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Supporting Information:  1 

SI.1 Calculations to determine the analytical values of kH of dimers in Table 1 2 

The scenario considered here (Table 1) is a dimer consisting of two monomers, 3 

where only the adsorbing monomer(s) has a favourable interaction (χ2s) with the surface. 4 

The number of monomers belonging to chains (i.e., the adsorbed amount) present in the 5 

first layer at a specific bulk volume fraction 𝜙 can be calculated as follows.  6 

There are two possible conformations of a dimer that would result in its monomers 7 

being present in layer 1 (i.e., to be in contact with the surface). One is the dimer lying 8 

“parallel” to the surface, thus contributing two monomers to the first layer. The relative 9 

probability of dimers taking this conformation (relative to its confirmations in the bulk) is 10 

2(
4

6
exp⁡(−2𝜒2𝑠)). Here exp⁡(−2𝜒2𝑠) is the Boltzmann factor associated with the two 11 

monomers of the dimmer, each with a surface interaction strength of χ2s, 
4

6
 is the lattice 12 

parameter λ (here for the chosen cubic lattice) indicating the 4 out of 6 orientations where 13 

the two monomers both reside in the same layer, with the term being multiplied by 2 14 

because the two monomers are interchangeable in terms of their position. The second 15 

conformation is the dimer adsorbing “perpendicular” to the surface, hence contributing 16 

only one monomer to layer 1 adjacent to the surface, with the other monomer residing in 17 

layer 2 and not in contact with the surface. The relative probability in this case is 18 

2(
1

6
exp⁡(−𝜒2𝑠)), where similarly exp⁡(−𝜒2𝑠) is the Boltzmann factor for one monomer 19 

interacting with the surface, 
1

6
 is the lattice parameter λ indicating the possibility of 20 

monomers being in the adjacent layers, and once again the entire term is multiplied by 2 21 

due to the interchangeability of the monomers with regards to their positions. Adding the 22 
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two possibilities together, and considering the bulk volume fraction 𝜙 and number of 23 

monomers per polymer chain, N, then the adsorption (Γ) in layer 1 can be expressed as 24 

 
Γ = 2

𝜙

𝑁
(
4

6
exp(−2𝜒2𝑠) +

1

6
exp⁡(−𝜒2𝑠))  

For a dimer, the degree of polymerisation N is equal to 2 and so the equation becomes  25 

 
Γ = (

4

6
exp(−2𝜒2𝑠) +

1

6
exp⁡(−𝜒2𝑠)) ∙ 𝜙 

 

Identifying the above equation with Γ = 𝑘𝐻𝜙, we have  26 

 
𝑘𝐻 =

4

6
exp(−2𝜒2𝑠) +

1

6
exp⁡(−𝜒2𝑠)  

The dimer described in Table 1a has two adsorbing monomers. When the magnitude 27 

of the interaction potentials χ2s are sufficiently large (and favourable, i.e., χ2s is very 28 

negative), most of such adsorbed dimers should lie flat on the surface, with both 29 

monomers in layer 1. This means the “parallel” adsorbed conformation dominates, and 30 

the other “perpendicular” configuration can be ignored to a first approximation. In other 31 

words, in such a case 𝑘𝐻 ≈
4

6
exp(−2𝜒2𝑠). On the contrary, for the dimer consisting of an 32 

adsorbing monomer and a non-adsorbing one (Table 1b), the “perpendicular” 33 

conformation would dominate, and the contribution from the “parallel” configuration 34 

becomes negligible. In this case,⁡𝑘𝐻 ≈
1

6
exp⁡(−𝜒2𝑠). 35 

 36 

SI.2 Outline for implementing the SCF Sheutjens-Fleer theory 37 

A detailed account of the Self-Consistent-Field (SCF) theory can be found in many 38 

books and excellent reviews [1-5]. In particular, in relation to the problem of adsorption of 39 
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polymers at interfaces and the Scheutjens-Fleer scheme adopted by us here, we point the 40 

readers to [6-8]. We shall confine ourselves to only providing a preliminary overview. 41 

In SCF theory the interactions between different molecules are represented by a 42 

spatially varying effective field, acting on molecules at each point in the system. In 43 

common with all mean-field type theories, the essential approximation made in SCF theory 44 

is that this field is equal to the average value of the interactions felt by the molecule, but 45 

otherwise any temporal fluctuations in its value are small and are ignored. Within the 46 

framework of this approximation, a multi-body interacting problem is thus replaced with a 47 

more tractable one of a single polymer chain placed in an external field. The value of the 48 

field at each point will depend on the local concentrations (volume fractions) of solvent 49 

and polymer surrounding the point. The value of the field will depend on the type of 50 

interactions one wishes to include. However, adopting the usual Flory-Huggins parameters 51 

for specifying the interactions, this is given by equation (5), as discussed in section 2.1. 52 

With the aid of equation (5) the field is easily calculated, but only if one knows a priori the 53 

density profile variation of various molecules in the solution. This of course is not available 54 

in advance and must be determined itself. To overcome this problem, SCF calculations 55 

adopt an iterative type procedure. One starts with a rough, but sensible initial guess to the 56 

field. All possible conformations available to a chain are then considered. That is to say 57 

that each configuration w is included and is weighted according to its appropriate 58 

Boltzmann factor (~ exp(-Ew/kBT)), where Ew is the energy of that conformation under the 59 

influence of the field. This allows the determination of the density profile variation of each 60 

molecular specie in the solution using a set of segment density functions, as is described 61 

further below. 62 
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As with any numeric computational scheme, it is necessary to first discretize the 63 

part of the solution under investigation. In the Fleer-Scheutjens formulation of SCF [9, 10], 64 

this space is taken as the gap between two (often solid) flat planes.  The gap is divided into 65 

layers running parallel to the surfaces. Each layer is then subdivided further into a set of 66 

lattice grids. It is possible to use many different lattice grids, but the one chosen in our 67 

work was the cubic lattice. As often is the case, the thickness of the layers (and hence also 68 

the size of each grid point) can be decided as a compromise between accuracy and the 69 

computational speed or resources. In S-F scheme it is customary to take the lattice size, 70 

denoted as ao, to be the nominal size of the monomers comprising the chains. In this way 71 

the computation scheme can be given a useful physical interpretation and mapped on to a 72 

Flory-Huggins type lattice model for polymers. The layers are numbered i=1 to L, running 73 

from one surface to the next, hence making the distance between the two surfaces aoL. For 74 

an incompressible solution, all lattice grids must either be occupied by a monomer or a 75 

solvent molecule. This requirement leads to the equation (4) in section 2.1. 76 

For homogenous surfaces, any variation in the average value of the polymer and 77 

solvent volume fractions will only be in a perpendicular direction to the surface, along the 78 

gap from one side to the other. That is to say that all lattice points in the same layer will 79 

have the same average segment densities, value of fields, etc.  To obtain the polymer 80 

density for each layer, a set of segment density functions G(s,i) is defined. The function 81 

G(s,i) represents the probability that the first s segment of a polymer chain are in a 82 

conformation where the sth monomer resides in layer i. Where the polymer chains are not 83 

symmetrical in composition, it becomes necessary to define two such sets of functions, 84 

Gf(s,i) and Gb(s,i), counting the first s monomers from different terminus ends of the chain. 85 
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It is also useful to define a function t(s) that evaluate to a number, indicating what type of 86 

monomer the sth residue of the chain happens to be. For example, 1 for hydrophilic and 2 87 

for hydrophobic, as is the case in our study involving amphiphilic copolymers with two 88 

types of monomers.  The segment density functions can be readily calculated using a 89 

recurrence relation reflecting the fact that if sth monomer is in layer i, then (s-1)th monomer 90 

must have either been in the same layer or one of the adjacent layers i-1 or i+1. The 91 

recurrence relations read 92 

𝐺𝑏(𝑠, 𝑖) = [𝜆−1𝐺
𝑏(𝑠 − 1, 𝑖 − 1) + 𝜆+1𝐺

𝑏(𝑠 − 1, 𝑖 + 1)93 

+ 𝜆0𝐺
𝑏(𝑠 − 1, 𝑖)] exp (−𝜓𝑡(𝑁−𝑠+1)(𝑖)) 94 

and 95 

𝐺𝑓(𝑠, 𝑖) = [𝜆−1𝐺
𝑓(𝑠 − 1, 𝑖 − 1) + 𝜆+1𝐺

𝑓(𝑠 − 1, 𝑖 + 1)

+𝜆0𝐺
𝑓(𝑠 − 1, 𝑖)]⁡exp⁡(−𝜓𝑡(𝑠)(𝑖))

⁡ 96 

for backward and forward segment density functions, as was mentioned above. The 97 

constants +1, -1 and 0 reflect the number of neighbours that a grid point has in its own or 98 

adjacent layers. For the cubic lattice used by us, the values are 1/6, 1/6 and 4/6, respectively.  99 

The initial condition for starting the recurrence above is 𝐺𝑓(1, 𝑖) =  exp[−𝜓𝑡(1)(𝑖)] and 100 

𝐺𝑏(1, 𝑖) = exp[−𝜓𝑡(𝑁)(𝑖)], where N is the degree of polymerisation of the chains, and 101 

(i) the value of the field acting on monomers of type  in layer i (expressed in units of 102 

kBT here). Note that a similar field (i) also acts for solvent molecules (taken as type 0). 103 

These are treated on the same footing as the polymers, accept that they have N=1. With the 104 

set of segment density functions at hand, the all-important polymer density functions in 105 

each layer can be obtained using the compositional law: 106 
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𝜙𝛼(𝑖) =
Φ

𝑁
∑

𝐺𝑓(𝑠, 𝑖)𝐺𝑏(𝑁 − 𝑠 + 1, 𝑖)⁡𝛿𝛼,𝑡(𝑠)

exp[−𝜓𝑡(𝑠)(𝑖)]𝑠

 107 

where 𝛿𝛼,𝑡(𝑠) represents Kronecker delta function, equal to 1 if t(s)= and 0 otherwise, and 108 

the volume fraction of the polymer in bulk solution is denoted as . The newly calculated 109 

density profiles can now be substituted back in equation (5) to provide an “improved” set 110 

of fields. These fields are then used to obtain (i) as described above. The process is 111 

repeated until a “self-consistent” solution is obtained. That is to say that the resulting set 112 

of fields {(i)}, obtained from a set of density profiles {(i)}, leads to the same density 113 

profiles.  114 

In practice, the algorithm we implemented for the above purpose used equation (5) and the 115 

fact that hard core part of the potential h(i), ensuring the incompressibility of the solution, 116 

acts equally on all monomers within the same layer, irrespective of their type. In other 117 

words  118 

𝜓𝛼(𝑖) − (∑𝜒𝛼𝛽
𝛽

<∑𝜙𝑖
𝛽(𝑟) >

𝑖

) + 𝜒𝛼𝑠[(𝛿𝑖,1 + 𝛿𝑖,𝐿)]⁡ 119 

= ⁡𝜓0(𝑖) − (∑𝜒0𝛽
𝛽

<∑𝜙𝑖
𝛽(𝑟) >

𝑖

) + 𝜒0𝑠[(𝛿𝑖,1 + 𝛿𝑖,𝐿)] 120 

with  = 1 or 2 for hydrophobic and hydrophilic monomers, respectively and the continues 121 

variable r replaced with the discretised layer number i. The above equations are solved in 122 

conjunction with the condition (4), to obtain {(i)} and hence also {(i)}. We deployed 123 

the publicly available subroutine MINPAK for solving a system of none-linear 124 

simultaneous equation, for this part of the calculations. As in this work we were mainly 125 
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interested in the adsorption behaviour occurring on a single interface, we made the gap size 126 

between the two surfaces quite larger. As such, the presence of one surface does not 127 

influence the adsorption on the other surface. This was checked by increasing the 128 

separation distance even further and ensuring that none of the quantities of interest altered 129 

(by less than 1 part in 10 million) as a result. 130 

Finally, with the density profiles at hand, the adsorbed amounts were calculated viz. 131 

equation (8). For simplicity, we kept the above discussions to linear chains only. However, 132 

the extension to branched and dendritic chains can also be found in suitable references [8, 133 

11, 12].   134 

 135 

  136 
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SI.3 Graph exemplifying hydrophobic monomers adsorbed onto the surface and 137 

hydrophilic ones extending away from it, for a linear polymer structure 138 

 139 

SI.3 The average distance of each monomer in a linear chain away from the 140 

surface. The linear chain shown was an example taken from Section 3.2. It has 141 

10 hydrophobic monomers (labelled as red squares) and 190 hydrophilic 142 

monomers (labelled as green circles). The inset shows the results in more detail  143 

for the first 15 monomers. It confirms that the hydrophobic segment of the chain 144 

does indeed lie flat on the surface. 145 

 146 

  147 
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SI.4 Full adsorption isotherms for selected star-like polymers, providing a 148 

prospective on the linear Henry’s regime. 149 

 150 

SI.4 The full adsorption isotherm obtained from SCF, for 5-arm star-like polymers 151 

in Section 3.3.1, with hydrophobic monomers located at (a) concentrated on one 152 

arm only, at one free end, (b) evenly distributed among all arms, at the centre close 153 

to the cross-link point, and (c) evenly distributed among the arms, situated on all 154 

the free ends. 155 

 156 

 157 

 158 

 159 

 160 

 161 

  162 
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SI.5 The average distance of monomers belonging to star-like polymers of Section 163 

3.3.1, away from the surface. 164 

          165 

SI.5 The average distance profiles of star-like polymers of Section 3.3.1 as  166 

obtained from SCF calculations. As for structure (a), where all hydrophobic 167 
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monomers are located at the edge of one arm in a single block (labelled in red), 168 

the distance profile is shown for monomers in the hydrophobe-containing arm. 169 

 170 

SI.6 Predicting Henry’s adsorption constant for a model of αs1-casein protein, using 171 

the proposed method172 

 173 

SI.6 Linear part of the adsorption isotherm for αs1-casein as obtained from SCF. 174 

The adsorbed amount is plotted against the bulk polymer volume fraction on a 175 

logarithmic scale. The equation and R2 for the fitted linear regression are included, 176 

showing a slope of 1, as would be expected. Therefore, log10 (kH) has the same 177 

value as the constant c of the fitted line, providing a kH value of 7.26 x 1045. The 178 

model for protein here was based on the work of Dickinson et al. [13] for αs1-179 

casein, with amino acid residues divided into 6 different groups. The results 180 

demonstrate that the determination of kH,  using the method presented here, can 181 

also be undertaken for more chemically complex cases that can additionally also 182 

include electrically charged chains.   183 

 184 
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