
This is a repository copy of Imaging stars with quantum error correction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198737/

Version: Accepted Version

Article:

Huang, Z. orcid.org/0000-0002-6529-8691, Brennen, G.K. orcid.org/0000-0002-6019-966X
and Ouyang, Y. orcid.org/0000-0003-1115-0074 (2022) Imaging stars with quantum error 
correction. Physical Review Letters, 129 (21). 210502. ISSN 0031-9007 

https://doi.org/10.1103/physrevlett.129.210502

© 2022 American Physical Society. This is an author-produced version of a paper 
subsequently published in PHYSICAL REVIEW LETTERS. Uploaded in accordance with 
the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Imaging stars with quantum error correction

Zixin Huang,1, ∗ Gavin K. Brennen,1, † and Yingkai Ouyang2, 3, ‡

1Centre for Engineered Quantum Systems, School of Mathematical
and Physical Sciences, Macquarie University, NSW 2109, Australia

2Department of Electrical and Computer Engineering, National University of Singapore, Singapore
3Centre of Quantum Technologies, National University of Singapore, Singapore

(Dated: April 14, 2022)

The development of high-resolution, large-baseline optical interferometers would revolutionize astro-
nomical imaging. However, classical techniques are hindered by physical limitations including loss,
noise, and the fact that the received light is generally quantum in nature. We show how to overcome
these issues using quantum communication techniques. We present a general framework for using
quantum error correction codes for protecting and imaging starlight received at distant telescope
sites. In our scheme, the quantum state of light is coherently captured into a non-radiative atomic
state via Stimulated Raman Adiabatic Passage, which is then imprinted into a quantum error cor-
rection code. The code protects the signal during subsequent potentially noisy operations necessary
to extract the image parameters. We show that even a small quantum error correction code can
offer significant protection against noise. For large codes, we find noise thresholds below which the
information can be preserved. Our scheme represents an application for near-term quantum devices
that can increase imaging resolution beyond what is feasible using classical techniques.

I. INTRODUCTION

The performance of an imaging system is limited by
diffraction: the resolution is proportional to its aperture
and inversely proportional to the wavelength λ. Together
these place a fundamental limit on how well one can im-
age the objects of interest. Typical techniques employed
to enable quantum sensing and quantum imaging to sur-
pass classical limits utilise entanglement [1, 2], source en-
gineering (fluorescence microscopy [3]), or squeezing [4]
to suppress intensity fluctuations. These techniques re-
quire manipulating the objects or illuminating them with
light that has special properties. However, often it is the
case, such as for astronomy, that we have neither direct
access to, nor the ability to illuminate the objects of in-
terest. Rather all we can do is analyse the light that
reaches us.
To maximise imaging resolution, the experimenter

aims to use large apertures and small wavelengths. High-
resolution imaging requires not only intensity measure-
ments, but also the phase relationship in different parts of
the imaging system to be well-established. Current large-
baseline telescope arrays [5] operate in the microwave
and radio-frequency domains, because we can measure
the phase as well as the amplitude of the received sig-
nal directly. By moving into optical frequencies, we can
increase the resolution by a factor of λoptical/λmicrowave,
a three to five orders of magnitude improvement. An
optical interferometer the size of the planet’s diameter
would be powerful enough to image small planets around
nearby stars [6], details of solar systems, kinematics of
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stellar surfaces [7], and potentially details around black-
hole event horizons – none of which currently planned
projects can resolve.

However, this task is extremely challenging, because
even the fastest electronics cannot directly measure the
oscillations of electric fields at optical frequencies. Sev-
eral challenges hinder the progress in building large-
baseline optical interferometers, one of which is the pres-
ence of noise and transmission loss that ultimately limits
the distance between telescope sites. To avoid transmis-
sion losses, in the most direct approach [8], we could store
the signal into atomic states and perform operations to
extract the information; however, such states are sensi-
tive to optical decay and other decoherence. One way to
combat noise in physical systems is to employ quantum
error correction (QEC). QEC has been predominantly
studied for in the context of quantum computation [9]
and specialised sensing protocols [10–19].

In this paper, we produce a general framework for us-
ing QEC codes to protect the information in the received
light. This is the first time that QEC has been applied
to a quantum parameter estimation task where the probe
state need not be prepared by the experimenter. We elim-
inate optical decay in quantum memories by coupling
light into non-radiative atomic qubit states via the well-
developed process known as STImulated Raman Adia-
batic Passage (STIRAP) [20]. Then, the state in the
quantum memories is imprinted onto a QEC code, thus
protecting the signal from subsequent, potentially noisy
operations. In addition, when the signal arrives, there are
potential multi-photon events, which our scheme can ac-
commodate. Two general proof-of-principle results [8, 21]
have investigated the potential for entanglement-aided
imaging, when the quantum memories and subsequent
quantum operations are ideal. Here we take into account
for noise sources such as optical decay and propose a ro-
bust encoding of the signal into quantum memories.
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FIG. 1. Overview of our protocol. (i) Light at wavelength λ from astronomical sources is collected at two sites, Alice
and Bob, separated by a distance D with each holding a quantum memory and sharing one or more Bell pairs. (ii) A general
framework for the process encoding, error correction, and measurement of the signal. The starlight ρ⋆ is input into an encoder,
which outputs a logical state of a quantum code. The memory qubits and subsequent operations are potentially noisy as
modelled by local channels E . Any correctible error is detected by syndrome measurements and the final step is a local Clifford
measurement M, that depends on the error syndromes, and that extracts the parameters of interest from the state. (iii) A
more detailed schematic that shows the operations to encode the starlight into a protected logical state. The green dashed
line denotes the spatial separation between Alice and Bob. Um are Pauli corrections depending on the outcome of local
Bell measurements. The operation Pa is a parity measurement to project out the vacuum component of light (and possible
multiphoton contributions) and is the only part of the protocol that uses non-local resources.

Any imaging task can be translated into a parame-
ter estimation task, where the quantity of interest is the
quantum Fisher information (QFI). We show that even a
small QEC code can offer significant protection against
noise which degrades resolution. For small QEC codes,
one can calculate the QFI directly. However, the com-
putational complexity of the calculation grows exponen-
tially with the number of qubits. For large QEC codes,
the QFI can be preserved, provided that the noise is be-
low a certain threshold. Our bounds on the QFI in this
case are both analytical and asymptotically tight.
The structure of the paper follows. In Sec II we give an

overview of the entire protocol; in Sec. III, we describe
our model of the astronomical signal and briefly review
the quantum Fisher information formalism. In Sec. IV,
we describe STIRAP and show how to find the pulse
shape necessary to transfer the photon into the atomic
qubit with near unit fidelity, followed by Sec. V, where
we explain the encoding process. In Sec. VI, we show
quantitatively how quantum error correction can protect
the QFI. In the Supplemental Information, we show how
the unprotected state performs under various noise mod-
els, and describe how to accommodate for higher photon
contributions.

II. THE PROTOCOL

We show an overview of our protocol in Fig. 1. We con-
sider a two-site scenario, denoted Alice and Bob, where
each holds a telescope station and they are separated
by a long distance. The layer of quantum technology is
schematically shown in panel (i), where light from as-
tronomical sources is collected by Alice and Bob: they

share pre-distributed entanglement, and each of the two
sites contains quantum memories into which the light is
captured. This becomes part of the encoder operation
depicted in panel (ii), which shows a general framework
for imprinting the signal into a quantum error correction
code. Here Alice and Bob each prepares (locally) their
set of qubits into some QEC code. The received state
ρ⋆ is imprinted onto the code via an encoder, resulting
in the logical state ρAB shared between Alice and Bob.
The state is thus protected from subsequent noisy opera-
tions. Panel (iii) shows the circuit of the encoder, which
is described in detail in Sec. V. The green dashed line
represents the spatial separation between Alice and Bob.
The pre-distributed entanglement is used to project onto
the single photon subspace of ρ⋆. One Bell-pair suffices to
filter out the vacuum, and two will filter out the vacuum
and the much smaller component of two photon states.

In the “encoder” stage, we need to capture the sig-
nal into the quantum memories, which involves a light-
matter interaction Hamiltonian. In the naive approach,
we could use two-level atoms with ground and excited
state encoding, |g〉 , |e〉, where the energy difference cor-
responds to the energy of the photon. If we were to place
such an ensemble of excited atoms in a cavity, the atoms
will undergo optical decay that can introduce errors or
take the state outside the codespace altogether. To cir-
cumvent this, we use a scheme known as STImulated
Raman Adiabatic Passage (STIRAP) which allows us to
coherently couple the incoming light into a non-radiative
state of an atom. Unlike the naive approach, we do not
need to match the frequency of the signal with the atomic
transition, giving us more bandwidth and flexibility. The
state is then imprinted onto a QEC code via a Bell mea-
surement. Details follow.
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III. THE MODEL

We model the incoming signal as a weak thermal state
of light [22] that has been multiplexed into frequency
bands narrow enough for interferometry. For such an n-
mode Gaussian state, for a particular band, given density
matrix ρ and the creation/annihilation operators P =

(a1, a
†
1, ..., an, a

†
n), its properties are completely specified

by the first and second moments

µk = Tr[Pkρ], Σk,l =
1

2
Tr[{Pk − µk, Pl − µl}ρ] (1)

where {X,Y } = XY +Y X denotes the anticommutator.
In basis {a, a†, b, b†}, where a (b) is the annihilation op-
erator of the mode held by Alice (Bob), we have the first
moments equal to 0, and the covariance matrix

Σ =









0 ǫ
2 + 1

2 0 1
2γǫe

iφ

ǫ
2 + 1

2 0 1
2γǫe

−iφ 0
0 1

2γǫe
−iφ 0 ǫ

2 + 1
2

1
2γǫe

iφ 0 ǫ
2 + 1

2 0









, (2)

here ǫ/2 is the mean photon number of both modes.

The parameters of interest are φ and γ, where φ ∈
[0, 2π) is related to the location of the sources, and
γ ∈ [0, 1] is proportional to the Fourier transform of
the intensity distribution (shape of the objects) via the
van Cittert-Zernike theorem [22]. Optimally estimating
φ and γ provides complete information of the source dis-
tribution by using two modes [23]. In this paper, we con-
sider the optimal estimation of two-mode states for clar-
ity; this easily extends to multi-mode, broadband opera-
tion by incorporating the time and frequency-multiplexed
encoding in Refs. [8, 24].

The ultimate precision in the estimation is given by
the quantum Cramér-Rao bound [1, 2, 25, 26]. For the
estimation of the parameter ϕ encoded onto a quantum
state ρϕ, this is a lower bound on the variance (∆ϕ̂)2 =
〈ϕ̂2〉 − 〈ϕ̂〉2 of any unbiased estimator ϕ̂. For unbiased
estimators, the quantum Cramer-Rao bound establishes
that

(∆ϕ̂)2 >
1

N

1

J(ρϕ)
, (3)

where N is the number of probe systems used, and J is
the quantum Fisher information (QFI) associated with
the global state ρλ of the probes. The latter is defined as

J(ρϕ) = Tr
(

L2
ϕρϕ

)

, (4)

where Lϕ is the Symmetric Logarithmic Derivative
(SLD) associated with the parameter ϕ [27]. Consider
a set of basis vectors |e1〉, |e2〉, . . . in which ρϕ is diago-
nal:

ρϕ =
∑

n

pn|en〉〈en| . (5)

The SLD is then given by

Lϕ = 2
∑

n,m:pn+pm 6=0

〈em|∂ϕρ|en〉
pn + pm

|em〉 〈en| , (6)

with ∂ϕρ = ∂ρϕ/∂ϕ. The quantum Cramer-Rao bound
is asymptotically saturated in the limit that N → ∞ [28].
If multiple parameters are to be estimated, a necessary

and sufficient condition for their joint optimal estimation
is [29]

Tr(ρϕ[Lϕi
, Lϕj

] = 0). (7)

The condition in Eq. (7) is not satisfied for φ and γ, which
means they will need to be separately estimated.
First, consider the case where most of the time, at most

a single photon arrives on the two sites, i.e. ǫ ≪ 1. We
can describe the optical state by the density matrix

ρ⋆ =(1− ǫ) |vac, vac〉 〈vac, vac|AB +

ǫ

(

1 + γ

2

)

|ψφ
+〉 〈ψφ

+|+ ǫ

(

1− γ

2

)

|ψφ
−〉 〈ψφ

−|+O(ǫ2)

(8)

where |ψφ
±〉 = (|1p〉A |vac〉B ± eiφ |vac〉A |1p〉B)/

√
2. Here

the subscript p denotes a photon Fock state of the cor-
responding photon number. To coherently couple this
state into the quantum memories, we use the STIRAP
interaction.

IV. STIMULATED RAMAN ADIABATIC

PASSAGE

STIRAP is inherently robust to parameter errors and
resilient to certain types of noise, and has emerged as a
popular tool in quantum information. Notably, it is im-
mune to loss through spontaneous emission (amplitude
damping), and robust against small variations of exper-
imental conditions, such as laser intensity, pulse timing,
and pulse shape [20].
We depict our set-up in Fig. 2: (a) inside a cavity, we

use three different sets of systems. We denote the blue
array as the register. The blue array is initialised in a
codespace of a QEC code encoding a single logical qubit,
spanned by its logical codewords |0L〉 and |1L〉. We also
need ancilla qubit 1 (green), and ancilla atom 2 (red).
Note the three types of matter qubits could consist of
different electronic sublevels of the same species of atom
if desired.
In panel (b) we describe the energy levels of ancilla

atom 2. This atom has three energy levels: the excited
state |e〉, and two ground state levels, |0〉R and |1〉R that
for convenience we have assumed degenerate, though this
is not essential. The energy difference between |0〉R and
|e〉 is ω0. Ancilla atom 2 is optically trapped. The cav-
ity coupling between |0〉R and |e〉 is denoted g, which is
a fixed parameter that depends on the properties of the
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atom and the cavity; the time-dependent Rabi frequency
on the transition |1〉R to |e〉 is denoted Ω(t). The param-
eter Ω(t) is tunable via changing the intensity of another
laser, which has frequency ωL, and has detuning ∆ from
ω0.

ancilla 1

(G)

cavity

(a)

1⟩
R

0⟩
R

|e⟩

𝛀(t) g

𝚫

(b) Energy levels of ancilla atom 2

ancilla 2

(R)0
L
⟩,   1

L
⟩

register

FIG. 2. Cavity-assisted coherent single-photon trans-

fer. (a) A system of qubits has logical states |0L〉 , |1L〉; an-
cillary qubit 1 is initially prepared into a Bell state with the
register, 1/

√
2(|0L0G〉+ |1L1G〉) ; ancilla 2 is used in the STI-

RAP interaction to interact with the star photon. (b) Energy
levels the ancilla atom 2 used for the STIRAP interaction.

Defining n to be the number of photons in the cavity,
the STIRAP Hamiltonian is

Hstirap(t) = ω0 |e〉 〈e|+ ωca
†a+

Ω(t)e−iωLt |e〉 〈1|+Ω(t)∗eiωLt |1〉 〈e|+
ga |0〉 〈e|+ g∗a† |e〉 〈0| . (9)

In the rotating wave approximation, in the basis
{|1R, n− 1〉 , |e, n− 1〉 , |0R, n〉}, the interaction Hamilto-
nian can be written as a direct sum,

HI(t) =
∑

n

H(n)(t), H(n)(t) =





0 Ω(t)∗ 0
Ω(t) −∆ g

√
n

0 g∗
√
n 0



 .

(10)

Here ∆ = ωL−ω0, which is the energy difference between
the laser and the transition energy and itself can be a
function of time. One of the eigenstates of H(n)(t) has a
zero eigenvalue, H(n)(t) |ψ0(t)〉 = 0, where

|ψ0(t)〉 = c (−r(t) |1〉R |n− 1〉+ |0〉R |n〉) ,

r(t) =
g
√
n

Ω(t)
(11)

and c is a normalisation factor.

Before the interaction, the initial state is |0〉R, and this

will be the eigenstate if Ω(t = 0) ≫ g. Then, if we adia-
batically tune down Ω(t) such that at the end of the in-
teraction, t = T , if Ω(T ) ≪ g, then |ψ(T )〉 ≈ |1〉R. That
is, we have made a controlled spin population transfer
from |0〉R to |1〉R depending on the presence of the pho-
ton. If the photon is absent, |0〉R |vac〉 stays as |0〉R |vac〉.
The joint state of the atom-photon evolves as ρ(T ) =

UI(T )ρ(0)U
†
I (T ), UI(T ) = T

{

∫ T

0
exp(−iHIt)dt

}

, where

T {·} is the time-ordering operator. Since we stay in the
0 eigenvalue of H(t) for all time there is no dynamical
phase accumulated. This is what makes STIRAP robust
against timing errors.

In Fig. 3, for n = 1, we show that the population
transfer between the atomic states |0〉R and |1〉R can be
completed without populating the excited state |e〉, thus
avoiding spontaneous emission. We have fixed the pa-
rameter g = 1, and Ω(t) is numerically optimised to max-
imise the transfer from |0〉R to |1〉R. The pulse is divided
into three intervals for Ω(t): during the first interval, Ω(t)
is linear, in the second interval, it is a hyperbolic tan-
gent function, and finally, a short linear taper to ensure
Ω(T ) = 0. Note that during the STIRAP pulse there
is a possibility of dephasing on the red ancilla qubits.
However, this dephasing can be mitigated by judicious
choice of ground states. For example, in an alkali atom
with hyperfine structure and half integer nuclear spin
(I > 1) one could choose the states |0〉R = |F↑,MF = 1〉,
|1〉R = |F↓,MF = −1〉, and |e〉 = |F ′,MF = 0〉. Because
the Landé g-factors are equal and opposite for the two
ground state hyperfine manifolds, the shift due to extra-
neous magnetic fields will be zero to first order. Addition-
ally, with this choice of levels, a time dependent detuning
∆(t) to satisfy adiabaticity can be realized by turning on
a time dependent magnetic field along the quantization
axis of the atom [30].

V. THE ENCODER

Suppose we now prepare the register and the green
ancilla (here the subscript G denotes green) in the Bell
state

|Φ0〉 =
1√
2
(|0L〉 |0G〉+ |1L〉 |1G〉). (12)

Now, the red ancilla is initially prepared in state |0〉R, so
our set-up is in state

|Ψ0〉 = |Φ0〉 ⊗ |0〉R . (13)

Suppose Alice and Bob each has a copy of |Ψ0〉, and they
perform STIRAP individually (Fig. 1 panel (iii)). They
share the single photon from the star

1√
2
(|1p〉A |vac〉B ± eiφ |vac〉A |1p〉B). (14)
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FIG. 3. Population transfer for of a three-state adi-

abatic passage. Top: the interaction strengths of g and Ω
as a function of time t in units of 1/g. Bottom: occupancy
of in |e〉 , |0〉

R
and |1〉

R
in ancillary atom 2 (r). The detuning

parameter is set to ∆(t) = g2 + Ω2(t) to satisfy the adia-
batic condition [31]. Note that the excited state |e〉 is not
populated.

In the presence of the photon, the STIRAP interaction
transforms |0〉R → |1〉R, and the phase relationship in
the photon is preserved. This means that the state of
the red ancillae (on Alice and Bob’s sites) is now

1√
2

(

|1R, 0R〉AB ± eiφ |0R, 1R〉AB

)

. (15)

Performing a Bell measurement on the red and green
ancillae teleports the state onto the registers. After the
Pauli operator correction dependent on the measurement
outcome, the state of the registers between Alice and Bob
becomes an entangled state, and the entanglement arises
entirely from the starlight photon.
Since the initial starlight state is mixed, after the en-

coding, the density matrix shared between Alice and Bob
is

ρAB ≈(1− ǫ) |0L0L〉 〈0L0L|A1B1
+

ǫ

(

1 + γ

2

)

|ψφ
+,L〉 〈ψ

φ
+,L|+ ǫ

(

1− γ

2

)

|ψφ
−,L〉 〈ψ

φ
−,L|

+O(ǫ2), (16)

where |ψφ
±,L〉 = (|0L, 1L〉 ± eiφ |1L, 0L〉)/

√
2.

The states |ψφ
±,L〉 are orthogonal to |0L0L〉 and |1L1L〉,

and therefore can be distinguished via a parity measure-
ment [8]. We can introduce additional pre-shared logical

Bell pairs |Φ±〉 = (|0L, 0L〉 ± |1L, 1L〉)/
√
2, which can be

prepared by injecting a two-qubit Bell pair into Alice and
Bob’s QEC code by state injection [32]. The quality of
the logical Bell pairs can be guaranteed by using distil-
lation protocols [33]. Introducing additional pre-shared

logical Bell pairs |Φ±〉 = (|0L, 0L〉± |1L, 1L〉)/
√
2, logical

CZ gates between the memory qubits in ρAB and |Φ+〉
can project out the vacuum:

ρAB ⊗ |Φ+〉 2×CZ→ |0L, 0L〉 〈0L, 0L|AB ⊗ |Φ+〉 〈Φ+|+

ǫ

(

1 + γ

2

)

|ψφ
+,L〉 〈ψ

φ
+,L| ⊗ |Φ−〉 〈Φ−|+

ǫ

(

1− γ

2

)

|ψφ
−,L〉 〈ψ

φ
−,L| ⊗ |Φ−〉 〈Φ−| . (17)

It suffices for Alice and Bob to perform local measure-
ments and use classical communication to determine if
the logical Bell pair is |Φ+〉 or |Φ−〉. For instance, Alice
and Bob would both measure in the eigenbasis of the log-
ical X operator, and accept only the odd parity outcome.
This odd parity outcome corresponds to a projection onto
the state |Φ−〉, which reveals that a star photon has been
captured into the memory qubits. In this case, we obtain
the state

ρ′AB =

(

1 + γ

2

)

|ψφ
+,L〉 〈ψ

φ
+,L|+

(

1− γ

2

)

|ψφ
−,L〉 〈ψ

φ
−,L| .
(18)

This method can be extended to accommodate for mul-
tiple photon events, see Supplemental Materials for an
example with two photons.

After projecting out the vacuum, we can use local mea-
surements to extract information on φ and γ. The QFI
for φ is γ2ǫ, and the QFI for γ is ǫ/(1 − γ2). The opti-
mal measurement is non-unique for our case here; in the
ideal case, local measurement is sufficient to saturate the
quantum Cramer-Rao bound. Indeed, the local measure-
ment basis 1√

2
(|0L〉±eiθ |1L〉)A⊗ 1√

2
(|0L〉±|1L〉)B allows

us to saturates the quantum Cramer-Rao bound, where
θ is an adjustable phase. If we want to avoid applying a
logical phase gate based on previous estimate, we could
do this in a robust manner using geometric phases dur-
ing the STIRAP stage. We can achieve this by changing
the relative phase of the pump pulse Ω(t) and the single
atom coupling g dynamically during the sequence, then a
geometric phase will accumulate depending on the path
in parameter space [34].

To optimally measure φ, we can adaptively adjust θ →
π/2 − φest; to optimally measure γ, θ = −φest, where
φest is our best estimate of φ. If the QEC code is a
stabiliser code, this measurement basis can furthermore
be made to comprise of stabiliser states, by offseting the
phase θ using geometric phase gates. This allows our
scheme to be measured using any measurement protocol
that measures in the stabiliser basis.

Physically, STIRAP has been implemented on many
different platforms, including Rydberg atoms[35, 36],
trapped ions [37, 38] semiconductor quantum dots [39],
superconducting circuits [40] and etc. The metric for the
quality of the atom-cavity system is the cooperativity
C = 2g2/κη, which is the ratio of g to the cavity loss
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(bottom) the depolarising channel when we use the 4-qubit
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code (teal solid line).

rate κ, and the decay rate of the atom into non-cavity
modes η. The potential for achieving high cooperativ-
ity gives cavity QED a central role in the development
of high-fidelity quantum gates. A recent result reports a
cooperativity C = 299 [41] for Rubidium atoms in a fibre
cavity that is potentially compatible with our setup.

VI. QUANTUM ERROR CORRECTION

After the STIRAP interaction and the parity measure-
ment, Alice and Bob share the quantum state ρ′AB in
Eq. (16), which is entangled over 2n qubits (they each
hold n of them). We can calculate the QFI of ρ′AB with
respect to the signal that has been encoded with QEC.
For an [[n, k, d]] QEC code, n is the number of physical
qubits, k is the number of logical qubits encoded, and d
is the distance. The distance is the minimum number of
physical errors it takes to change one logical codeword
into another. Any QEC code with distance d can correct
up to t = ⌊(d− 1)/2⌋ errors [43], where ⌊·⌋ indicates the
floor function.
The choice of which QEC code to use depends on var-

ious conditions, such as the number of available physical

0.5 0.6 0.7 0.8 0.9 1.0
1-p

0

2

4
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8

10

Q
FI

Unencoded, =0.95
3-rep code, =0
3-rep code, = /8

0.70 0.75 0.80 0.85 0.90 0.95 1.00
1-p

0

2

4

6

8

10

Q
FI

Unencoded
4-qubit code, =  0.95
[[5,1,3]], =  0.95

FIG. 5. For γ = 0.95, (top) the QFI for γ of the dephasing
channel, when no encoding is used (red dotted-dashed line),
and the 3-repetition code, when φ = 0 (blue dashed line), and
when φ = π/8 (green solid line); (bottom) the depolarising
channel when we use the 4-qubit code (blue dashed line) and
the [[5,1,3]] error correction code (teal solid line).

qubits, and the noise model. We now illustrate how our
QEC-scheme performs when a dephasing and depolaris-
ing channel afflicts each qubit when n is small. Since n
is small, the exact QFI can be calculated. We describe
the dephasing channel as

Edephase[ρ] → (1− p) ρ+ pσzρσ
†
z, (19)

where σz is the phase-flip operator. Here p = 1/2 cor-
responds to the completely dephasing channel. The de-
polarising channel acting on each qubit can be written
as

Edepol(ρ) = (1− p)ρ+ pI/2, (20)

where (1 − p) is the probability that the transmission is
noiseless, and with probability p the state is replaced by
the completely mixed state.

In Fig. 4 we show the QFI of φ per photon received as
a function of the noise strength p for the two noisy chan-
nels. In most physical systems, dephasing is the domi-
nant noise type. The unprotected case which does not use
QEC codes has a QFI of (1−2p)4, which drops off quickly
even when p is small. Evident in the top graph, a simple
quantum repetition code provides a significant advantage
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over the unprotected case for all values of dephasing. The
logical states of the repetition codes are |0L〉 = |+〉⊗n

and

|1〉 = |−〉⊗n
, |±〉 = (|0〉+ |1〉)/

√
2, and as n increases, the

resilience against noise increases. In the limit of large n,
we expect the curve to approach a step function where
the QFI is preserved for up to p < 0.5. This is evident
from the Chernoff bound (see below) since the phase-flip
distance of the repetition code is n.

For the depolarising channel, the unprotected case
without QEC has a QFI equal to 2(1− p)4/(2− 2p+ p2).
Here, the [[5,1,3]] code is able to offer protection for val-
ues of p up to about 20%. This feature arises because of
the favorable distance to length ratio of the [[5,1,3]] code.
In Fig. 5 we show the QFI of γ per photon received.

Note that γ is a non-unitary parameter, and behaves dif-
ferently from φ: the QFI can be preserved despite more
than t = (d − 1)/2 error occurring. For error numbers
less than n, phase-flip errors put the state onto orthogo-
nal and correctable subspaces. Surprisingly, if φ = 0, the
repetition code can preserve its QFI perfectly. There are
two cases which leads to this phenomenon: if there are
less than n phase flips, the state is put onto a correctable
subspace, and the corresponding normalised state has the
same QFI as the original state. When 2n phase-flip er-
rors occur, the logical states (|0L〉 |1L〉 ± |1L〉 |0L〉)/

√
2

are eigenvectors of these errors with eigenvalues ±1: the
state is effectively invariant under the noise channel.
For φ 6= 0, the advantage afforded is also significant;

more importantly, one can adaptively change the ad-
justable phase so that the effective value of φ is close
to 0 when the state is encoded.
For the depolarising channel, we see that the four-qubit

code [42] with logical codewords (|0000〉+|1111〉)/
√
2 and

(|0011〉+|1100〉)/
√
2 and the [[5,1,3]] QEC code also offers

protection for a modest range of p.
To understand the behaviour of large quantum codes,

now let us consider any noise model that introduces some
error on each qubit independently with probability p.
Now, let ǫfail denote the probability of having an un-
correctable error, where ǫfail is at most the probability of
having at least d/2 errors. Using the Chernoff-Hoeffding
bound for Bernoulli random variables [44], whenever
p < d/(2n), we have [45, 46]

ǫfail ≤ e−D(d/2n‖p)n, (21)

where D(x‖y) = x ln(x/y) + (1 − x) ln((1 − x)/(1 − y)
denotes the Kullback-Leibler divergence. Note that ǫfail
vanishes exponentially in n for small enough p. For large
QEC codes, d/(2n) asymptotes to a positive constant.
By the quantum Gilbert-Varshamov bound [47–50], we
know that if we use random QEC codes, we can have d/n
approaching 0.1893 for large n. Hence, for our scheme
such QEC codes can tolerate noise afflicting up to 9.4%
of the qubits while preserving the QFI. This means that
for p < 0.094, the QFI will be almost equal to that of
when p = 0, if d and n are large enough.
If we have a noise model where memory qubits are ran-

domly deleted, we can use permutation-invariant codes
[51–53] for which deletion errors are equivalent to era-
sure errors [54, 55], and up to O(

√
n) deletions using n

qubits can be corrected [54]. A noise model that ran-
domly deletes and inserts separable states can also be
corrected using permutation-invariant codes, because of
the equivalence in the correctibility of deletion and sep-
arable insertion errors [56].

VII. DISCUSSIONS AND CONCLUSIONS

We have proposed a general framework for applying
QEC to an imaging task, where the experimenter did not
prepare the probe. In combination with pre-distributed
entanglement, this allows us to protect the received sig-
nal from noise, thus enabling large-baseline optical in-
terferometers that can out-perform what is feasible clas-
sically. By using STIRAP, we avoid noise sources such
as amplitude damping that would hinder previous pro-
posals. Although we cannot illuminate our objects for
astronomical imaging, we can nonetheless perform super-
resolution imaging beyond the diffraction limit [57–60].
This is because we preserve the phase information of the
quantum state, and also use some prior structure of the
astronomical sources. From this perspective, our work
complements the currently active area of quantum super-
resolution imaging research [57, 61–68].

We have entered the stage where quantum computers
with tens – or soon hundreds – of qubits are becoming
available. Much research effort has focused on using such
noisy intermediate-scale quantum (NISQ) [69] devices to
demonstrate capabilities that surpass classical comput-
ers. Here, we have proposed an application for such a
NISQ device for imaging, where we protect the informa-
tion encoded in the received starlight. For the dominant
noise type—dephasing—we show that a significant ad-
vantage can be gained by using even a simple repetition
code. For noise types (even adversarial) that corrupt up
to a certain fraction of the qubits, we find the threshold
—9.4%—for which the quantum Fisher information can
be preserved. This threshold is significantly less stringent
than that required for quantum computation. For pure
dephasing, we can tolerate error rates up to 50%.

We anticipate that by leveraging on the theory of
fault-tolerant quantum computation [33], our scheme can
achieve a high QFI even with imperfect QEC operations.
We will need in particular fault-tolerant syndrome ex-
traction, using for instance the method of flag qubits [70],
which only requires a modest overhead in the number of
ancillary qubits. Namely, using any distance d stabilizer
code, one only needs d+ 1 additional ancilla qubits.

Additionally, one could view the star as a source of
preparing non-Clifford states, given that we have high-
precision estimation of the phase and a stable source,
e.g. in a satellite-based detection context.
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IX. QFI OF THE UNPROTECTED STATE

In this section we derive the QFI associated with noise introduced by the environment in the unencoded case.
Consider the case where there is at most a single photon arriving on the two sites, where ǫ≪ 1. We can describe the
optical state by the density matrix

ρ⋆ ≈(1− ǫ) |vac, vac〉 〈vac, vac|A1B1
+

ǫ

(

1 + γ

2

)

|ψφ
+〉 〈ψφ

+|+ ǫ

(

1− γ

2

)

|ψφ
−〉 〈ψφ

−| (S1)

where |ψφ
±〉 = 1/

√
2(|1p〉A1

|vac〉B1
± eiφ |vac〉A1

|1p〉B1

), here the subscript p denotes a single photonic Fock state.

In the noiseless scenario, the QFI and SLD for γ are:

QFIγ =
ǫ

1− γ2
,

SLDγ =
−1

1− γ
|ψφ

−〉 〈ψφ
−|+

1

γ + 1
|ψφ

+〉 〈ψφ
+| . (S2)

And for φ

QFIφ = γ2ǫ,

SLDφ = iγ(|ψφ
+〉 〈ψφ

+| − |ψφ
−〉 〈ψφ

−|). (S3)
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A. Amplitude damping

In the unencoded case, if the ground-excited state is used to store the information, the state of the memory qubit
is predominantly subjected to dephasing and amplitude damping noise. We begin with the memory state

ρAB =(1− ǫ) |g, g〉 〈g, g|AB +

ǫ

(

1 + γ

2

)

|ψ′
+
φ〉 〈ψ′

+
φ|+

ǫ

(

1− γ

2

)

|ψ′
−
φ〉 〈ψ′

−
φ| , (S4)

|ψ′
±
φ〉 = (|g, e〉AB ± eiφ |e, g〉AB)/

√
2.

In the basis |g, e〉, the Amplitude damping channel (ADC) has Krauss operators

D0 =

(

1 0
0

√
1− η

)

, D1 =

(

0
√
η

0 0

)

. (S5)

After applying the ADC, the density matrix becomes

E [ρAB ] → 1− ǫ(1− η) |g, g〉+

(1− η)ǫ

(

1 + γ

2

)

|ψ′
+
φ〉 〈ψ′

+
φ|+

(1− η)ǫ

(

1− γ

2

)

|ψ′
−
φ〉 〈ψ′

−
φ| . (S6)

That is, if the damping strength η is equal on Alice and Bob’s sites, then this is equivalent to reducing ǫ by a factor
of (1− η), and hence the QFI for both parameters is reduced by a factor (1− η).

X. DEPHASING

We now analyse the dephasing channel, where phase errors σz occurs with probability p. In our notation, p = 1/2
corresponds to a completely dephasing channel that acts on a single-qubit state ρ

E [ρ] → (1− p) ρ⋆ + pσzρ⋆σ
†
z. (S7)

Assuming the qubits held by Alice and Bob have the same dephasing parameter p, the QFI is

QFIφ = (1− 2p)4γ2ǫ

QFIγ =
(1− 2p)4ǫ

1− γ2(1− 2p)4
. (S8)

XI. FI AND QFI BOUNDS

After QEC, we have the state

ρθ = (1− ǫfail)ρ0 + ǫfailσ, (S9)

where ρ0 is the ideal state, and σ is some noisy state that was not correctable. Let L be an observable that we want
to implement. Then we want

Tr(ρθL
2)− Tr(ρθL)

2. (S10)
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We use the error propagation formula to find that the variance of the parameter of interest is

Var(θ̂) =
Tr(ρθL

2)− Tr(ρθL)
2

∣

∣

∂
∂θ Tr(ρθL)

∣

∣

2 . (S11)

XII. ACHIEVABLE BOUNDS

An explicit form of the optimal estimator for the parameter θ is given by [S27]

Ôθ = θ11 +
L̂θ

J(θ)
(S12)

where Lθ is the SLD and J(θ) is the QFI. This results in

〈Oθ〉 = θ, 〈∆O〉2 = 1/J(θ). (S13)

For a particular observable X̂, by error propagation, the achievable variance is

(∆θ)2 =
Tr[ρθX

2]− Tr[ρθX]2

| ∂
∂θ Tr[Xρθ]|2

. (S14)

A. Achievable bounds for an optimal observable based on the SLD - most reasonable noise channels

Based on detection per photon (normalised by 1/ǫ), one optimal observable based on the SLD of φ is

P̂ = (|ψα
+〉 〈ψα

+| − |ψα
−〉 〈ψα

−|), (S15)

where α is an adjustable phase. Setting P̂ = X in (S14), we find that the numerator of (S14) is upper bounded by
the norm of P , where ‖P‖2 = 1.
For the denominator, we start with

ρ′P =(1− ǫfail)ρ0P + ǫfailσP

〈ρ′P 〉 =(1− ǫfail)γ cos(α+ φ) + 〈ǫfailσP 〉 (S16)

where the first term stems from the fact that, if the error is correctable, the state can be returned to being ρ0, and

ρ = ( 1+γ
2 ) |ψφ

+〉 〈ψφ
+|+ ( 1−γ

2 ) |ψφ
−〉 〈ψφ

−|.
From the reverse triangle inequality, |x− y| ≥

∣

∣|x| − |y|
∣

∣, we have

|∂φ 〈ρ′P 〉 | ≥ γ(1− ǫfail)| sin(α+ φ)| − ǫfail|∂φ 〈σP 〉 |. (S17)

The magnitude of 〈σP 〉 ≤ γ, because P is a projector onto real-component of the off-diagonal components. For most
“reasonable” noise channels (i.e. most of the physical noise types considered in the QEC literature), the dependence
of | 〈σP 〉 | on φ should not be larger than that of 〈ρ0P 〉, which means that the derivative has magnitude at most equal
equal to sin(β+φ)], where β can be in general not equal to α. Assuming ǫfail ≤ 1/2, when we adjust the phase in the
measurement α such that α− φ = π/2, we have

| 〈ρ′P 〉 | ≥ γ(1− 2ǫfail)
2, (S18)

and therefore

(∆φ)2 ≤ 1

γ2(1− 2ǫfail)2
. (S19)

In fact, for channels such as depolarising, dephasing and amplitude damping, any noisy component of the state has
no off-diagonal components, where 〈σP 〉 = 0. For these cases, we achieve (∆φ)2 ≤ 1/γ2(1− ǫfail)

2.
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B. Achievable bounds for an observable based on local measurements - most reasonable noise channels

Now, consider the separable observable, where the state is projected onto the basis |±α〉A ⊗ |±〉B = 1√
2
(|0〉 ±

eiα |1〉)A ⊗ 1√
2
(|0〉 ± |1〉)B , and consider the observable

Psep = |+α,+〉 〈+α,+|+ |−α,+〉 〈−α,+| − (|+α,−〉 〈+α,−|+ |−α,+〉 〈−α,+|). (S20)

We have ‖Psep‖2 = 1. Note that

ρ′Psep =(1− ǫfail)ρ0Psep + ǫfailσPsep

〈ρ′Psep〉 =(1− ǫfail)γ cos(α+ φ) + 〈ǫfailσPsep〉 . (S21)

Similarly as before, we obtain an upper bound for (∆φ)2.

XIII. HIGHER PHOTON CONTRIBUTIONS

In reality, the state received from the star is thermal. Therefore the probability of having more than 1 photon is
non zero. Since the mean photon number is usually slow, we truncate the term at two photons; in this section, we
work out the two-photon states in the Fock basis.

The covariance matrix in the basis {a, a†, b, b†} (a (b) being the mode at the collector held by Alice (Bob) is

Σ =









0 ǫ
2 + 1

2 0 1
2γǫ exp(iφ)

ǫ
2 + 1

2 0 1
2γǫ exp(−iφ) 0

0 1
2γǫ exp(−iφ) 0 ǫ

2 + 1
2

1
2γǫ exp(iφ) 0 ǫ

2 + 1
2 0









(S22)

given ǫ is the mean total photon number, and γ, θ as per defined above.

This state is diagonalisable with a phase shifter and a 50:50 BS:

S =
1√
2







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1













1 0 0 0
0 1 0 0
0 0 exp(−iα) 0
0 0 0 exp(iα)






. (S23)

We have

Σ′ = SΣST =









0 1
2 (γǫ+ ǫ+ 1) 0 0

1
2 (γǫ+ ǫ+ 1) 0 0 0

0 0 0 1
2 (−γǫ+ ǫ+ 1)

0 0 1
2 (−γǫ+ ǫ+ 1) 0









. (S24)

We will need the Hermitian conjugate of S

S† =
1√
2







1 0 1 0
0 1 0 1
eiα 0 −eiα 0
0 e−iα 0 −e−iα






(S25)

because a thermal state in the number basis is written as

ρG = S†
(

n
⊗

ρn

)

S. (S26)
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This means that for a two-mode thermal state, we have

ρ = ρa ⊗ ρb,

ρa =
∑

i

1

na + 1

(

na
na + 1

)i

|i〉 〈i| , na =
1

2
(ǫ+ γǫ)

ρb =
∑

j

1

nb + 1

(

nb

nb + 1

)j

|j〉 〈j| , nb =
1

2
(ǫ− γǫ)

ρa ⊗ ρb =
∑

i,j

1

(na + 1)(nb + 1)

(

na

na + 1

)i(
nb

nb + 1

)j
(a′†1)

i

i!

(a′†2)
j

j!
|0, 0〉 〈0, 0| (a′1)i(a′2)j . (S27)

To invert the diagonalising operation, the operators in Eq (S27) should transform as

a′
†
1 → 1√

2
(a†1 + a†2e

iφ)

a′
†
2 → 1√

2
(a†1 − a†2e

iφ). (S28)

Now denote p(i, j) to have i and j number of photons from the modes held by Alice and Bob after diagonalising
the covariance matrix. Let us separate the terms. For a total of 0 photons, we have

p(0, 0) =
1

(na + 1)(nb + 1)
. (S29)

With one photon shared between either modes, we have

p(1) = p(1, 0) + p(0, 1) =
1

(na + 1)(nb + 1)

(

na

na + 1

)

(a†1 + eiφa†2)

2
|0, 0〉 〈0, 0| (a1 + e−iφa2)+

1

(na + 1)(nb + 1)

(

nb

nb + 1

)

(a†1 − a†2e
iφ)

2
|0, 0〉 〈0, 0| (a1 − a2e

iφ)

=
1

(na + 1)(nb + 1)

1

2

(

na

na + 1

)

|ψφ
+〉 〈ψφ

+|+
1

(na + 1)(nb + 1)

1

2

(

nb
nb + 1

)

|ψφ
−〉 〈ψφ

−| .
(S30)

Now, for the two-photon case, we have i = 1, j = 1, i = 2, j = 0, or i = 0, j = 2.

p(2) =p(1, 1) + p(2, 0) + p(0, 2)

=
1

(na + 1)(nb + 1)

(

na

na + 1

)(

nb

nb + 1

)

(a′
†
1)(a

′†
2) |0, 0〉 〈0, 0| (a′1)(a′2)+

1

(na + 1)(nb + 1)

(

na

na + 1

)2
(a′†1)

2

2!
|0, 0〉 〈0, 0| (a′1)2 +

1

(na + 1)(nb + 1)

(

nb

nb + 1

)2
(a′†2)

2

2!
|0, 0〉 〈0, 0| (a′2)2.

(S31)



14

We evaluate the following expression,

(a′
†
1)(a

′†
2) |0, 0〉 〈0, 0| (a′1)(a′2)

=
1

4
(a†1 + a†2e

iφ)(a†1 − a†2e
iφ) |0, 0〉 〈1, 1| (a1 + a2e

−iφ)(a1 − a2e
−iφ)

=
1

4
(a†21 − ei2φa†22 ) |0, 0〉 〈0, 0| (a21 − e−i2φa22)

=
(|2, 0〉 − ei2φ |0, 2〉)√

2

(〈2, 0| − e−i2φ 〈0, 2|)√
2

= |Ψ2
0〉 〈Ψ2

0| . (S32)

For the i = 2, j = 0 term,

(a′†1)
2

2!
|0, 0〉 〈0, 0| (a′1)2

=
1

2!

1

2
(a†1 + a†2e

iφ)2 |0, 0〉 〈0, 0| 1
2
(a1 + a2e

−iφ)2

=
1

16
(a†21 + 2a†1a

†
2e

iφ + a†22 e
i2φ) |0, 0〉 〈0, 0| (c.c)

=
1

16
(
√
2 |2, 0〉+ 2eiφ1, 1 +

√
2ei2φ |0, 2〉)⊗ c.c

=
1

2
× (|2, 0〉+

√
2eiφ |1, 1〉+ ei2φ |0, 2〉)

2
⊗ c.c

=
1

2
|Ψ2

+〉 〈Ψ2
+| . (S33)

Likewise for the i = 0, j = 2 term, we will have

(a′†2)
2

2!
|0, 0〉 〈0, 0| (a′2)2

=
1

2
× (|2, 0〉 −

√
2eiφ |1, 1〉+ ei2φ |0, 2〉)

2
⊗ h.c.

=
1

2
|Ψ2

−〉 〈Ψ2
−| . (S34)

Overall, the two-photon contributions are

p(2) =
1

(na + 1)(nb + 1)

(

na

na + 1

)(

nb

nb + 1

)

|Ψ2
0〉 〈Ψ2

0|+

1

(na + 1)(nb + 1)

(

na

na + 1

)2
1

2
|Ψ2

+〉 〈Ψ2
+|+

1

(na + 1)(nb + 1)

(

nb

nb + 1

)2
1

2
|Ψ2

−〉 〈Ψ2
−| . (S35)

XIV. MODIFIED HAMILTONIAN DUE TO MULTIPLE PHOTONS

Given n photons in the cavity, the full STIRAP Hamiltonian is

Hstirap = ω0 |e〉 〈e|+ ωca
†a+

Ωe−iωLt |e〉 〈1|+Ω∗eiωLt |1〉 〈e|+
ga |0〉 〈e|+ g∗a† |e〉 〈0| . (S36)
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In the rotating wave approximation e−iθa†aaeiθa
†a = eiθa,

HI = U†
cHUc −Hc,

Hc = ωca
†a+ ωL |e〉 〈e| ,

Uc = e−iωca
†ate−iωLt|e〉〈e|

HI =−∆ |e〉 〈e|+Ω |e〉 〈1|+Ω∗ |1〉 〈e|+ ga |0〉 〈e|+ g∗a† |e〉 〈0| , (S37)

where ∆ = ωL−ω0. The last two terms connect pairs of bases with the same excitation number, i.e. |g, n〉 ⇋ |e, n− 1〉.
This means that the Hamiltonian can be written as a direct sum in the basis

{|1, n− 1〉 , |e, n− 1〉 , |0, n〉}. (S38)

We have (Hi,j = 〈i|H|j〉)

H(n) =





〈1, n− 1|Hstirap|1, n− 1〉 〈1, n− 1|Hstirap|e, n− 1〉 〈1, n− 1|Hstirap|0, n〉
〈e, n− 1|Hstirap|1, n− 1〉 〈e, n− 1|Hstirap|e, n− 1〉 〈e, n− 1|Hstirap|0, n〉
〈0, n|Hstirap|1, n− 1〉 〈0, n|Hstirap|e, n− 1〉 〈0, n|Hstirap|0, n〉





=





0 Ω∗ 0
Ω −∆ g

√
n

0 g∗
√
n 0



 .

If the transfer unitary is perfect, the initial state turns into (with some phase difference, which we will observe
numerically)

|0, 0〉A |0, 2〉B → |0, 0〉A |1, 1〉B
|0, 1〉A |0, 1〉B → |1, 0〉A |1, 0〉B . (S39)

Therefore if our initial state is

|0〉A |0〉B ⊗1

2
(|2, 0〉+

√
2eiφ |1, 1〉+ ei2φ |0, 2〉)

=
1

2
|0, 2〉A |0, 0〉B +

1√
2
eiφ |0, 1〉A |0, 1〉B +

1

2
ei2φ |0, 0〉A |0, 2〉b (S40)

then STIRAP takes it to the state

→1

2
|1, 1〉A |0, 0〉B +

1√
2
ei(φ+δ) |1, 0〉A |1, 0〉B +

1

2
ei2φ |0, 0〉A |1, 1〉B (S41)

We observe an additional relative phase on the |1, 0〉 |1, 0〉 term, due to the dispersive coupling of the atom to the
cavity in the presence of an additional photon.

Now, we are faced with the task of distinguishing between the different cases without perturbing the encoded phase
information. Using the subscripts l to denote levels of an atomic system and p for photonic Fock states. These are
the three states:

a. No photon has arrived:

|0l, 0p〉A |0l, 0p〉B . (S42)

b. A single photon has arrived:

1√
2
(|1l, 0p〉A |0l, 0p〉B ± eiφ |0l, 0p〉A |1l, 0p〉B). (S43)
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c. Two photons have arrived:

|ψ1〉 =
1√
2
(|1l, 1p〉A |0l, 0p〉B − ei2φ |0l, 0p〉A |1l, 1p〉B)

|ψ2〉 →
1

2
|1l, 1p〉A |0l, 0p〉B +

1√
2
ei(φ+δ) |1l, 0p〉A |1l, 0p〉B +

1

2
ei2φ |0l, 0p〉A |1l, 1p〉B

|ψ3〉 →
1

2
|1l, 1p〉A |0l, 0p〉B − 1√

2
ei(φ+δ) |1l, 0p〉A |1l, 0p〉B +

1

2
ei2φ |0l, 0p〉A |1l, 1p〉B . (S44)

If we perform parity checks on the memory qubits and the cavity photon states (which can be achieved by using
another auxilliary atom). We assume the Bell pairs |Φ+〉 are shared between Alice and Bob, where the subscript
denotes which system they are paired with. For example,

|1l〉A |0l〉B |Φ+
l 〉

2×CZ→ |1l〉A |0l〉B |Φ−
l 〉 (S45)

denotes that 2 CZ gates (one on Alice and one of Bob’s side) are applied, where the control qubits are in state
|1l〉A |0l〉B , and the target qubits are in state |Φ+

l 〉.
For the zero photon case:

(|0l, 0p〉A |0l, 0p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→ (|0l, 0p〉A) |0l, 0p〉B) |Φ

+
l 〉 |Φ+

p 〉 . (S46)

For the single-photon case:

(|1l, 0p〉A |0l, 0p〉B , |0l, 0p〉A |0l, 1p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→ (|1l, 0p〉A |0l, 0p〉B , |0l, 0p〉A |0l, 1p〉B) |Φ

−
l 〉 |Φ+

p 〉 . (S47)

For the two-photon case:

(|1l, 1p〉A |0l, 0p〉B , |0l, 0p〉A |1l, 1p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→ (|1l, 1p〉A |0l, 0p〉B , |0l, 0p〉A |1l, 1p〉B) |Φ

−
l 〉 |Φ−

p 〉 . (S48)

We would like to remove the following component from the two-photon case since there is an extra phase δ that
was introduced by the STIRAP interaction:

(|1l, 0p〉A |1l, 0p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→ (|1l, 0p〉A |1l, 0p〉B) |Φ

+
l 〉 |Φ+

p 〉 . (S49)

Therefore if we measure the auxiliary |Φ±〉, we can distinguish between

1. When both the Bell pairs are in state |Φ+〉, this means no photon has arrived, or the system is in the “contam-
inated” two-photon state.

2. We have |Φ−
l 〉 |Φ+

p 〉, which means exactly one photon has arrived.

3. We have |Φ−
l 〉 |Φ−

p 〉, we have two photons in the system, where the phase component is ei2φ.

After the STIRAP interaction, the term
√
2eiφ |1, 1〉 acquires an additional unwanted relative phase eiδ due to

coupling with the cavity, which we need to remove.
We can distinguish the zero-, single- and two-photon contributions by using parity checks on the memory qubits

as well as the cavity photon state by using shared Bell states between Alice and Bob. The parity check on the cavity
state can be achieved by introducing another auxiliary atom. We use the subscripts l to denote levels of an atomic
system and p for photonic Fock states. We assume the Bell pairs |Φ+〉 are shared between Alice and Bob, where the
subscript denotes which system they are paired with. For example,

|1l〉A |0l〉B |Φ+
l 〉

2×CZ→ |1l〉A |0l〉B |Φ−
l 〉 (S50)

denotes that 2 CZ gates are applied, where the control qubits are |1l〉A |0l〉B , and the target qubits are |Φ+
l 〉.

For the zero photon cases:

(|0l, 0p〉A |0l, 0p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→

(|0l, 0p〉A) |1l, 1p〉B) |Φ
+
l 〉 |Φ+

p 〉 . (S51)
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For the single photon case:

(|1l, 0p〉A |0l, 0p〉B , |0l, 0p〉A |0l, 1p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→

(|1l, 0p〉A |0l, 0p〉B , |0l, 0p〉A |0l, 1p〉B) |Φ
−
l 〉 |Φ+

p 〉 . (S52)

For the two photon cases:

(|1l, 1p〉A |0l, 0p〉B , |0l, 0p〉A |1l, 1p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→

(|1l, 1p〉A |0l, 0p〉B , |0l, 0p〉A |1l, 1p〉B) |Φ
−
l 〉 |Φ−

p 〉 . (S53)

We would like to remove the following component from the two-photon case, since there is an extra phase δ that
was introduced by the STIRAP interaction:

(|1l, 0p〉A |1l, 0p〉B) |Φ
+
l 〉 |Φ+

p 〉
4×CZ→

(|1l, 0p〉A |1l, 0p〉B) |Φ
+
l 〉 |Φ+

p 〉 . (S54)

Therefore if we measure the auxiliary |Φ±〉, we can distinguish between

1. When both the Bell pairs are in state |Φ+〉, this means no photon has arrived, or the system is in
the“contaminated” two-photon state.

2. We have |Φ−
l 〉 |Φ+

p 〉, which means exactly one photon has arrived.

3. We have |Φ−
l 〉 |Φ−

p 〉, we have two photons in the system, where the phase component is ei2φ.
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