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ABSTRACT 

 

Laryngeal voice qualities (e.g. breathy and creaky 

voice), variable within and across speakers, often 

pose a challenge in data collection. Their acoustic 
correlates are still inadequately understood. This 

study revisits the acoustics of laryngeal voice 

qualities in high-quality recordings of continuous 
British English speech produced by experienced 

phoneticians. Through principal component analysis 

and multinomial logistic regression with l1 
regularisation, this study identifies contributions of a 

variety of acoustic measures to the classification of 

laryngeal voice qualities and provides a 

multidimensional acoustic profile for breathy, creaky, 
and modal voice. Classification rates as high as 90% 

were achieved using the first 5 principal components. 

The most salient acoustic correlates for creaky voice 
are, compared to other categories, higher mean H2*, 

lower mean f0 and HNR below 500 Hz, and for 

breathy voice, higher mean H1* and spectral tilt 
measures such as H1*–A1* and H1*–H2*. 
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1. INTRODUCTION 

Variation in laryngeal voice quality, such as 

breathiness and creakiness, is abundant in speech. 
Voice quality may be used contrastively as in Jalapa 

Mazatec [1], enhance perceptual distinctiveness of 

other phonetic categories such as lexical tones as in 
White Hmong [2], or function as prosodic 

configurations such as phrase-final creak in various 

languages [3]. There is also evidence of 

sociolinguistic differences in voice quality (e.g. [4]), 
as well as speaker-specific variation which may be 

relevant to forensic speech science [5, 6]. 

Laryngeal voice quality has received increasing 
attention from the perspectives of articulation, 

acoustics, and perception in the past two decades.  

Phoneticians have been dedicated to searching for 

acoustic features that are capable of distinguishing 
modal, creaky and breathy voice (e.g. [7]). The two 

basic articulatory dimensions to laryngeal voice 

quality are the degree of constriction of vocal folds 
and aspiration noise [8], which can be captured by 

spectral tilt and harmonic to noise ratio (HNR) 

measures respectively as proposed in the 
psychoacoustic model described in [9]. For spectral 

tilt there are various proposed measures, of which the 

most common one is H1–H2 or the corrected H1*–

H2*[10], the difference in amplitude between the first 
and second harmonics, amongst other higher-

frequency slopes in source spectrum such as H2–H4, 

H4–H2kHz, and H2kHz–H5kHz. An alternative set 
of measures of spectral tilt include H1–A1, H1–A2, 

H1–A3 varying in their harmonic bandwidth 

depending on the formant frequencies, or in other 
words, vowel quality. These may also correlate with 

the source spectral tilt measures. In addition to 

spectral tilt and HNR measures, other proposed 

acoustic correlates of laryngeal voice quality in the 
literature include corrected amplitude of individual 

harmonics such as H1, H2, and H4, cepstral peak 

prominence (CPP) [11], f0, formant frequencies and 
bandwidths [12].  

Although it has been found that both the source 

and filter characteristics provide important cues for 
phonation contrasts [9, 13, 14], the influence of the 

filter on laryngeal voice quality is often ignored. The 

correlations among the selected acoustic measures are 

also often neglected, which impacts the 
interpretability of statistical models.  

This paper revisits the acoustics of laryngeal voice 

quality via an interpretable classification algorithm 
whereby combinations of acoustic features are used 

to predict laryngeal voice quality. We examine the 

contributions of a wide range of the proposed acoustic 

measures (including features associated with the filter) 
in distinguishing laryngeal voice quality. While many 

studies measured voice quality from sustained vowels 

(e.g. [15]), this study utilises continuous speech, 
which better represents the dynamic attributes of 

voice in speech. 

2. DATA 

This paper reports on a subset of the available 

materials from a bespoke corpus, collected as part of 

an on-going project, containing high quality 
recordings of experienced phoneticians in various 

vocal conditions.  



2.1. Participants 

Data from four male adult speakers were included in 

this study (P1-P4). They are all experienced 
professional phoneticians. 

2.2. Procedure 

Each participant read the first two paragraphs of The 
Rainbow Passage in twenty-four vocal conditions, 

varying laryngeal and supralaryngeal voice quality 

settings, as well as accent guises and other vocal 
changes (e.g. holding a pen between their teeth). Each 

vocal condition was repeated three times non-

consecutively within a recording session. All 
participants took part in three sessions which were at 

least a week apart. Thus, each vocal condition has 3*3 

= 9 repetitions, and the recording of each repetition 

was saved as a PCM WAV file. The repeated design 
better captures intra-speaker variation. This paper 

reports only on the modal, breathy, and creaky voice 

conditions.  

2.2. Recordings 

The recording sessions were conducted in an 

anechoic chamber at the University of York. Each 
participant wore a DPA omnidirectional headset 

microphone on the right side of their face. The 

recording was made on a single channel at a sampling 

rate of 48 kHz and 24-bit quantization using a Zoom 
F8n recorder.  

3. METHOD 

This study employs multinomial logistic regression to 

predict the phonation types with a wide range of voice 

source and vocal tract features. The preprocessing, 
data exploration and analysis were implemented in 

MATLAB, R, and Python, and the scripts are 

available as supplemental materials1. 

3.1. Acoustic Measurements 

Using VoiceSauce [16] in MATLAB, 29 acoustic 

features (see Table 1) were extracted every 25ms 
frame with 10ms frame shift for all audio files. All 

spectral magnitude measures were corrected using f0 

and formants. Both f0 and formants were estimated 

using the Snack algorithm [17]. The f0 extraction 
range set from 40 Hz to 300 Hz, and four formants 

were tracked using the default setting with LPC order 

being 12 and pre-emphasis set to 0.96.  
Only measurements from voiced portions (f0>0) 

were included. Visual inspection of f0 tracking with 

spectrogram and waveform revealed that the f0 of 

each speaker did not exceed 230 Hz. Thus, measures 

of frames whose f0 was larger than 230Hz were 

considered tracking artefacts and were excluded. 

Each audio file is on average 29.04s in duration 
(SD = 3.77s) and evenly divided into six breath-

group-size [18] intervals of about 4.84s each. The 

mean duration of voicing portion of the intervals is 
2.4s (SD = 0.75s). For the analysis, the mean and 

standard deviation of measures of each acoustic 

feature over each interval were used. The division of 
intervals enriched the dataset, instead of using means 

and standard deviations for acoustic measures 

calculated across the entire sample of speech.  

There are, hence, 162 sets (9 repetitions of 3 voice 
qualities with 6 intervals per repetition) of measures 

for each speaker, and each set contains 58 measures 

(means and standard deviations of 29 features). 

Measure Explanation 

Spectral slope measures (dB) 

H1*, H2*, H4*, 

H2k* 

Amplitude of the first, second, 

fourth harmonic, and the harmonic 
nearest 2,000 Hz 

H1*–H2*,  

H2*–H4* 

Difference in amplitude between 

the first and second harmonics, 
second and fourth harmonics 

H4*–H2k* Difference in amplitude between 

the fourth harmonic and the 

harmonic nearest 2,000 Hz 
H2k*–H5k* Difference in amplitude between 

the harmonic nearest 2,000 Hz and 

the harmonic nearest 5,000 Hz 
A1*, A2*, A3* Amplitude of the first, second, and 

third formant 

H1*–A1*,  

H1*–A2*,  
H1*–A3* 

Difference in amplitude between 

the first harmonic and the 
harmonic closest to the first, 

second, and third formant 

Energy/Amplitude related measures 

HNR05,  

HNR15,  

HNR25,  

HNR35 

Harmonic-to-Noise Ratio for 0-

500 Hz, 0-1500 Hz, 0-2500 Hz, 

and 0-3500 Hz 

CPP Cepstral Peak Prominence 

Energy Root Mean Square (RMS) energy 

Vocal tract related measures 

F1, F2, F3, F4 First through fourth formant  

B1, B2, B3, B4 First through fourth bandwidth 

Glottal measures 

f0 Fundamental frequency (Hz) 
Table 1: Acoustic measures extracted from 

VoiceSauce. 

3.2. Multinomial logistic regression 

To learn the relationship between phonation types 

and acoustic features, we fitted multinomial logistic 

regression models with 𝑙!  regularisation, using the 



LogisticRegression() function and SAGA solver [19] 

in Scikit-Learn Python library [20]. The 𝑙! 

regularisation shrinks non-significant coefficients to 
exactly 0 through penalising the absolute values of 

magnitude of coefficients during optimization, 

thereby reducing unnecessary acoustic measures in 
the final model. The predicted variable was one-hot 

encoded such that {breathy = 0, creaky = 1, modal = 

2}. All acoustic features were z-score normalised, 
since features measured at different scales might not 

contribute equally to model fitting and create a bias. 

3.3. Cross-validation 

Cross-validation is employed to evaluate model 

performance, given the small-scale dataset. This 

prevents model overfitting by partitioning a subset of 

data to validate the model prediction accuracy and 
utilise all the data both for training and for testing.  

In our implementation, two sets of cross-

validation were built. In set S, data from one speaker 
was singled out as a test set while the remaining data 

was used for training, and this process was repeated 

for every speaker. In set R, data from one repetition 

for all four speakers was held as a test set while the 
remaining eight repetitions were used for training, 

and this process was repeated for every repetition.  

Two metrics were used to measure the classifier 
performance:(1) accuracy, the percentage of correctly 

predicted phonation types in the test data, and (2) F1-

score, whether the model predictions are balanced 
across three predicted categories. An F1-score close 

to 1 generally means better classification.The average 

results of all iterations in cross-validation are reported. 

3.4. Dimensionality reduction 

Regression models with all 58 standardised acoustic 

features (base) as predictors were initially built. To 

simulate the chance level predictions, baseline 
models were also set up by randomly sampling 

predictions from a discrete uniform distribution of 

[0,2] and comparing them to true labels. The 

classification results are presented in Table 2.  

 Base models Random baseline 

Average Set R Set S Set R Set S 

Accuracy 0.98 0.79 0.32 0.34 
F1 score 0.98 0.78 0.25 0.27 

Table 2: Classification results of full models and 

random baseline models. 

The base models greatly outperformed the random 

predictions, indicating that there are statistical 
regularities between phonation types and these 

acoustic features. Set R has higher accuracy than Set 

S, suggesting that interspeaker variation is larger than 

intraspeaker variation in laryngeal voice quality. 

The base models, however, are not fully 

interpretable, as many of the features are highly 

correlated. Hence, we applied principal component 
analysis (PCA) to the acoustic features prior to 

logistic regression models, thereby removing 

multicollinearity between predictors, as PCA 
transforms a set of correlated variables into a smaller 

number of orthogonal variables. We built a pipeline 

chaining PCA and logistic regression to search for 
optimal parameters of PCA.  

 
Figure 1: The explained variance and mean classification 

accuracy across principal components (set R). 

We found that with the first five principal 

components, the classification accuracy consistently 

reaches over 80%, both for the R and S sets. In Figure 

1, the inclusion of the third component greatly 
increased the accuracy from below 60 % to close to 

80%. Hence, we transformed the data with the first 

five principal components and then used them as 
predictors in logistic regression (PCA models). 

4. RESULTS 

4.1. Classification 

The PCA models achieved good overall classification 

results as shown in Table 3, although the first five 

components captured only about 60% variability in 
the acoustic data. The confusion matrix2 from the 

classification indicates that breathy voice was 

distinguished from creaky voice with 100% accuracy 
(and vice versa). Here, we will focus on Set S models 

tested on unseen speakers. 

 PCA models  

 Set R Set S 

Avg. Accuracy 0.9 0.78 
Avg. F1 score 0.9 0.78 

Avg. Explained variance 0.62 0.63 
Table 3: Classification results of PCA models. 

The regression model coefficients for each 
principal component (PC) are listed in Table 4. PCs 

with larger absolute coefficients indicate their larger 

contribution to prediction. We can see that all five 
PCs contribute to the classification of laryngeal voice 



quality, with PC1 and PC3 generally the most 

important variables.  

Set S PC1 PC2 PC3 PC4 PC5 

Breathy -0.96 -0.58 1.43 0 0.90 

Creaky 2.52 0 -2.86 0.93 -1.82 

Modal 0 0.29 0 -0.13 0 

Table 4: Model coefficients for one of the models 

in Set S. Insignificant coefficients were shrunk to 0 

by l1 regularization. 

In order to better understand how principal 

components predict each phonation type, we visualise 

the test data in the space of fitted PCs. Figure 2 shows 
the distribution of test set data (speaker P4; Professor 

Francis Nolan) in a two-dimensional space of PCs 

derived from the training data. The inspection of PCA 
transformed test data in Set S suggests that the first 

PC is crucial to separate creaky voice (green dots) 

from the other categories, while PC3 distinguishes 

breathy voice (orange dots) from the others. 

 
Figure 2: Two-dimensional projection of the test set data 

using  PCs from training set. 0, 1, 2 represents breathy, 

creaky, and modal voice respectively. 

4.2. Acoustic measures contributing to the PCA 

The results of section 4.1 can be made interpretable 

by examining the factor loadings, i.e. the correlation 
between PCs and acoustic features. Table 5 presents 

the key factor loadings for the first and third PCs from 

the data of the first three speakers, used as training 

data for classification of voice qualities for the test 
speaker P4 (Figure 2). Full factor loadings can be 

accessed in the supplemental materials3. 

In Table 5, PC1 negatively correlates with 
standard deviations of amplitude of harmonics, f0 and 

HNR mean measures, especially HNR below 500 Hz, 

and positively correlates with the mean measures of 
H2*, H4*–H2k*. The first component mainly captures 

f0 and amplitude or energy related measures, both in 

inharmonic and harmonic source, distinguishing 

creaky voice from other categories. PC3 correlates 
positively with spectral tilt means across all 

frequency bands H1*–A3*, H1*–A2*, H1*–A1*, H1*–

H2*, the mean amplitude of H1*, and the mean and 
standard deviation measures of first formant 

bandwidth, and negatively with HNR mean measures. 

In Figure 2, creaky voice tends to have higher PC1 

values, indicating, as might be expected, lower mean 

f0 and HNR measures, especially HNR below 500Hz, 
compared to others. That breathy voice tends to have 

higher PC3 suggests that breathy voice tends to have 

higher mean H1*, spectral tilt mean measures such as 
H1*–A1* and H1*–H2*, mean/SD of first formant 

bandwidth, and lower mean HNR measures, 

especially HNR below 2500 and 3500Hz.   

Set S PC1 PC3 

Positive H2* (0.14), 

H4*–H2K* (0.15) 
(mean)  

H1*, H1*–H2*,  

H1*–A1*,  
H1*–A3*,  

B1 (mean); 

B1 (sd) 

Negative f0, HNR05  
(mean); 

H1*, H4*, A1*, 

A3*, H2*, A2*, 
H2K* (sd) 

HNR35,  
HNR25,  

HNR15 

(mean) 

Table 5: Key acoustic measures for PCs (Training set: 

P1-P3; selected: absolute loadings >0.2 unless specified). 

5. DISCUSSION 

Laryngeal voice quality is manifested in multiple 

acoustic features, both source and filter measures. 

PCA reveals underlying patterns in the wide range of 

acoustic measures and provides a multidimensional 
description of the acoustics of phonation types. For 

instance, PC1 in the sample training set correlates 

positively with mean H2* and negatively with mean 
HNR <500 Hz and f0, assembling features potentially 

profiling creaky voice, while PC3 correlates 

positively with mean H1*, spectral tilt measures and 
B1, and negatively with HNR measures, which 

related to characterising breathy voice. The 

orthogonal nature of PCs might also provide insights 

into person-specific patterns, when test data of 
different speakers was visualised on the PC space 

learnt from the same reference set. 

6. CONCLUSION 

The study revisits the acoustics of laryngeal voice 

quality via a classification approach using PCA and 
logistic regression. Laryngeal voice quality was well 

differentiated using the selected acoustic measures. 

The average classification accuracy was 78% (Set S) 

and 90% (Set R); well above chance. Consistent with 
[13], lower mean HNR measures characterise breathy 

and creaky voice and our findings further suggests 

HNR measures at different frequency bands play a 
role in differentiating breathy voice from creaky 

voice. Other salient acoustic features include spectral 

measures H1*, H2*, H1*–H2*, and f0, B1.  
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_______________________________ 
1 The supplemental materials are available here: 

https://github.com/uoy-research/pasr-

output/tree/main/icphs_23_voicequality. 
2 Confusion matrices of models are presented in the 

supplemental materials. 
3 Section 4.2 mainly reported on one of the Set S 
models with the highest test score to demonstrate how 

to interpret the principal components. Due to limited 

space, results of other models can be accessible in the 

supplemental materials.  
 


