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Abstract—We consider the problem of learning N identical
copies of an unknown n-qubit quantum graph state with product
measurements. These graph states have corresponding graphs
where every vertex has exactly d neighboring vertices. Here, we
detail an explicit algorithm that uses product measurements on

multiple identical copies of such graph states to learn them. When
n ≫ d and N = O(d log(1/ǫ) + d2 log n), this algorithm correctly
learns the graph state with probability at least 1−ǫ. From channel
coding theory, we find that for arbitrary joint measurements
on graph states, any learning algorithm achieving this accuracy
requires at least Ω(log(1/ǫ) + d log n) copies when d = o(

√
n).

We also supply bounds on N when every graph state encounters
identical and independent depolarizing errors on each qubit.

I. INTRODUCTION

Learning of quantum states has been investigated in a mul-

titude of settings. In the most traditional setting, quantum

tomography [1] studies this learning problem, and this topic

still attracts plenty of attention [2], [3], [4], [5]. In quantum

tomography, we learn a description of the quantum state to a

prescribed degree of accuracy given multiple identical copies.

Studies in quantum tomography are concerned with obtaining

bounds on the minimum number N of such copies for different

families of quantum states. Suppose that ρ = |ψ〉〈ψ| is an n-

qubit pure state, and that the estimate of ρ given by ρ̂ is close to

ρ (for some constant precision, for example in trace distance)

with probability at least 1 − ǫ. For pure states, [6, Sec. IIA]

and [7] showed that for any measurement strategy, even when

entangling operations are applied across multiple copies of ρ,

we have N = Θ̃(2n + log 1
ǫ ), omitting terms linear in n. This

implies that the optimal learning strategy for determining an

arbitrary n-qubit pure state requires N to be exponential in n.

Imposing additional structure (apart from purity) on quantum

states allows substantial reduction of the number of copies N
required to learn ρ. For instance, learning an unknown stabi-

lizer state from the set of all stabilizer states using collective

measurements can be achieved with N linear in n [8], [9], [10].

Bounds on N for the learning of subsets of stabilizer states [11]

or quantum states that are stabilizer pseudomixtures [12] have

also recently been obtained.

Learning a quantum state using measurements that act on

a single or multiple copies of an n-qubit state |ψ〉 can be

challenging to implement. This is because the entangling op-

erations across multiple qubits that these measurements require

can be difficult to implement in an error-free way in practice.

It would be highly beneficial if we could learn quantum states

by simply performing product measurements. A simple way

to perform product measurements on N copies of |ψ〉 is to

measure each qubit of |ψ〉 either in the computation basis

B0 = {|0〉, |1〉} or in the Hadamard basis B1 = {|+〉, |−〉},
where |±〉 = |0〉±|1〉√

2
and |0〉 and |1〉 form an orthonormal basis

of a qubit. If we measure a qubit in the basis B0, we denote the

measurement outcomes corresponding to |0〉 and |1〉 to be 0 and

1 respectively. If we measure a qubit in the basis B1, we denote

the measurement outcomes corresponding to |+〉 and |−〉 to be

0 and 1 respectively. While product measurements are easy to

describe, it is unclear how many copies N of |ψ〉 a learning

algorithm that uses product measurements would need.

In this paper, we consider learning a family of graph states

using product measurements. Graph states [13], [14], [15], [16]

are quantum states that correspond directly to undirected simple

graphs, and the set of all graph states is equivalent under local

Clifford operations to stabilizer states [17], [18], [19]. Recently

Montanaro and Shao evaluated an upper bound on N the

number of copies of |ψ〉 required to learn the underlying graph

of degree d, and found that N = O(d log n) when collective

measurements are performed on pairs of graph states [11].

In this paper, we detail an explicit algorithm that uses product

measurements to learn n-qubit graph states of degree d when

n ≫ d. Product measurements are much simpler to perform

than independent measurements; while independent measure-

ments act on a single copy of the n-qubit state |ψ〉, product

measurements measure every qubit in every |ψ〉 individually.

For this algorithm to correctly learn what the graph state is

with probability at least 1 − ǫ, it suffices to require that the

number of copies N satisfies

N ≥ 4ed log(n/ǫ) + 4ed2 log(ne), (1)

where log denotes the natural logarithm and e is Euler’s

constant. From channel coding theory, we find that for arbitrary

measurements on the graph states, we must have

N ≥ d log4(nd), (2)

thereby also establishing the asymptotic optimality of Monta-

naro and Shao’s scheme. We also supply bounds on N when

using our algorithm and also for any algorithm when every

graph state |ψ〉 encounters a qubit depolarizing channel that

acts independently and identically on each of its qubits.

II. PRELIMINARIES

Let Gn,d denote the set of graphs with n vertices, and with

vertex degree equal to d [20]. These graphs are called d-regular



graphs on n vertices. Here, we require that d = o(
√
n). For

any graph g ∈ Gn,d, we use V = {1, . . . , n} denote the set

of vertices, and E(g) to denote the edge set of g. Given any

vertex v, let Ng(v) = {i ∈ V : {v, i} ∈ E(g)} denote the

neighbor set of v. Note that Ng(v) ⊂ V \{v}. The graph state

|g〉 is defined to be the unique stabilizer state stabilized by the

stabilizer generated by the generators

Wv = Xv

∏

j∈Ng(v)

Zj , (3)

for v ∈ V , where Xk and Zj denote the Pauli X operator (a

bit-flip) acting on the vth qubit and identity everywhere else,

and the Pauli operator Z (a phase-flip) acting on the jth qubit

respectively. This means that |g〉 is the unique state satisfying

the equations

Wv|g〉 = |g〉, ∀v ∈ V. (4)

We define a function Oracle() which is function that always

returns as its output the graph state |g〉.
In a graph state, each qubit corresponds to a vertex in a graph.

In the preparation of a graph state, each qubit is first initialized

as a |+〉 state. Second, for every edge in the graph, a controlled

phase gate is applied between the corresponding qubits. Since

the controlled phase gate is invariant under swapping of the

pair of qubits it acts on, the distinction between the control

and target qubit is not important. Moreover, since all controlled

phase gates are diagonal in the computation basis, they must

commute. This implies that the order in which controlled phase

gates are applied is not important.

Given any binary vector v, we let wt(v) denote its Hamming

weight. Given that an n-bit binary vector v we define

Maj(v) =







1 if wt(v) > n/2

Q̂ if wt(v) = n/2
0 if wt(v) < n/2

, (5)

where Q̂ is a random variable such that Pr[Q̂ = j] = 1/2 for

j = 0, 1.

III. LEARNING WITHOUT NOISE

A. Algorithm

We could learn what g is, by applying Algorithm MeasQbits

which performs product measurements on N copies of an

unknown graph state |g〉. This graph state is obtained by

querying Oracle() a total of N = mr times where m and r are

positive integers.

Function MeasQbits (m, r, w)
Input: Positive integers m and r and integer w ∈ {1, . . . , n}.
Output: Bits xk,j ,mt,k,j for j ∈ V , k = 1, . . . ,m, and

t = 1, . . . , r.
1. For k = 1:m
2. Pick x = (xk,1, . . . , xk,n) uniformly at random

1. from all n-bit strings where wt(x) = w
3. For t = 1:r
4. Set |g〉 ←Oracle()

5. For j = 1:n
6. Measure qubit j of |g〉 in basis Bxk,j

.

7. Set mt,k,j to be the measurement outcome.

8. EndFor

9. EndFor

10. EndFor

The output of MeasQbits is encoded in the binary matrices

(X)k,j and (Mt)k,j , where xk,j and mt,k,j denote the matrix

elements in the kth row and jth columns of (X)k,j and (Mt)k,j
respectively. Based on this information, we estimate the most

likely neighbor set of each vertex v using the following

algorithm.

Function FindNbs ((X)k,j , (M1)k,j , . . . , (Mr)k,j)
Input: Binary matrices (X)k,j , (M1)k,j , . . . , (Mr)k,j).
Output: S1, . . . ,Sn, where each Sv is a tuple with each

component that are subsets of V \{v} and with |αi| = d.

1. Set Sv = {α ⊂ V \{v} : |α| = d} for v ∈ V
2. For k = 1 : m
3. Define the index set W = {j : xk,j = 1}
4. For v ∈W
5. For α = {a1, . . . , ad} ⊂ V \W
6. For t = 1 : r
7. Set st,k,v,α = mod(mt,k,v +

∑d
j=1mt,k,aj

, 2).
9. EndFor

8. Set sk,v,α = (s1,k,v,α, . . . , st,k,v,α).
10. If Maj(sk,v,α) = 1, delete α from Sv .

11. EndFor

12. EndFor

13. EndFor

Function LearnGraphState(m, r, w)
Input: Positive integers m and r and integer w ∈ {1, . . . , n}.
Output: (η1, . . . , ηn).
1. Set ((X)k,j , (M1)k,j , . . . , (Mr)k,j) = MeasQbits(m, r, w)
2. Set (S1, . . . ,Sn) = FindNbs ((X)k,j , (M1)k,j , . . . , (Mr)k,j)

The algorithm LearnGraphState succeeds if for all v =
1, . . . , n, we have Sv = {Ng(v)}. This algorithm also uses

N = mr copies of |g〉 to learn what g is.

B. Analysis

Here, we analyze the algorithms introduced in Section III-A

assuming that we obtain noiseless copies of |g〉 from querying

Oracle().

Lemma 1 gives the probability that for a random v ∈ V
belongs to a fixed d-set α does not contain v, and also is a subset

of the complement of a random w-set W . This corresponds to

the probability that a given α is sampled at the kth iteration of

Algorithm FindNbs.

Lemma 1. Now let α be any fixed d-set α where α ⊂ V . Let

v ∈ V be random and let W be a random subset of V with

cardinality w. Then Pr[α ∩W = ∅ ∧ v ∈W ] = psamp where

psamp =
w
(

n−d
w

)

n
(

n
w

) . (6)

Proof. Now Pr[v ∈ W ] = w/n and Pr[α ∩ W = ∅] =
(

n−d
w

)

/
(

n
w

)

. The events v ∈ W and α ∩ W are independent



because v is a random variable that is independent of the non-

random α. Hence the joint probability is the product of their

individual probabilities.

The sampling probability psamp is used later in our analysis,

and we will need bounds on it.

Lemma 2. Suppose that d ≥ 2 and n ≥ 2d2. Then

1

2ed
≤
(

1

ed
− 1

4ed(1− d/n)

)

(1− d/n) ≤ psamp ≤
1

ed
.

(7)

Proof. Let w = ⌈n−d
d ⌉. We can see that n

d − 1 ≤ w ≤ n
d . Note

that

psamp =
w

n

w−1
∏

j=0

(

1− d

n− j

)

≥ w

n

(

1− d

n− w + 1

)w

≥ n− d
dn

(

1− d

n(1− 1/d) + 1

)n/d

. (8)

Since n/d ≥ 2 we have

psamp ≥
n− d
dn

(

1− d

n

)n/d

=
1

d

(

1− d

n

)n/d+1

. (9)

Now, note that

(1− x)1/x = 1/e− x/(2e) +O(x2). (10)

Using Taylor’s theorem, for 0 < x < 1, we can show that

(1 − x)1/x ≥ 1

e
− x

2e(1− x) . (11)

Therefore
(

1− d

n

)n/d

≥ 1

e
− d/n

2e(1− d/n) . (12)

Substituting (12) into (9) and using d/n ≥ 1/(2d) gives the

first lower bound for the lemma.

For the second lower bound, note that 1−d/n ≥ 1−1/(2d) ≥
3/4, and from the first lower bound we get psamp ≥ 3

4ed (1 −
1

2(3/4) ) =
3

4ed (1− 1
4(3/4) ) =

1
2ed .

For the upper bound, note that

psamp ≤
w

n

(

1− d

n

)w

. (13)

The upper bound is a continuous function of w, and its

derivative is monotone decreasing on 1 ≤ w ≤ n. The derivative

is positive when w = 1 and negative when w = n. Hence this

upper bound is maximized in the interval [1, n], and is attained

when w = −1/ log(1− d/n) with optimal value

−1
en log(1− d/n) ≤

1

ed
. (14)

Note that when d grows and d = o(n), Lemma 2 implies that

psamp ≥
1

ed
+O(1/n). (15)

Note that for a fixed value of t, k and v, we have that

Pr[st,k,v,α = 1] =

{

0 α = Ng(v)
1/2 α 6= Ng(v)

. (16)

This is because of two reasons. First, if α = {a1, . . . , ad} =
Ng(v), the parity of the measured bits mt,k,v,mt,k,a1

, . . . ,mt

must be even, which means that st,k,v,α is always equal to

zero. Second, if α = {a1, . . . , ad} 6= Ng(v), the parity of

the measured bits mt,k,v,mt,k,a1
, . . . ,mt is even and odd with

equal probability, which means that st,k,v,α is always equal to

1 with probability 1/2. Next, it is easy to see that

Pr[Maj(sk,v,α) = 1] =

{

0 α = Ng(v)
1/2 α 6= Ng(v)

. (17)

We now specify conditions under which LearnGraphStates fails

with probability at most ǫ.

Theorem 3. Let the conditions of Lemma 2 hold, and that

w = ⌈n−d
d ⌉. Suppose that

m ≥ 4ed log(n/ǫ) + 4ed2 log(ne/d). (18)

Then, using N = mr copies of |g〉, the probability that

Algorithm LearnGraphState gives the correct output is at least

1− ǫ.
Remark 4. To use LearnGraphState in the noiseless setting,

we can set r = 1, so that N ≥ 4ed log(n/ǫ) + 4ed2 log(ne/d)
copies of |g〉 suffices to learn |g〉 with probability at least 1− ǫ.
Proof of Theorem 3. It suffices to show that the probability that

LearnGraphState finds some v ∈ V for which Sv 6= {Ng(v)}
is at most ǫ.

For any v ∈ V , suppose that an α 6= Ng(v) has been sampled

s times by LearnGraphState. Using (17), the probability that a

random Sv contains α is 2−s. The number s ranges from 0 to

m. Hence, at the conclusion of LearnGraphState,

Pr[α ∈ Sv]

=

m
∑

s=0

(

m

s

)

pssamp(1− psamp)
m−s2−s

=

m
∑

s=0

(

m

s

)

(psamp/2)
s(1 − psamp)

m−s

=(psamp/2 + 1− psamp)
m = (1− psamp/2)

m. (19)

Applying the union bound on all of the vertices v, and on all

d-sets that are subsets of V \{v}, we must have

n

(

n− 1

d

)

(1− psamp/2)
m ≤ ǫ. (20)

The above inequality is equivalent to

m log

(

1

1− psamp/2

)

≥ log

(

n
(

n−1
d

)

ǫ

)

. (21)

Now log
(

1
1−psamp/2

)

≥ psamp/2. Choosing w = n−d
d , from

Lemma 2, we get psamp ≥ 1/(2ed). Since we also have
(

n−1
d

)

≤
(

n
d

)

≤ (ne/d)
d
, for (21) to hold, it suffices to require

the following inequality to hold

m ≥ (psamp/2)
−1(log(n/ǫ) + d log(ne/d)). (22)



IV. LEARNING WITH NOISE

Now consider errors that afflict our quantum graph state. We

model noise using the the qubit depolarizing channel Dp, which

applies the identity operator on a qubit with probability 1− p,

and with probability p/3, applies a bit-flip X , a phase flip Z ,

or both a bit-flip and a phase-flip Y = iXZ . On every |g〉
obtained from each query of Oracle(), the n-qubit depolarizing

channel D⊗n
p acts on |g〉 before the product measurements are

performed.

Depolarizing noise affects measurement outcomes in the

bases B0 and B1 in a simple way. If we measure a qubit with

density matrix τ in the basis B0, the probability of obtaining the

outcome |0〉 and |1〉 is Tr( I+Z
2 τ) and Tr( I−Z

2 τ) respectively.

Since I+Z
2 Z = I+Z

2 , a Z error does not change measurement

outcomes in the basis B0. Similarly an X does not change the

measurement outcome in the basis B1. On the other hand, an

X error flips the measurement outcome in the B0 basis, a Z
error flips the measurement outcome in the B1 basis, and a Y
error flips the measurement outcome in both bases. Hence, for

both bases B0 and B1, the probability that a qubit measurement

outcome is flipped is 2p/3.

Here, Lemma 5 gives the probabilities that the majority

function in FindNbs evaluates to 1.

Lemma 5. Suppose that for some real p where 0 ≤ p < 3/4,

errors modeled by D⊗n
p occur on every oracle output |g〉. Then

for a fixed v and k,

Pr[Maj(sk,v,α) = 1] =

{

η , α = Ng(v)
1/2 , α 6= Ng(v)

, (23)

where η =
∑

t>n/2

(

r
t

) (

1
2 − γ

)t ( 1
2 + γ

)r−t
and

γ =
(1 − 4p/3)d+1

2
. (24)

Proof. The second result of Lemma 5 follows directly from

(17), because the presence of depolarizing errors does not affect

the probability of the measurement outcomes in both bases B0

and B1 when α 6= Ng(v). Hence only the first result of the

lemma is non-trivial.

Let q = 2p/3. We now prove (23). Using the theory of

generating functions, for any t = 1, . . . , r, we have that

Pr[st,k,v,α = 1|α = Ng(v)]

=
(1− q + q)d+1 − (1− q − q)d+1

2

=
1

2
− (1− 2q)d+1

2
=

1

2
− γ. (25)

The result follows from the independence of the random

variables s1,k,v,α, . . . , st,k,v,α and definition of the majority

function in (5).

Theorem 6. Let p, ǫ ∈ R such that 0 ≤ p ≤ 3/4 and

ǫ > 0. Suppose that every oracle evaluation in LearnGraphState

returns a noisy graph state D⊗n
p (|g〉〈g|). Then there exists some

value of N for which LearnGraphState learns |g〉 correctly with

probability at least 1− ǫ using N copies of |g〉 where

N = O

(

1− 4γ2

γ2
f(ǫ, n, d)g(ǫ, n, d)

)

, (26)

where f(ǫ, n, d) = log(ǫ−1) + log(d logn), g(ǫ, n, d) =
d log

(

ǫ−1
)

+ d2 logn, and γ is as given in (24).

Proof of Theorem 6. The first part of the proof is to find a lower

bound on m for which the probability that some α 6= Ng(v)
belongs to some Sv is at most ǫ/2. This lower bound

m ≥ 4ed log (n/(2ǫ)) + 4ed2 log(ne/d) (27)

can be obtained directly from Theorem 3.

The second part of the proof is to find an upper bound on

m for which the probability that α /∈ Sv is at most ǫ/2 if α =
Ng(v). Now, if α = Ng(v) is sampled s times, the probability

that α is eliminated from Sv is 1− (1− η)s.

The overall probability that α is eliminated from Sv is

m
∑

s=0

(

m

s

)

pssamp(1− psamp)
m−s(1− (1− η)s)

=1− (psamp(1− η) + 1− psamp)
m

=1− (1− ηpsamp)
m. (28)

We require that 1 − (1 − ηpsamp)
m ≤ ǫ

2 . This is equivalent to

requiring that

(1− ηpsamp)
m ≥ 1− ǫ

2
. (29)

For (29) to hold, since e−ǫ/2 ≥ 1−ǫ/2 for 0 ≤ ǫ ≤ 1, it suffices

to require that

(1− ηpsamp)
m ≥ e−ǫ/2. (30)

Taking the logarithm on both sides of (30) shows that (30) is

equivalent to

m ≤ −ǫ/2
log(1− ηpsamp)

. (31)

Since

− log(1− ηpsamp) ≤
∞
∑

j≥1

ηjpjsamp = ηpsamp/(1− ηpsamp)

(32)

whenever ηpsamp < 1, for (31) to hold, it suffices to require

that

m ≤ ǫ(1− ηpsamp)

2ηpsamp
. (33)

For (33) to hold, using the upper bound psamp ≤ 1/(ed) from

Lemma 2, it suffices to require that

m ≤ ǫed(1− η/(ed))
2η

. (34)

Using the additive form of the Chernoff bound on η, we get

η ≤ exp
(

−γ2r/(1 − 4γ2)
)

. (35)

The trivial upper bound η ≤ 1 and the Chernoff upper bound

on η in (35) imply that for (34) to hold, it suffices to require

that

m ≤ ǫ

2
(ed− 1) exp

(

γ2r/(1− 4γ2)
)

. (36)



For the upper bound (36) on m to be larger than the lower

bound (27) on m, it suffices to require that

r =

⌈

1− 4γ2

γ2
log

(

8ed log(n/(2ǫ)) + 8ed2 log(ne/d)

ǫ(ed− 1)

)⌉

,

(37)

and can set r to be slightly larger to ensure that the conditions

in Lemma 2 hold. Evaluating the corresponding lower bound

on N = rm asymptotically then gives the result.

V. CONVERSE BOUND

In this section, assuming d = o(
√
n), we derive a lower

bound on the minimum number of copies N of noisy n-qubit

graph states we require to learn it. We prove Theorem 7 by

connecting the problem of learning a graph state with that of

transmitting classical information over a quantum channel, and

counting the asymptotic number of graphs in Gn,d.

Theorem 7. Let every query to Oracle() return a noisy graph

state D⊗n
p (|g〉〈g|), where 0 ≤ p < 3/4. Let 0 ≤ ǫ < 1. Then as

n becomes large, the minimum number of copies of |g〉 required

to learn |g〉 with correctness at least 1−ǫ satisfies the inequality

N ≥ d log4(nd)

(1−H(2p/3))/(1− ǫ) + 1/n
, (38)

where H denotes the binary entropy function.

Proof. The total number of qubits used to transmit information

about our graph state is nN . The number of bits needed to

describe a d-regular graph is |Gn,d|. Hence we can transmit

log2 |Gn,d| bits of classical information using nN qubits, which

corresponds to a transmission rate of

R =
log2 |Gn,d|

nN
. (39)

From King’s result [21], we know that the classical capacity of

the depolarizing channel Dp is

1−H(2p/3). (40)

From Fano’s inequality, if ǫ < 1, the optimal R is at most

R ≤ C
1−ǫ +

1
n for all n. Hence we must have

N ≥ log2 |Gn,d|
n(1−H(2p/3))/(1− ǫ) + 1

. (41)

From [22], whenever d = o(
√
n), we know that

|Gn,d| =
(nd)!

(nd/2)!2nd/2(d!)n
exp

(

−d
2 − 1

4
− d3

12n
+O(d2/n)

)

.

(42)

Since log(n!) = n logn− n+O(log n), we find that

log |Gn,d| =nd log(nd)− nd+O(log(nd))

− (nd/2) log(nd/2) + nd/2 +O(log(nd/2))

− (nd/2) log 2− n(d log d− d+O(log d))

− d2 − 1

4
− d3

12n
+O(d2/n). (43)

Simplifying this, we see that whenever d = o(
√
n), we have

log |Gn,d| =
1

2
nd log(nd) +O(nd log d)

=
1

2
nd log(nd)

(

1 +O

(

log d

log nd

))

. (44)

Substituting (44) into (41) gives the result.

Note that Theorem 7 implies that for constant p and when

ǫ < 1/2, we have a lower bound of N = Ω(d logn).
The lower bound N = Ω(log(1/ǫ) follows from state

discrimination. Consider two graph states in the set that are are

as close as possible. The probability of making a discrimination

error using an optimal strategy is exponentially small (with the

quantum Chernoff exponent [23]). Solving for N gives this

dependence.

VI. DISCUSSIONS

Our analysis of learning graph states using product measure-

ments leaves a number of open problems. Since our converse

bound applies for learning algorithms that use arbitrary mea-

surements, this leaves open the question as to whether our

algorithm is asymptotically optimal for product measurements.

For instance, one question pertaining to our lower bound for m
in Theorem 3 is, whether the quadratic scaling with respect to

d is necessary. For future work, it would also be interesting to

know if an adaptive algorithm can asymptotically outperform

our randomized algorithm.
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[9] L. Zhao, C. A. Pérez-Delgado, and J. F. Fitzsimons, “Fast graph operations
in quantum computation,” Physical Review A, vol. 93, no. 3, p. 032314,
2016.

[10] A. Montanaro, “Learning stabilizer states by bell sampling,” arXiv preprint

arXiv:1707.04012, 2017.
[11] A. Montanaro and C. Shao, “Quantum algorithms for learning a hidden

graph and beyond,” arXiv preprint arXiv:2011.08611, 2020.
[12] C.-Y. Lai and H.-C. Cheng, “Learning quantum circuits of some t gates,”

arXiv preprint arXiv:2106.12524, 2021.
[13] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes

associated with graphs,” Physical Review A, vol. 65, no. 1, p. 012308,
2001.

[14] W. Dür, H. Aschauer, and H.-J. Briegel, “Multiparticle entanglement
purification for graph states,” Physical review letters, vol. 91, no. 10,
p. 107903, 2003.

[15] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based
quantum computation on cluster states,” Physical review A, vol. 68, no. 2,
p. 022312, 2003.



[16] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph
states,” Physical Review A, vol. 69, no. 6, p. 062311, 2004.

[17] D. Schlingemann, “Stabilizer codes can be realized as graph codes,”
Quantum Information & Computation, vol. 2, no. 4, pp. 307–323, 2002.

[18] M. Van den Nest, J. Dehaene, and B. De Moor, “Local unitary versus
local clifford equivalence of stabilizer states,” Physical Review A, vol. 71,
no. 6, p. 062323, 2005.

[19] B. Zeng, H. Chung, A. W. Cross, and I. L. Chuang, “Local unitary versus
local clifford equivalence of stabilizer and graph states,” Physical Review

A, vol. 75, no. 3, p. 032325, 2007.
[20] C. Godsil and G. F. Royle, Algebraic graph theory. Springer, 2001.
[21] C. King, “The capacity of the quantum depolarizing channel,” IEEE

Transactions on Information Theory, vol. 49, no. 1, pp. 221–229, 2003.
[22] B. D. McKay and N. C. Wormald, “Asymptotic enumeration by degree

sequence of graphs with degrees o(n1/2),” Combinatorica, vol. 11, no. 4,
pp. 369–382, 1991.

[23] K. M. R. Audenaert, J. Calsamiglia, R. Muñoz Tapia, E. Bagan,
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