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ABSTRACT

Automatic speaker recognition (ASR) systems rely
on a complex processing chain in order to compare
speech signals and produce likelihood ratios. The
complexity of this chain, and of the speech signals
themselves, mean that there is still limited
understanding about what makes a certain voice easy
or difficult for a system to recognise. This gap in
understanding is holding back the use of ASR in
forensic casework.

This study considers two specific parts of the
ASR chain: x-vectors (speaker models) and
within-speaker comparison scores. Using
heavily-controlled data from two phoneticians, we
demonstrate that variability in vocal setting results in
phonetically-predictable shifts in x-vectors and
scores. Shifts in supralaryngeal voice quality
produce the biggest deviations from modal voice.
The results provide a basis for exploring how
properties of the voice affect ASR performance,
which in turn can contribute to helping courts and
practitioners take advantage of ASR systems in
forensic casework.
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1. INTRODUCTION

1.1 The context

Automatic speaker recognition (ASR) systems are
increasingly used around the world in forensic
speaker comparison cases [1,5]. State-of-the-art
systems utilise deep neural networks (DNNs) to
convert acoustic features (typically mel frequency
cepstral coefficients, MFCCs) to a compact,
fixed-length speaker representation, known as an
x-vector [8]. Such systems perform very well, even
in forensically realistic conditions, when optimised
using case-specific data [4,6].

While much research in ASR has focused on
tackling technical challenges arising from different
recording types (e.g. channel effects such as
telephone transmission, background noise), still very

little is known about why certain voices are easy or
difficult for systems to recognise. This, in part,
explains why some courts are still cautious about
ASR as a form of expert evidence [7]. A particular
concern is being able to explain what information
about the voice is being captured by complex models
like DNNs. This study is the first step in a wider
project which will provide a more comprehensive
understanding of the linguistic and phonetic bases of
ASR system behaviour, which in turn will help
courts and practitioners make best use of ASR
systems in forensic casework.

1.2 Some challenges

ASR systems involve a complex set of processes to
analyse and compare two speech signals (e.g., one of
a known suspect and one of an unknown offender) in
order to compute a numerical value which represents
the strength of evidence. Features are initially
extracted from the ‘voice-active’ portion of each
speech signal (i.e. all parts of the signal containing
speech). In state-of-the-art systems the features are
then passed through a DNN to generate x-vectors.
The x-vectors from two signals are compared to
produce a score. Scores are numerical
representations of the similarity and typicality of the
x-vectors derived using pre-trained models within
the system. However, scores are not directly
interpretable, i.e. it is not always possible to judge
whether a score is ‘high’ or ‘low’ in isolation, or
given a single score, whether the system has made
an error. In part this is due to differences between the
conditions of the evidential comparison and the data
used to train the system. Therefore, the final stage in
the ASR processing chain is calibration, which is a
means of interpreting the evidential score in light of
same- and different-speaker scores from
comparisons that are representative of the evidential
comparison, but where the ground truth is known.
This process of calibration converts the score to a
likelihood ratio (LR); it is only at this point that the
strength of evidence can be evaluated directly.

Speech recordings from forensic casework are
also complex. Within a case, there is likely to be
considerable variability across samples in terms of
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speaking style, interlocutor, and speaking level, as
well as technical factors caused by e.g. channel
differences, sample duration and background noise.
Each forensic case is also unique, meaning that
analysis could in principle involve speakers of any
language, regional accent and socio-economic
background, in any situational context.

1.3 A solution

In this study, we take an initial step towards
understanding the sensitivity of ASR systems to
different types of voices and the extent to which
systems capture different phonetic information. We
do this using highly controlled, and therefore
forensically unrealistic, recordings of phoneticians in
different vocal conditions. We focus on specific parts
of the ASR chain in order to localise where speaker
effects emerge and how they contribute towards
system output.

Specifically, we focus on (i) x-vector speaker
representations (extracted from a DNN using
MFCCs) for different vocal conditions
within-speakers, and (ii) the subsequent
within-speaker score distributions which are
generated by running a comparison in the ASR, but
before any system calibration. All other variables are
held constant (see description of data below) so that
variation in the distributions can be interpreted
relative to changes within a speaker’s voice. While
the focus on x-vectors and scores means that we
cannot directly interpret whether differences are
‘important’ in terms of their ultimate impact on
system performance, it does enable us to identify
conditions of interest for further work.

2. DATA

This study uses a heavily controlled corpus which
includes variation in speaker, vocal condition, time,
and technical condition. In this paper, we report on a
subset of the available material.

2.1 Participants

We report on data from two phoneticians: Paul
Foulkes (PF - P1) and Francis Nolan (FN - P4). By
using data from experienced phoneticians we could
ensure there was minimal variability between
participants when varying vocal conditions.

2.2 Vocal conditions

Each participant read the first two paragraphs of The
Rainbow Passage in twenty four vocal conditions.
These were selected to reflect changes in segmental

and suprasegmental vocal parameters and fell into
four groups (individual conditions are listed in
Figures 1 and 2 below):

● Modal voice. This was used as a baseline for a
speaker’s ‘normal’ way of speaking.

● Accent guises (5). A range of linguistic changes,
no significant shift in any one feature.

● Miscellaneous (7). Other forensically relevant
variation.

● Voice quality (7 supralaryngeal, 3 laryngeal).
One vocal setting at extreme, all others held as
constant as possible.

Each vocal condition was repeated three times
within a session (non-consecutive repetitions). Both
participants took part in three sessions which were at
least a week apart. In each session the conditions
were repeated in the same order.

2.3 Technical conditions

Sessions were recorded in an anechoic chamber.
Participants were seated at one end of the chamber
throughout. Repetitions were simultaneously
recorded in four technical conditions: headband
microphone (DPA 4066 omnidirectional headset),
near microphone (1m from participant), far
microphone (2m from participant), and
landline-to-VOIP call. Recordings were made in
PCM WAV format with a 48kHz sample rate at 24
bits. For the purposes of the present study, only the
headband microphone recordings were analysed

Individual repetitions of each vocal condition
were extracted from within each session and are
referred to throughout as a sample (i.e. 1 sample = 1
repetition of 1 condition in 1 session). There were
218 samples for PF, and 216 for FN. (There was one
additional repetition of the high pitch and whisper
conditions for PF.)

3. METHODS

3.1 The system

Analysis was carried out in the ASR software
VOCALISE 2021 (version 3.0.0.1746) [2]. We
report on outputs from the system at different stages
in the comparison process.

3.2 x-vectors

For each participant, we first generated x-vectors for
each sample using the default VOCALISE x-vector
model.



Figure 1: A t-SNE visualisation showing the average x-vector position for FN in each condition in 2-D space.

These were generated from MFCCs, which were
extracted on a frame-by-frame basis across the
sample and then passed through a DNN [2,8]. The
x-vector is a representation of the speaker’s voice in
a given sample and contains 512 values. t-SNE
(t-Distributed Stochastic Neighbour Embedding)
plots were generated using the x-vectors to assess
within-speaker patterns. t-SNE plots provide a way
of visualising high-dimensional data in two or three
dimensional space [9]; similar points appear closer
together, and dissimilar points further apart [3].

3.3 Score distributions

Within-speaker comparisons were also carried out in
VOCALISE using the default x-vector PLDA
model. For each participant, each sample was
compared to every other sample they produced. Each
comparison results in a score. As noted earlier,
scores are numerical representations of the similarity
and typicality of the x-vectors derived using
pre-trained models within the system, and
interpretable only relative to other sets of similar
scores. In this study we discuss only the
within-speaker modal-to-other scores.

4. RESULTS

4.1 Within-speaker x-vector space

The t-SNE plot in Figure 1 visualises the x-vector
space for FN (more detailed plots for both speakers
are available online).

For FN, all within-condition repetitions clustered
around the same area, so for ease of visualisation we
have included only the average of the coordinates.

The distribution of conditions in the x-vector space
generally reflects the phonetic distance between the
conditions. Low pitch, lowered larynx and backed
tongue body all cluster in a similar area in the top
left of the plot. At the bottom, breathy and whisper
are separated from other conditions. Although his
plot is not included here, PF’s foreign accented
repetitions did not cluster together, but instead three
samples appeared away from the main cluster. These
three were characterised by more marked larynx
lowering, harsh phonation and some lingual
retraction; this was in contrast to the other
repetitions which were more breathy and
perceptually higher in pitch. Taken together, it is
clear that the x-vector distributions are capturing
phonetic variability.

4.2 Within-speaker score distributions

The plot in Figure 2 shows the within-speaker (i.e.
same speaker) modal-to-other score distributions.
The dark grey distributions are PF, and the light grey
are FN. The dashed line represents the median
modal-modal score across PF and FN and is used
here as a baseline for assessing which conditions
demonstrate the biggest effects on scores. Individual
medians for each distribution are shown as a solid
line within the distribution. Vocal conditions are
grouped, and ranked within each group based on the
distance from modal (i.e. those which are more
different appear at the bottom of the display).

The within-speaker modal-modal distributions
for PF and FN overlap almost completely; both have
similar degrees of variability across their repetitions
in this condition and the scores are very similar.
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The modal-accent guise scores are generally the
closest to the modal-modal distributions. Both PF
and FN varied their speech within these conditions
on a range of different phonetic dimensions but the
scores are generally in the same range as the
modal-modal distributions. The exception to this is
PF’s foreign accented voice; as discussed earlier,
these samples showed within-condition variability,
and were also more different from his modal voice in
a range of features.

Overall, the modal-supralaryngeal voice quality
scores are the most different from the modal-modal
scores. However, there is also considerable
variability within this group, and between FN and
PF. Modal-lowered larynx and modal-backed tongue
body comparisons have distributions furthest from
modal-modal, and FN and PF have different
distributions, both in shape and degree of difference
from modal.

For the miscellaneous conditions, those which
involve supralaryngeal changes have the biggest
impact on the score distributions. Modal-pinched
nose, and modal-high pitch are most different from
modal-modal. The difference between FN and PF in
the modal-high pitch condition likely reflects the
different strategies employed to produce high pitch;
PF’s high pitch involved some laryngeal raising and
falsetto, thus involving supralaryngeal as well as
laryngeal changes compared with PF’s modal. The
score distributions appear to reflect this difference.

When considering laryngeal voice quality,
modal-whisper scores are the most different from
those for modal-modal.

5. DISCUSSION

5.1 Within-speaker variability

The relationship between vocal conditions in the
x-vector and score distributions reflects the degree
of phonetic variability from modal. Supralaryngeal
changes and whisper have the most divergent score
distributions compared with the modal condition; the
outcomes of these impact on a wide range of
phonetic patterns (e.g. backed tongue body results in
more retracted realisations of all vowels). In
contrast, making intermittent, more targeted shifts to
a range of features (e.g. the modal-accent guises)
does not markedly impact the score distributions
when compared to the modal-modal distributions.

5.2 Forensic applications

The findings allow us to further our understanding of
potential mismatch conditions which might be
relevant in casework situations.

Figure 2: Within-speaker modal-to-other score
distributions. Dark grey = PF; light grey = FN.

Although we do not know at this stage whether such
factors would affect system performance. However,
the fact that the system is sensitive to phonetic
variation in a linguistically-predictable way (i.e.
large supralaryngeal changes result in the most
difference) at the two stages considered here is
useful when it comes to addressing issues of
explainability, for example, in a courtroom.

5.3 Future plans

In future work, we will consider further stages in the
chain such as calibration and validation, and include
different-speaker comparisons. We will also explore
how the findings from this small controlled corpus
can be extrapolated to other, less controlled data and
a larger number of speakers.
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