise histogram is one factor that contributes to

this problem, as the number of bins required to calculate

the histogram features grows exponentially with the number

of filters in the second stage. Fan et al. [5] significantly

reduced PCANet’s features by replacing the histogram pool-

ing with second-order pooling. The per-channel convolution

mechanism is another factor that contributes to the increasing

dimensionality problem in PCANet. PCANet+ [17] provided

an alternative solution to this issue by proposing a filter

ensemble mechanism that aggregates the feature maps over

all channels, similar to CNNs. By adopting CNN-like filters,

as in [17], replacing PCANet’s binarisation step with the z-

score method and using second-order pooling and late fusion,

Alotaibi and Wilson [2] were able to expand PCANet depth to

nine layers and outperform the original design. In contrast to

prior studies that aimed to increase network depth by tackling

the dimensionality issue, our objective is to explore the design

of a hundreds-layer PCANet-like network by optimising the

classification process at each layer.

B. Proposed Network

In this article, we present a residual compensation con-

volutional learning framework to achieve accuracy from a

considerably increased depth while simultaneously correcting

network errors as we traverse it. The proposed network in-

herits the simplicity of PCANet-like networks and is trained

in a single forward-pass without gradient computations or

backpropagation. A comprehensive description of the network

architecture, along with its training procedures, is described

in Section II. The experimental section (III) consists of three

subsections. In Section III-B, we evaluate the performance

of the proposed network on MNIST, CIFAR-10, CIFAR-100

and TinyImageNet against gradient-based and non-gradient

architectures without data augmentation. Section III-C exam-

ines the influence of several network parameters, such as the

number of filters (III-C1) and the learning rate (III-C2), on the

accuracy of the proposed model. The final subsection (Section

III-D) addresses the use of data augmentation to improve the

model’s accuracy. Finally, the conclusions and future works

are discussed in Section IV.

II. NETWORK ARCHITECTURE

A. Problem Formulation

Consider a classification problem with N training images

X(1) ∈ R
m×n×d×N , where m and n are the images’ spatial

dimensions, and d ∈ {1, 3} is the number of channels for

greyscale or colour images. Let T represent the C classes to

which the images originally belonged. The objective of our

deep residual compensation convolution network (ResCNet)

is to construct a PCANet-like network that achieves high

accuracy from a considerable network depth and is trained

without using gradient descent or backpropagation. Precisely,

the network structure should be structured hierarchically such

that, as network depth increases, succeeding layers compensate

for the classification errors of previous layers. By combining

the predicted probabilities of the network layers, the model

should obtain a high accuracy.

B. Design Overview

The network architecture, as shown in Figure 1, consists

of multiple convolutional layers, each followed by post-

processing steps and a linear discriminant analysis (LDA) clas-

sifier. Each convolutional layer, except the first layer, receives

as input the concatenation of its previous layer’s outputs and

the original features. After post-processing the feature maps

of the first layer, an LDA classifier is trained to categorise

the extracted features using the original classes. By contrast,

the LDA classifiers of the subsequent layers, referred to as

compensation layers, are trained using new classes learnt from

the residual information of the preceding layers. In fact, each

layer produces two outputs (Ỹ (i) and T (i+1) in Figure 1, where

i represents the ith layer). The first provides the predicted

probabilities of the network at that layer, whereas the second

represents the new classes produced for training the subsequent

layer. To produce the network’s outputs in each layer (Ỹ (i)

in Figure 1), the predicted probabilities of that layer are

added to or subtracted from those of its preceding layers. This

combination mechanism maintains the network’s predicted

probabilities of being in the range of between 0 and 1 and

reduces the error of preceding layers. Section II-C describes

the network’s components, including the convolutional layers

(Section II-C1), post-processing procedures (Section II-C2)

and residual mechanism (Section II-C3).

C. Network Components

1) Convolutional Layers: Let X(1) ∈ R
m×n×d×N repre-

sent N training images, T is their C classes, and O(i) ∈
R

m×n×di×N represents the feature maps produced by the ith

layer. The i + 1 layer receives as input the output of the

ith layer concatenated with the original features; this input is

represented as X(i+1) ∈ R
m×n×(d+di)×N . We then divide the

input images (X(i+1)) into patches of k × k size and a stride

of 1 pixel, where k is the filter size and is a user-predefined

parameter. The resulting matrix is P ∈ R
k2(di+d)×m̃ñN , where

m̃ = (m−k)+1, ñ = (n−k)+1 and m and n are the width

and the height of the images, respectively. The filter learning

process relies on applying any non-gradient-based method to

the extracted local patches P and collecting their weights to

represent the filters used in the i+1 layer. The PCA filter bank

by Low, Teoh, and Toh [17] is an example of such filters. The

authors first centralised the extracted patches to their mean

to obtain P̄ ∈ R
k2(di+d)×m̃ñN . They then applied PCA to

the centralised patches, where the principal components of

P̄ P̄T can be computed by solving the following optimisation

problem:

min
V ∈R(k2)×(di+d)

||P̄–V V T P̄ ||2F ,

s.t. V TV = I,
(1)

where I represents the identity matrix. The convolutional

output of the i+ 1 layer can then be expressed as follows:

O(i+1) = Xi+1 ∗W (i) ∈ R
m×n×di+1 , (2)

where di+1 represents the number of filters in layer i + 1,

X(i+1) is the input images that are zero padded to obtain

the same image size outputs, ∗ represents the convolution

operation, and W (i) denotes the PCA filters expressed as

follows:

W (i) = mat
k×k×(di+d)

qs, s = 1, 2, . . . , di+1, (3)

where qs is the sth principal eigenvector of P̄ P̄T .

The stacked-LDA filter bank is another example of filters

generated without relying on gradient descent or backpropaga-

tion. Appendix A discusses these filters in detail. These filters

are computed using an iterative process that involves selecting

a subset of the localised patches P and then applying an

LDA classifier to train the selected patches with their classes.

The algorithm searches for patches with separable classes and

accumulates their weights, which are subsequently used as

stacked-LDA filters.

This article focuses mainly on the network architecture

rather than investigating the filter type used. In our

filters filters+ filters+

Post-processing

Residual
mechanism

Post-processing Post-processing

Residual
mechanism

Residual
mechanism

Fig. 1. The deep residual compensation convolutional network architecture. T (1) represents the original classes.

experiments (Section III), we use semi-supervised stacked-

LDA filters created by combining 50% of the supervised

stacked-LDA filters with 50% of the unsupervised PCA filters.

However, different filter types can be employed, such as those

used by Ng and Teoh [18], Yang et al. [20] and Gatto et al. [7].

2) Post-processing Steps: The feature maps of each con-

volutional layer are post-processed using a ReLU non-linear

activation function, followed by second-order pooling and a

multi-level spatial pyramid pooling. The ReLU function is

applied to the feature maps of each layer but not between

the layers. The feature maps are then pooled locally using the

second-order pooling mechanism described by Alotaibi and

Wilson [2]. Let X
(i)
j ∈ R

m×n×di denote the jth activations

map in the ith layer, where m and n are the spatial dimensions

of the images, and di represents the number of filters in layer i.

The calculation of the second-order pooling starts by dividing

the tensors of X
(i)
j into patches of the same size, which could

be overlapped, e.g. (r × c). Each of these patches is then

normalised using the z-score method, defined as z = x−µ
σ ,

where µ and σ represent the mean and the standard deviation

of the data. Next, the channel-wise covariance matrix of each

patch, after reshaping each of them to rc×di, is computed. Be-

cause of the symmetry property of the covariance matrix, the

number of second-order features is calculated as the number of

patches×(di×di

2 + di

2). The multi-level spatial pooling is then

used to pool the second-order features. The multi-level spatial

pyramid pooling calculation is identical to that implemented

by Chan et al. [3]. Again, different post-processing procedures

can be utilised; however, in our experiments (Section III), we

found these steps to be the most effective for achieving high

accuracy in the databases we used.

3) Residual Mechanism: This mechanism is non-iterative;

we add layers sequentially. Each layer is trained in a single

pass with new labels learnt from the residual information of

all its previous layers. The first layer’s features are classified

using an LDA classifier trained with the original classes. To

produce the first layer’s posteriors (Ỹ (1) in Figure 1), we use

the following sigmoid function on the output of the LDA

classifier:

S(x) =
1

1 + e−x/σ
, (4)

where σ is the sigmoid scale parameter. To identify the new

labels required to train the second layer (T (2) in Figure 1),

we first find the residual errors between the current layer’s

predicted outputs (Ỹ (1)) and the original classes (Y ∈ R
N×C)

in one-hot encoding, as follows:

R(1) = λY − Ỹ (1), (5)

where 0 ≤ λ ≤ 1 controls the maximum likelihood a class

may attain. T (2) can then be defined as the classes with the

maximum absolute residual errors, as follows:

T
(2)
i =class(|R

(1)
ij |, ∀j) i = [1, . . . , N], (6)

where class(x) denotes the name of the class whose value

has the largest residual error magnitude. Since our network is

developed primarily for classification tasks, it concentrates on

labelling rather than regressing the correction of posteriors.

The second layer, as shown in Figure 1, receives an input

X(2) ∈ R
m×n×(d+d1)×N that is a concatenation of the first

layer’s feature maps and the original images. After finding the

second layer’s features, our objective is to learn a correction

term based on the second layer classification results, which

is then added to the posteriors of the first layer (Ỹ (1)) to

provide more accurate predictions (Ỹ (2)). The correction term

can either be positive or negative to maintain the network

probabilities at the second layer (Ỹ (2)) to have values in the

range of 0 to λ (Equation 5). In other words, after training the

second layer’s LDA classifier using the new classes (T (2)),

the posteriors acquired can be added to or subtracted from the

first layer’s posteriors to correct them. The indicator variable

(s(2)) indicates whether to add to or subtract from the first

layer’s posteriors and is defined as the signum function of the

maximum absolute residual errors of the previous layers, as

follows:

s
(2)
i =sign(R

(1)
i∗), i∗ = argmaxi |R

(1)
i |. (7)

When the indicator values are positive, it indicates that the

probabilities of the first and second layers are added, and when

they are negative, the probabilities of the second layer are

subtracted from those of the first. Consider a classification task

of three classes A, B and C. Assume that, given a single image

whose actual class is A, the predicted probabilities of the first

layer using this image are 0.4, 0.6 and 0 for the three classes

A, B and C, respectively. To add a second layer, the residual

error using λ = 0.8 (Equation 5) is computed as 0.4, −0.6 and

0 for each of the three classes. Hence, the new label to train

the second layer for this image is B, as it has the largest

magnitude, and the indicator is −1 because the maximum

absolute residual error has a negative sign. Assume that the

second layer’s features are trained using class B and provided

perfect prediction with probabilities of 0, 1 and 0 for the three

classes. Because the indicator value is negative, we subtract

them from the predicted outputs of the first layer, resulting

in 0.4, −0.4 and 0 for the three classes. Consequently, we

reduce the error, and the predicted class of the second layer

is A, which corresponds to the actual class of the image. To

implement that and generalise it for the test set, as we do

not know the classes, we divide the database into positive

and negative samples based on their indicator variable values.

The positive samples have positive indicator values, whereas

the negative samples have negative indicator values. We then

train two LDA classifiers for each layer; one is trained on

the negative samples using {T
(2)
n ⊂ T (2) : s(2) = −1}, and

the other is trained with the positive samples and their classes

{T
(2)
p ⊂ T (2) : s(2) = 1}. The negative classifier is trained by

assuming that each class in the positive samples is a negative

class (its class is zero). Similarly, during the training of the

positive classifier, each class in the negative samples is treated

as a negative class. Thus, both classifiers have access to all

training data. The network’s outputs at the second layer (Ỹ (2))

can then be expressed as follows:

Ỹ (2) = Ỹ (1) + α[
np

N
Ỹp

(2)
−

nn

N
Ỹn

(2)
], (8)

where Ỹn
(2)

and Ỹp
(2)

are the N predictions made by the

classifiers trained on negative and positive samples, nn and

np denote the number of negative and positive examples,

respectively, N is the total number of training samples and

α is a learning rate. The learning rate, similar to that used

in neural networks, is introduced to reduce oscillations and

provide faster convergence. However, the learning rate in our

network also acts as a weight to integrate the probabilities of

multiple layers, similar to weighted sum techniques.

To add more layers, we repeat the steps used to add the

second one. Algorithm 1 summarises the procedures of the

network’s training with L layers, assuming that the second-

order features are known. To add layer i, the new labels T (i)

and indicator variable (s(i)) are computed based on the pre-

vious layer’s residual error R(i−1), as shown in Equation 10.

The network’s output at that layer can then be defined using

Equation 11. In general, for deeper residual compensation

layers, the new classes (T (L)) learnt from the residual errors

of the previous layers can be defined as follows:

T (L) = class(|R(L−1)|)

= class(|Y − Ỹ (L−1)|)

= class(|Y − [Ỹ L−2 +
α

N
(n(L−2)

p Ỹ (L−2)
p − n(L−2)

n Ỹ (L−2)
n)])

=
...

= class(|Y − [Ỹ (1) +
α

N

L−1∑

i=2

(ni
pỸ

i
p − ni

nỸ
i
n)]),

(9)

where class(x) is the name of the class whose value has the

largest residual error magnitude, Y is the original classes in

one-hot encoding, ni
p and ni

n are the number of positive and

negative samples in layer i, respectively, and N denotes the

total number of samples in the database.

III. EXPERIMENTS

A. Databases

We used four standard benchmarks in our experiments:

CIFAR-10 [13], CIFAR-100 [13], MNIST [4] and TinyIma-

geNet [15]. The MNIST database comprises 60,000 training

examples and 10,000 test images of size 28× 28, drawn from

the same distribution, normalised and centred in a fixed-size

image. The CIFAR-10 database consists of 10 classes with

50,000 images for training and 10,000 test images. The images

of size 32 × 32 × 3 have a low resolution with different

poses and angles. CIFAR-100 is similar to CIFAR-10 but with

100 classes. The TinyImageNet database consists of 100,000

training images of size 64×64×3. The images are divided into

200 categories, with 500 images each. The validation and the

test sets contain 10,000 images each, with 50 images per class.

The test set is not labelled, and our experiments’ performance

is reported on the validation set.

B. Image Classification without Data Augmentation

In this section, we evaluate the proposed network on the

MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases

(Section III-A) without data augmentation. To determine the

network parameters, we examine a variety of configurations,

each of which has different parameters, and report the results

of the configuration that works the best.

1) Parameter Settings: The optimal settings identified

for the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet

databases are listed in Table I. All architectures, except the

MNIST database, used 3×3-pixel filters created by combining

PCA [17] and stacked-LDA filters (Appendix A) at a 50%

ratio. The MNIST database used 13 × 13 PCA filters in its

first layer and 3× 3 PCA filters in its residual layers. In this

section and throughout the rest of this article, we used the

same number of filters for all layers and stopped adding layers

when the training error rate approached 0%. Therefore, the

number of filters per layer is 60 in the MNIST’s architecture,

50 in the CIFAR’s architectures and 40 in TinyImageNet’s

architecture. The number of layers beyond which an accuracy

Algorithm 1 Deep Residual Compensation Convolutional

Network Training

Input: Second-order features: {F (i), i = [1, 2, . . . , L]}, L

number of layers, C classes T (1) ∈ R
N×1, learning rate:

α and λ to determine the highest probability a class can

reach.

Output: Model’s accuracy: accuracy

1: Generate Y ∈ R
N×C , the one-hot encoding of T (1).

2: i ← 1 and Ỹ (0) ← 0.

3: s(i) = 1N×1 {fill the first layer’s indicator variable with

1. }
4: while i < L do

5: if i > 1 then

6: Find the residual errors, new classes and indicator

variable, as follows:

R(i−1) = λY − Ỹ (i−1).

T
(i)
j = class(|R

(i−1)
jk |, ∀k),

s
(i)
j = sign(R

(i−1)
j∗), j∗ = argmaxj |R

(i−1)
j |,

j = [1, 2, . . . , N].

(10)

7: end if

8: Find F
(i)
n ⊂ F (i) and T

(i)
n ⊂ T (i), for which their

indicator values are negative.

9: Find F
(i)
p ⊂ F (i) and T

(i)
p ⊂ T (i), for which their

indicator values are positive.

10: if T
(i)
p ̸= ∅ then

11: L1 = LDA(F
(i)
p , T

(i)
p).

12: Ỹ
(i)
p = prediction(L1, F

(i)).
13: else

14: Ỹ
(i)
p ← 0.

15: end if

16: if T
(i)
n ̸= ∅ then

17: L2 = LDA(F
(i)
n , T

(i)
n).

18: Ỹ
(i)
n = prediction(L2, F

(i)).
19: else

20: Ỹ
(i)
n ← 0.

21: end if

22: Compute the current’s layer output Ỹ (i), as

Ỹ (i) = Ỹ (i−1) + α[
np

N
Ỹp

(i)
−

nn

N
Ỹn

(i)
], (11)

where np and nn represent the number of positive and

negative samples, respectively.

23: i← i+ 1
24: end while

25: Compute the model’s accuracy at layer L using Ỹ (L).

gain was no longer observed was 937 for the CIFAR-10

database, 436 for the CIFAR-100 database, 231 for the MNIST

database and 512 for the TinyImageNet database. We utilised

7× 7-block second-order pooling for MNIST with a stride of

four pixels, 16 × 16 for CIFAR-100 with a four-pixel stride,

16×16 for CIFAR-10 with a one-pixel stride, and 32×32 for

TinyImageNet with an eight-pixel stride. In all architectures,

we pooled the second-order features using three-level spatial

pyramid pooling of 4 × 4, 2 × 2 and 1 × 1 subregions. The

only data preprocessing was min-max normalisation applied to

the input of each convolutional layer, and probabilities were

retrieved from all datasets except MNIST using the sigmoid

function with a scale value of 16 (Equation 4). In the MNIST

database, we used the following softmax function to generate

the probabilities in each layer:

softmax(yi) =
exp(βyi)∑C
j=1 exp(βyj)

, (12)

where β is assigned to 0.001, C denotes the number of classes,

and y represents the outputs of the LDA classifier. During the

training phase, λ (Equation 5) was set to 0.8, and the learning

rate was fixed at α = 1 for the MNIST database and α = 0.4
for the CIFAR-10 database. The remaining databases used an

initial learning rate of 1, which was dropped by 10% every 10

layers as follows:

α = α−
10

100
α. (13)

We stopped reducing the learning rate when it reached 0.387

and 0.478 for CIFAR-100 and TinyImageNet databases, re-

spectively.

TABLE I
NETWORK ARCHITECTURES USING THE MNIST, CIFAR-10, CIFAR-100

AND TINYIMAGENET DATABASES

The MNIST database: 28× 28× 1
Filter size SOP Output size

13× 13× 1× 60 7× 7, Stride = 4 28× 28× 60
[3× 3× 60× 60]× 230 7× 7, Stride = 4 28× 28× 60

The CIFAR-10 database: 32× 32× 3
Filter size SOP Output size

3× 3× 3× 50 16× 16, Stride = 1 32× 32× 50
[3× 3× 50× 50]× 936 16× 16, Stride = 1 32× 32× 50

The CIFAR-100 database: 32× 32× 3
Filter size SOP Output size

3× 3× 3× 50 16× 16, Stride = 4 32× 32× 50
[3× 3× 50× 50]× 435 16× 16, Stride = 4 32× 32× 50

The TinyImageNet database: 64× 64× 3
Filter size SOP Output size

3× 3× 3× 40 32× 32, Stride = 8 64× 64× 40
[3× 3× 40× 40]× 511 32× 32, Stride = 8 64× 64× 40

2) Performance Analysis: Table II reports the accuracy

of ResCNet compared with some gradient-based and non-

gradient-based networks on the MNIST, CIFAR-10, CIFAR-

100 and TinyImageNet databases without data augmentation.

The non-gradient-based models reported in Table II are the

best-performing PCANet-like models from the perspective of

the datasets we considered. Such networks include PCANet

[3], LDANet [3], DFSNet [7] and Multi-layer PCANet [2]. To

show where our network fits in the literature of commonly

used networks, we compared the performance achieved by

our network to those obtained by standard gradient-based

convolutional networks. Maxout [9], Network in network [16],

stochastic pooling [21] and ResNet [10] are the gradient-based

networks listed in the table. The accuracy of 164-ResNet with

pre-activation was reported by Huang et al. [11], while the

results of ResNet-18 and ResNet-34 were reported by Jeevan

[12].

According to Table II, for the MNIST database, our model

with 231 layers achieved an accuracy of 99.52%, making it

superior to all non-gradient-based models, such as PCANet,

Multi-Layer PCANet and LDANet, in terms of accuracy.

It improved on the best results of the non-gradient-based

networks by roughly 0.12%. In addition, the findings presented

in the table demonstrated that our network produced results

comparable with standard gradient-based networks, such as the

Maxout network, Network in network and stochastic pooling.

As shown in Table II, for the CIFAR-100 database, the

accuracy attained by our proposed network was the highest

among all the networks. The accuracy of 64.91% was around

8% higher than that of Multi-Layer PCANet and stochastic

pooling, more than 9% higher than that of ResNet-110 and

ResNet-32, 14% higher than the original PCANet and more

than 2% higher than that of Maxout and ResNet with stochastic

depth. Moreover, the results achieved by our network were

roughly equivalent to those obtained by ResNet with 164

layers and Network in network using the dropout technique.

For TinyImageNet, as shown in Table II, our network

achieved the highest accuracy among all the networks without

any data augmentation. This performance was around 2%

higher than that of the ResNet-34 model and 1% better than

that of the ResNet-18 model.

According to the results shown in Table II for the CIFAR-

10 database, our model outperformed PCANet and all of its

variants, in terms of accuracy. The accuracy of the proposed

network was around 10% better than the performance achieved

by the original PCANet and 6% higher than that of Multi-

Layer PCANet. Although ResCNet’s accuracy was around 1%

lower than that of the Maxout network and 2% worse than

that of Network in network, our model achieved accuracy

comparable with that of ResNet-32, 1% higher than ResNet-

18 and ResNet-110, and 3% greater than stochastic pooling.

In general, ResCNet with more than 900 layers showed an

excellent performance of 87.54% on the CIFAR-10 database

with no data augmentation, making it the first PCANet-

like network to reach such a number of layers and such a

performance.

In general, Table II demonstrates that ResCNet outper-

formed all PCANet-like networks in terms of accuracy and the

number of layers required for training. It also shows that our

model, which is trained without complicated non-linear func-

tions or regularisation techniques, achieves accuracy similar

to that of standard convolutional networks such as Network-

in-Network, Maxout, stochastic pooling, and several residual

networks. Even though the number of layers in our network is

relatively large, these layers are added sequentially, one after

the other, without iterations or intensive parameter updates.

In addition, we used a small number of filters in each layer

for all of our architectures, with no configuration exceeding

60 filters per layer. To the best of our knowledge, ResCNet

is the first non-gradient-based propagation-free network to be

trained with hundreds of layers.

TABLE II
ACCURACY (%) OF RESCNET COMPARED WITH DIFFERENT METHODS ON

THE CIFAR-10 (C10), CIFAR-100 (C100), MNIST AND

TINYIMAGENET (T200) DATABASES WITHOUT DATA AUGMENTATION

Non-gradient-based networks

Method C10 C100 MNIST T200

PCANet-2 77.14 51.62 99.34 30
LDANet 78.33 – 99.38 –

DFSNet-3 81.06 – – –
Multi-Layer PCANet 81.72 57.86 99.40 40.87

ResCNet (ours) 87.54 64.9 99.52 44.37

Gradient-based networks

Method C10 C100 MNIST T200

Stochastic pooling 84.87 57.49 99.53 –
Maxout network, with dropout 88.32 61.43 99.55 –

Network in network, with dropout 89.59 64.32 99.53 –
Network in network, without dropout 85.49 – – –

110 ResNet 86.82 55.26 – –
ResNet stochastic depth - 62.20 – –

164-ResNet (pre-activation) - 64.42 – –
ResNet-18 86.29 59.15 – 43.02
ResNet-32 87.97 56.05 – 42.65

C. Network Parameters

This section explains how to configure ResCNet’s parame-

ters by analysing their impact on the model’s accuracy using

the CIFAR-10 database. The experiments in this section are

divided into two subsections, as follows:

• Experiment 1: Testing the effect of the number of filters

on the accuracy of ResCNet

• Experiment 2: Studying the impact of learning rate on

the model’s performance

1) Number of Filters: This experiment aimed to determine

how changing the number of filters affects the accuracy of

ResCNet. For this, we designed two networks with the same

settings but different numbers of filters. The first, referred to

as ResCNet-30, used 30 filters in each of its layers, while

the second (ResCNet-50) used 50 filters in all of its layers.

The two networks followed the same parameters settings as

those described in Section III-B for the CIFAR-10 database.

However, we used an 8x8 second-order pooling block size.

Figure 2 shows the accuracy of training and testing

ResCNet-30 and ResCNet-50 on the CIFAR-10 database with-

out data augmentation. According to the figure, both networks

achieved the same level of accuracy, although ResCNet-30

required more layers. ResCNet-50 obtained a training accuracy

of 100% at layer 127, while ResCNet-30 achieved 100% at

layer 781. The testing accuracy for both 127- and 781-layer

networks was around 86.28%. The best testing accuracy of

86.33% was obtained with 100-layer ResCNet-50 and 500-

layer ResCNet-30. The findings in this section suggested that,

unlike previous PCANet-like networks in which the number

of filters in each layer should be determined in advance, we

could obtain the same performance by employing any number

of filters based on the available resources. However, we needed

more filters in each layer to achieve the desired performance

faster. The results in this section also showed that the second-

order pooling block size affected the accuracy of ResCNet.

For instance, the highest accuracy reached for the CIFAR-10

database (87.54% in Section III-B) was around 1% better than

that achieved in this section (86.33%), with the only difference

between the models being the modification of the second-order

pooling block size.

Fig. 2. The accuracy (%) of ResCNet-30 and ResCNet-50 on the training
and testing sets of the CIFAR-10 database with no data augmentation.

2) Learning Rate: This experiment aimed to show the

impact of the learning rate (α in Equation 9) on ResCNet’s

accuracy. Similar to neural networks, the learning rate is intro-

duced to prevent oscillations and promote faster convergence.

We designed two networks with the same parameters but

different learning rates and evaluated them on the CIFAR-10

database. Both networks used 50 filters in all of their layers.

The first network (ResCNet-50–1) was trained with a learning

rate of α = 1, whereas the second (ResCNet-50-0.4) was

trained using α = 0.4. The other network’s parameters were

the same as those described in Section III-B for the CIFAR-10

database.

Table III compares the accuracy of ResCNet-50–1 with that

of ResCNet-50–0.4 using a different number of layers on the

CIFAR-10 database. The training accuracy of ResCNet-50–1

reached 100% at layer 384, with a testing accuracy of 86.91%.

On the other hand, ResCNet-50–0.4 obtained a 100% training

accuracy at layer 970, with a testing accuracy of 87.41%. The

optimal testing accuracy of ResCNet-50–1 was achieved at

layer 208, with 87.2% testing accuracy, while ResCNet-50–

0.4 obtained its best performance of 87.54% at layer 937. The

results achieved in this section demonstrated that the learning

rate α = 0.4 was small, as we needed more than 600 layers

for the network to reach its convergence. If the training error

rate oscillates, which is not the case in CIFAR-10, the learning

rate must be decreased to avoid oscillations.

TABLE III
ACCURACY (%) ON THE CIFAR-10 DATABASE TEST SET USING

RESCNET-50–1 AND RESCNET-50–0.4

Network # Layers Accuracy (%)

ResCNet-50–1 348 86.91
ResCNet-50–1 208 87.02

ResCNet-50–0.4 970 87.41
ResCNet-50–0.4 937 87.54
ResCNet-50–0.4 600 87.09

D. Image Classification with Data Augmentation

This section aims to enhance the classification accuracy of

ResCNet using data augmentation on three databases, namely,

CIFAR-10, CIFAR-100 and TinyImageNet. The ResCNet ar-

chitectures in this section shared the same design and parame-

ters as those in Section III-B but had 490, 507 and 480 layers

for the CIFAR-10, CIFAR-100 and TinyImageNet databases,

respectively. For CIFAR-10, we modified the pooling stride to

four pixels and re-implemented a 193-layer ResCNet without

data augmentation for adequate comparison.

Table IV compares the accuracy of ResCNet with and

without data augmentation on the CIFAR-10, CIFAR-100

and TinyImageNet databases. With horizontal flipping being

the only data augmentation used, the accuracy of ResCNet

was enhanced across all three databases. This improvement

was around 1% for the TinyImageNet database, 2% for the

CIFAR-10 database and 3% for the CIFAR-100 database.

For the CIFAR-10 database, the accuracy achieved with data

augmentation was also 1% higher than the best result (87.54%)

reported in Section III-B.

This section’s results showed the importance of data aug-

mentation for improving the model’s generalisation and accu-

racy. Incorporating other data augmentation types are needed

to increase the model’s accuracy further. Since ResCNet is

not currently being trained in a batch-based manner, adding

more data augmentation types is challenging as they need to be

computed in advance. In future works, we will investigate the

possibility of converting the current work into a batch-based

system as in gradient-based models.

TABLE IV
ACCURACY (%) OF RESCNET ON THE CIFAR-10, CIFAR-100 AND

TINYIMAGENET DATABASES

Data augmentation CIFAR-10 CIFAR-100 TinyImageNet

✗ 86.82 64.9 44.37
✓ 88.35 67.8 45.91

IV. CONCLUSIONS

In this article, we proposed ResCNet, a PCANet-like net-

work that trains each layer with new labels derived from the

residual data of all preceding layers. Our proposed network

increased the network depth to more than 950 layers, making

it the first non-gradient-based propagation-free network to

achieve this number. Moreover, ResCNet’s performance was

comparable to that of standard gradient-based models and

superior to PCANet and all of its variants. Increasing the size

of the databases by one type of data augmentation resulted in a

considerable improvement in accuracy, particularly in CIFAR-

100, where it reached 3%. However, increasing the number of

samples leads to higher computational costs. To overcome this

issue and in future work, we will investigate the possibility of

transforming the current network into a batch-based system,

similar to the neural network. In addition, the network may

be developed further by modifying the filter types or by using

other metrics to define the residual errors and, thus, the new

classes.

REFERENCES

[1] Md Zahangir Alom et al. “The history began from

alexnet: A comprehensive survey on deep learning ap-

proaches”. In: arXiv Preprint arXiv:1803.01164 (2018).

[2] Mubarakah Alotaibi and Richard C Wilson. “Multi-

layer PCA Network for Image Classification”. In:

Joint IAPR International Workshops on Statistical Tech-

niques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR). Springer. 2021,

pp. 292–301.

[3] Tsung-Han Chan et al. “PCANet: A simple deep learn-

ing baseline for image classification?” In: IEEE Trans-

actions on Image Processing 24.12 (2015), pp. 5017–

5032.

[4] Li Deng. “The mnist database of handwritten digit

images for machine learning research [best of the web]”.

In: IEEE Signal Processing Magazine 29.6 (2012),

pp. 141–142.

[5] Chunxiao Fan et al. “PCANet-II: When PCANet Meets

the Second Order Pooling”. In: IEICE Transactions on

Information and Systems 101.8 (2018), pp. 2159–2162.

[6] Bernardo B Gatto and Eulanda M dos Santos. “Discrim-

inative canonical correlation analysis network for image

classification”. In: 2017 IEEE International Conference

on Image Processing (ICIP). IEEE. 2017, pp. 4487–

4491.

[7] Bernardo B Gatto et al. “A semi-supervised convolu-

tional neural network based on subspace representation

for image classification”. In: EURASIP Journal on

Image and Video Processing 2020.1 (2020), pp. 1–21.

[8] Bernardo Bentes Gatto, Eulanda Miranda dos Santos,

and Kazuhiro Fukui. “Subspace-based convolutional

network for handwritten character recognition”. In:

2017 14th IAPR international conference on document

analysis and recognition (ICDAR). Vol. 1. IEEE. 2017,

pp. 1044–1049.

[9] Ian Goodfellow et al. “Maxout networks”. In: Interna-

tional Conference on Machine Learning. PMLR. 2013,

pp. 1319–1327.

[10] Kaiming He et al. “Deep residual learning for image

recognition”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2016,

pp. 770–778.

[11] Gao Huang et al. “Densely connected convolutional

networks”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2017,

pp. 4700–4708.

[12] Pranav Jeevan. “Convolutional Xformers for Vision”.

In: arXiv Preprint arXiv:2201.10271 (2022).

[13] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning

multiple layers of features from tiny images”. In: 2009

(2009).

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. “Imagenet classification with deep convolutional

neural networks”. In: Communications of the ACM 60.6

(2017), pp. 84–90.

[15] Ya Le and Xuan Yang. “Tiny imagenet visual recogni-

tion challenge”. In: CS 231N 7.7 (2015), p. 3.

[16] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in

network”. In: arXiv preprint arXiv:1312.4400 (2013).

[17] Cheng-Yaw Low, Andrew Beng-Jin Teoh, and Kar-

Ann Toh. “Stacking PCANet+: An overly simplified

convnets baseline for face recognition”. In: IEEE Signal

Processing Letters 24.11 (2017), pp. 1581–1585.

[18] Cong Jie Ng and Andrew Beng Jin Teoh. “DCTNet: A

simple learning-free approach for face recognition”. In:

2015 Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA).

IEEE. 2015, pp. 761–768.

[19] Karen Simonyan and Andrew Zisserman. “Very deep

convolutional networks for large-scale image recogni-

tion”. In: arXiv Preprint arXiv:1409.1556 (2014).

[20] Xinghao Yang et al. “Canonical correlation analysis net-

works for two-view image recognition”. In: Information

Sciences 385 (2017), pp. 338–352.

[21] Matthew D Zeiler and Rob Fergus. “Stochastic pooling

for regularization of deep convolutional neural net-

works”. In: arXiv preprint arXiv:1301.3557 (2013).

[22] Yongqing Zhang et al. “ICANet: A simple cascade

linear convolution network for face recognition”. In:

EURASIP Journal on Image and Video Processing

2018.1 (2018), pp. 1–7.

APPENDIX A

STACKED-LDA

In this appendix, we introduce the stacked-LDA method, a model that stacks two Linear discriminant analysis layers. The first

layer of the model is trained using new labels that are produced by clustering similar instances of a certain class. The second

layer, on the other hand, is trained using the original classes. This general concept of the stacked-LDA model is described in

Section A-A. We propose an iterative method to create clusters of similar groups. The description of our method is explained

in Section A-B. In addition, Section A-C discusses the procedures for using the stacked-LDA algorithm as convolution filters.

Finally, the parameter settings we used in our experiments in the main paper were described in Section A-D.

A. General Concept

The stacked-LDA algorithm relies on stacking two linear discriminant analysis (LDA) layers. The first LDA layer is trained

using labels created from the original classes, while the second LDA layer is trained using the actual labels. To generate the

classes of the first layer, similar samples from a given class are grouped to create a new class. For example, a class A with s

instances can be subdivided into c new classes, each with a different number of instances. The minimum number of samples

needed to represent a class is one. Suppose the first LDA can differentiate between the new classes ideally. In that case, the

second LDA will receive the posteriors of the first LDA and be able to differentiate between the actual classes. For instance,

if class A is subdivided into A1 and A2, the subsequent LDA will identify that both A1 and A2 are members of class A.

B. Stacked-LDA Algorithm

Let X ∈ R
N×M represent N training samples, each with M dimensions, and Target ∈ R

N×1 represent their original

classes. Algorithm 2 describes the procedures for applying the stacked-LDA to the training set. The algorithm starts by picking

a random class c from the actual classes. We then choose Npositive random instances that belong to class c and Nnegative

random examples that are not in class c, where Npositive and Nnegative are the number of positive and negative samples and

are user-predefined parameters. Next, an LDA classifier discriminates between the positive and the negative samples. After that,

we check if our chosen random samples are linearly separable, which can be done by comparing the error rate of the LDA

classifier with a small value of nearly zero called tolerance (tol) and is chosen by the user. If the LDA’s error rate is lower

than the tolerance, we consider the positive class to be a new class and collect the weights of the LDA. On the other hand, if

the LDA’s error rate is greater than the tolerance, the chosen samples are not similar and cannot be grouped. Therefore, the

algorithm proceeds to find other classes that separate the data accurately in the same way until reaching the required number

of classes (N classes). When algorithm 2 terminates, we can use the generated LDA’s weights to find the output of the first

LDA. Another LDA can then be applied to the output of the first LDA to classify them back using the original classes.

Algorithm 2 Stacked-LDA Algorithm

Input: Training set: X ∈ R
N×M , where {xN

i , xi ∈ R
M}, original classes: Target ∈ R

N×1, number of classes user wants

to generate: N classes, number of positive samples: Npositives, number of negative samples: Nnegatives and tolerance of

performance user can afford: tol

Output: LDA’s weights: weights ∈ R
N×N classes and LDA’s bias or constant: bias ∈ R

N classes

1: weights← [].
2: bias← [].
3: i← 1.

4: while i < N classes do

5: Pick a random class c from the Target.

6: Pick random Npositives samples from class c (Spositives).

7: Choose Nnegatives samples that are not in class c (Snegatives) randomly.

8: Combine the negative and positive samples: S ← [Spositives, Snegatives].
9: T ← [ones(Npositives), zeros(Nnegatives)].

10: Find the linear discriminant analysis (LDA) between S and T : L = LDA(S, T).
11: Find the perfromance (ErrorRate) of S using L.

12: if ErrorRate < tol then

13: weights← [weights, LDA′sweights].
14: bias← [bias, LDA′sbias].
15: i← i+ 1.

16: end if

17: end while

C. Stacked-LDA Filters

For N training samples X: {Xi ∈ R
m×n×c} with actual classes Target ∈ R

N×1, where m and n are the spatial dimensions

of the image and c is the number of channels, we compute the stacked-LDA filters as follows:

1) Given a single image Xi ∈ R
m×n×c and a filter size kL × kL, we extract and vectorise all overlapping patches of size

kL × kL × c each. The resulting matrix is Pi ∈ R
(k2

L
×c)×m̃ñ, where m̃ = (m− kL) + 1, ñ = (n− kL) + 1 and m and

n are the spatial dimensions of the image, respectively;

2) We repeat the previous step for all images in the dataset to obtain P ∈ R
(k2

L
×c)×m̃ñN ;

3) We create a vector T ∈ R
1×m̃ñN that contains the class labels of the patches. A single patch is assigned a label equivalent

to the class of its full image;

4) Using random samples and specific tolerance, we apply Algorithm 2 on P and T to obtain the stacked-LDA filters’

weights WL
s and bias BL

s ;

5) We can express the Stacked-LDA filters as follows:

WL
s = mat

kL×kL×c
qs, s = 1, 2, . . . , dL,

BL
s = mat

1×1×c
qs, s = 1, 2, . . . , dL,

(14)

where dL is the number of filters chosen by the user, which is equivalent to the number of classes in Algorithm 2;

6) We convolve the original images with the filters as follows:

XL
i = XL−1

i ∗WL
s +BL

s ∈ R
m×n×dL , (15)

where s = 1, 2, . . . , dL and XL−1
i is zero-padded to obtain the same image size;

D. Parameter Settings

To compute the stacked-LDA filters in our experiments in the main paper, we set the number of positive samples (Npositives)

to 2, while the number of negative samples (Nnegatives) was 32. The tolerance (tol) in Algorithm 2 was set to zero. We used

the LDA classifier with the one-versus-all decomposition method.

