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Recently, there has been growing interest in using quantum error correction in practical devices. A central

issue in quantum error correction is the initialization of quantum data into a quantum error-correction code. Most

studies have concentrated on generating quantum codes based on their encoding quantum circuits. However, this

often leads to a large number of steps required in the initialization, and hence this process can be prone to

errors. The purpose of this work is to demonstrate that permutation-invariant quantum error-correction codes

can be created with high fidelity by exploiting their underlying symmetry. The code is initialized on multiple

qubits that mutually interact or are themselves coupled to a quantum harmonic oscillator. We show that the

so-called selective resonant interaction is derivable on such physical systems. By utilizing the selective resonant

interaction, these highly symmetric codes may be rapidly generated with excellent fidelity. We also discuss

the potential of initializing permutation-invariant quantum error-correction codes based on the state-of-art

experimental techniques.

DOI: 10.1103/PhysRevA.99.012335

I. INTRODUCTION

To unlock the powers promised by quantum technologies

for quantum communication, quantum simulation, or quantum

computation, it is essential to reliably initialize quantum in-

formation with protection from the environment’s decohering

effects. One way to make quantum information more robust

is to encode it into a quantum error-correction code (QECC).

Once this quantum information has been encoded, it becomes

possible, at least in principle, to mitigate the decohering

effects that the quantum information experiences. Ever since

proof of the possibility of quantum error correction [1–3],

there has been extensive research on various types of QECCs,

such as the surface codes [4] and many others too numerous

to mention. However, initializing quantum states in QECCs

remains challenging in practical devices. In this paper, we ad-

dress the possibility of initializing QECCs with high fidelity.

Initializing quantum states in QECCs is necessary to re-

alize the potential of quantum error correction in making

quantum information more robust. For example, a single qubit

can be protected by introducing N − 1 additional qubits, and

applying an operation that entangles all the N qubits. If the

now entangled qubits reside in a QECC of distance 2t + 1,

any errors on any t of the qubits can be corrected [5]. Most

studies have concentrated on initializing quantum codes based

*chunfeng_wu@sutd.edu.sg
†vivhappyrom@gmail.com
‡xlfeng@shnu.edu.cn

on their encoding quantum circuits, the circuits of which can

be decomposed in terms of single-qubit and two-qubit gates.

However, the number of these gates required often cannot be

small [6–9]. Since every gate invariably incurs some amount

of error, over time, the error builds up, and this leaves the

initialization of quantum code that require many gates to be

error-prone. This problem has motivated the use of different

approaches to shorten the required evolution time in the gener-

ation of multiqubit entangled states. Recently, a scheme based

on ultrafast controlled phase gate and the principle of pairwise

cluster state generation has been proposed, which utilizes ul-

trastrong qubit-resonator coupling to implement single-qubit

and two-qubit quantum operations, and hence reduces the

times required for the generation of QECCs [10]. Others have

also explored special quantum operations to minimize the

steps of evolution needed for creating multipartite entangled

states [11–15].

Of the many QECCs that can be used, we focus our

attention on permutation-invariant QECCs, which remain

unchanged under the swapping of any of their underlying

subsystems. Such codes can have a distance that grows as a

square root of the number of underlying subsystems and lie

within the ground-state space of any Heisenberg ferromagnet.

Because of this and the fact that Heisenberg ferromagnets are

naturally abundant in nature and can be made via engineered

exchange interactions, these codes might be attractive for

use in quantum storage. Although considerable research has

been devoted to the construction of these codes and proving

their quantum error-correction properties [16–21], much less

attention has been paid to that of initializing states within

2469-9926/2019/99(1)/012335(8) 012335-1 ©2019 American Physical Society
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their codespace. Because permutation-invariant QECCs do

not have an obvious stabilizer structure, their encoding quan-

tum circuits remain unexplored.

In this paper, we investigate the initialization of a nine-

qubit permutation-invariant QECC that encodes a single qubit

and can correct any single-qubit error. We show how any qubit

can be encoded into this code using only a few steps of system

evolution. This QECC can be seen as a variant of Ruskai’s

code [16]. The physics of how our scheme works is based on

a controllable interaction which can be derived in two physical

systems. When the so-called large detuning constraint holds,

our scheme achieves a selective resonant interaction, which

effectively induces Rabi oscillations between pairs of chosen

basis states in the symmetric subspace. The natural unitary dy-

namics can be induced by the system Hamiltonian describing

qubit-qubit coupling or qubit-resonator coupling. In view of

the state-of-the-art techniques, our QECC scheme is possibly

implementable with superconducting charge qubits coupled

by a common inductance or embedded in a transmission line

resonator.

This paper is organized as follows. In Sec. II, we investi-

gate a physical system with coupled qubits and show that the

system Hamiltonian leads to the selective resonant interaction.

In Sec. III, we investigate the generation of a nine-qubit

permutation-invariant quantum code via a multistep evolution

of the system. In Sec. IV, we discuss the effect of decoherence

on the creation of the nine-qubit QECC. In Sec. V, we present

another system Hamiltonian of qubit-resonator coupling and

derive a transformed Hamiltonian which also gives rise to

the selective resonant interaction, followed by the exploration

of the initialization of the nine-qubit QECC. Finally, we

conclude this paper with discussions in Sec. VI.

II. THE SELECTIVE RESONANT INTERACTION FROM

QUBIT-QUBIT COUPLING

We consider a quantum system of N identical qubits cou-

pled to each other, where the system Hamiltonian is of the

following form:

H =
∑

i

h̄ǫ

2
σ i

z +
∑

i

h̄�

2
σ i

x +
∑

i<j

h̄�σ i
xσ

j
x , (1)

where ǫ and � are the parameters describing the energy of

each qubit, σ i
x and σ i

z describe Pauli matrices for ith qubit and

� is the coupling strength between qubits i and j .

Denote two states |+j 〉 and |−j 〉 of the j th qubit, where

σ
j
x |+j 〉 = |+j 〉 and σ

j
x |−j 〉 = −|−j 〉. Define |N, n〉 to be the

Dicke state with n qubits in the excited state |+j 〉 and N − n

qubits in the ground state |−j 〉. One can easily show that

|N, n〉 is an eigenstate of
∑

i
h̄�

2
σ i

x +
∑

i<j h̄�σ i
xσ

j
x with en-

ergy En = 2n−N
2

h̄� − h̄�(N − 4n2 + 4Nn − N2). The en-

ergy gap dn = En+1 − En between two adjacent energy levels

can be written as dn = h̄� − 2h̄�(N − 2n − 1). By tuning

the parameters � and �, one can adjust the values of dn. We

are interested in the regime where exactly one of the energy

gaps is zero and the remaining gaps are nonzero, so that

dn0
= 0 for some n0 and dn �= 0 for all n �= n0. In this case,

the effective coupling strengths of the transitions |N, n〉 ⇆
|N, n + 1〉 for all n is given by geff

n = h̄ǫ
√

(N − n)(n + 1)/2

and can be tuned via the parameter ǫ. When the energy gaps dn

are much larger than geff
n for all n �= n0, we say that the large

detuning constraint is satisfied, and the system’s evolution can

be described by the following selective resonant interaction,

Heff = geff
n0

(|N, n0〉〈N, n0 + 1| + |N, n0 + 1〉〈N, n0|), (2)

because, in this case, the other transitions corresponding

to n �= n0 are dispersively coupled. This is the well-known

selective resonant interaction.

We numerically calculate the population of |N, n〉 by tak-

ing N = 9 and n = 0, . . . , 9 as examples when the system

evolves from different initial states. The system parameters

are selected in order to fulfill the large detuning constraint.

Specifically, �/2π = 500 MHz and ǫ = 0.03�, and � is

changing according to the initial states. As illustrated in Fig. 1,

there are almost perfect oscillations between the neighboring

states |9, n〉 and |9, n + 1〉, and nearly zero populations in the

rest of the states.

Since our scheme requires the adjustment of �, one prac-

tical problem is how this adjustment may change the actual

dynamics in the system via affecting the system’s energy

levels. The variation of energy levels is usually described by

Landau-Zener transitions in which the variation is expressed

as a linear function of time [22]. Here we suppose ǫ = ǫ0(1 −
2t/T ) where T is evolution time. Since our scheme is based

on the selective resonant interaction, the required evolution

time is proportional to the inverse of geff
n and depends on

ǫ. In our prior analysis, the energy levels are constant with

respect to time, and hence time-variations in the energy levels

may adversely affect our scheme. To resolve this issue, we

approximately make the energy levels time-independent by

periodically adjusting ǫ0. To see how this works, first recall

that the time-dependent energy levels arise from using a fixed

ǫ0. Now we divide the entire required time interval to many

subintervals, and vary ǫ0 accordingly. The time-dependent

energy levels are described by a linear function of time, and

can be approximated with a piecewise continuous constant

function, which is constant on every time subinterval. By

suitably adjusting ǫ0 at the beginning of each time subin-

terval, the resultant energy level can approximate that of a

continuous constant function for the entire time period. We

provide numerical results when the system evolves initially

from |9, 0〉 for a time period of [0, π/(2geff
0 )] by utilizing

10 subintervals in Table I. We use the constant function to

determine evolution time and let the system evolve according

to the time-dependent Hamiltonian on every time subinterval.

The numerical results show that the change of energy levels

only slightly affects our scheme by using the approximation.

It is reasonable to expect further improvement if the number

of subintervals is increased.

III. INITIALIZING A NINE-QUBIT

PERMUTATION-INVARIANT QUANTUM CODE

With controllable parameters to implement the selective

resonant interaction, a permutation-invariant QECC can be

generated. We now elaborate on the initialization of the QECC

which is a nine-qubit state. Let the system evolve from

|9, 0〉 according the following steps by fixing the parameters

�/2π = 500 MHz and ǫ = 0.03� while adjusting �.

012335-2
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FIG. 1. Population of |9, n〉 (where n = 0, · · · , 9) with initial states prepared in (a) |9, 0〉, (b) |9, 1〉, (c) |9, 2〉, (d) |9, 3〉, (e) |9, 4〉,
(f) |9, 5〉, (g) |9, 6〉, (h) |9, 7〉, and (i) |9, 8〉, respectively, by appropriately selecting parameters. Time ts are dependent on geff

n where n = 0 for

(a), n = 1 for (b), n = 2 for (c), n = 3 for (d), n = 4 for (e), n = 5 for (f), n = 6 for (g), n = 7 for (h), and n = 8 for (i).

Step 1. Initially, we prepare the system in the state |9, 0〉
and apply the Hamiltonian with � = 16� to ensure selective

resonance between the states |9, 0〉 and |9, 1〉. As shown in

Fig. 1(a) we obtain nearly perfect oscillations between the

states |9, 0〉 and |9, 1〉, and zero populations in the other

TABLE I. The effect of nonadiabatic (NA) errors on the scheme

when the system evolves initially from |9, 0〉 by approximating the

varying energy levels to constant ones.

Population Without NA errors With NA errors

|9, 0〉 0.0001 0.0001

|9, 1〉 0.9997 0.9988

|9, 2〉 0.0002 0.0010

|9, 3〉 ≈ 0 ≈ 0

|9, 4〉 ≈ 0 ≈ 0

|9, 5〉 ≈ 0 ≈ 0

|9, 6〉 ≈ 0 ≈ 0

|9, 7〉 ≈ 0 ≈ 0

|9, 8〉 ≈ 0 ≈ 0

|9, 9〉 ≈ 0 ≈ 0

states. At t1 = π
3
/geff

0 = 2.33 × 10−7 s, we obtain the state

|ψ1〉 = 1
2
|9, 0〉 − i

√
3

2
|9, 1〉 with a fidelity of F1 = 0.9998.

Step 2. We set � = 12� to ensure almost ideal selective

resonance between the states |9, 1〉 and |9, 2〉 as illustrated in

Fig. 1(b). After t2 = π
2
/geff

1 = 2.62 × 10−7 s, we obtain the

state |ψ2〉 = 1
2
e−iφ0,2 |9, 0〉 −

√
3

2
e−iφ2 |9, 2〉 with a fidelity of

F2 = 0.9992F1, where φ0,2 = −18�t2 and φ2 = −22�t2.

Step 3. We next set � = 8� to ensure selective resonance

almost exclusively between the states |9, 2〉 and |9, 3〉 as

indicated in Fig. 1(c). After t3 = π
2
/geff

2 = 2.29 × 10−7 s, we

obtain the state |ψ3〉 = 1
2
e−iφ0,3 |9, 0〉 + i

√
3

2
e−iφ3 |9, 3〉 with a

fidelity of F3 = 0.9994F2, where φ0,3 = φ0,2 and φ3 = φ2 −
12�t3.

Step 4. We subsequently set � = 4� to ensure selective

resonance almost strictly between the states |9, 3〉 and |9, 4〉 as

demonstrated in Fig. 1(d). After t4 = π
2
/geff

3 = 2.14 × 10−7 s,

we obtain the state |ψ4〉 = 1
2
e−iφ0,4 |9, 0〉 +

√
3

2
e−iφ4 |9, 4〉 with

a fidelity of F4 = 0.9994F3, where φ0,4 = φ0,3 + 18�t4 and

φ4 = φ3 − 6�t4.

Step 5. We set � = 0 to ensure selective resonance be-

tween the states |9, 4〉 and |9, 5〉 as exhibited in Fig. 1(e).

After t5 = π
2
/geff

4 = 2.09 × 10−7 s, we obtain the state

012335-3
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FIG. 2. Population of states |9, n〉|∅〉 (where n = 0, . . . , 9) with initial states prepared in (a) |9, 0〉|∅〉, (b) |9, 1〉|∅〉, (c) |9, 2〉|∅〉,
(d) |9, 3〉|∅〉, (e) |9, 4〉|∅〉, (f) |9, 5〉|∅〉, (g) |9, 6〉|∅〉, (h) |9, 7〉|∅〉, and (i) |9, 8〉|∅〉, respectively, by properly choosing parameters. Time ts

are dependent on gn,eff with n = 0 for (a), n = 1 for (b), n = 2 for (c), n = 3 for (d), n = 4 for (e), n = 5 for (f), n = 6 for (g), n = 7 for (h),

and n = 8 for (i).

|ψ5〉 = 1
2
e−iφ0,5 |9, 0〉 − i

√
3

2
e−iφ5 |9, 5〉 with a fidelity of F5 =

0.9994F4, where φ0,5 = φ0,4 + 36�t5 and φ5 = φ4 − 4�t5.

Step 6. We finally set � = −4� to ensure the approx-

imately ideal selective resonance between the states |9, 5〉
and |9, 6〉 as presented in Fig. 1(f). After t6 = π

2
/geff

5 =
2.14 × 10−7 s, we obtain the state |ψ6〉 = 1

2
e−iφ0,6 |9, 0〉 −

√
3

2
e−iφ6 |9, 6〉 with a fidelity of F6 = 0.9994F5, where φ0,6 =

φ0,5 + 54�t6 and φ6 = φ5 − 6�t6.

After the above six-step evolution which takes a time

of T =
∑6

i=1 ti = 1.36 × 10−6 s, we obtain the state |ψ6〉 =
1
2
e−iφ0,6 |9, 0〉 −

√
3

2
e−iφ6 |9, 6〉 with fidelity F6 ≈ 0.997. Note

that |ψ6〉 lies within the code-space of a permutation-

invariant code that corrects a single-qubit error, and cor-

responds to a local unitary transformation of the Ruskai

code [16]. In particular, any subspace C spanned by the

logical states |0L〉 = 1
2
e−iθ1 |9, 0〉 −

√
3

2
e−iθ2 |9, 6〉 and |1L〉 =

1
2
e−iθ3 |9, 9〉 −

√
3

2
e−iθ4 |9, 3〉 for any real numbers θ1, θ2, θ3,

and θ4 necessarily satisfies the quantum error-correction crite-

rion for a single-qubit error. To see this, we compare the code

C with the Ruskai code that has logical codewords |R0〉 =
1
2
|9, 0〉 +

√
3

2
|9, 6〉 and |R1〉 = 1

2
|9, 9〉 +

√
3

2
|9, 3〉 [16,17]. To

show that C can correct a single-qubit error, it suffices to

show that the Knill-Laflamme quantum error-correction cri-

terion [1] that holds for the Ruskai code also holds for C.

This in turn is true because the matrix elements 〈iL|P |jL〉
are equivalent to 〈Ri |P |Rj 〉 for all multiqubit Pauli matrices

that affect up to two qubits. Using the selective oscillation

between two neighboring Dicke states as shown in Fig. 2,

it is possible to achieve superpositions of Dicke states with

amplitudes of arbitrary magnitudes via a multistep system

evolution. Therefore, a simple variation of the evolution times

and the values of � used in our scheme can produce any

state in the code-space C of the form c0|0L〉 + c1|1L〉 for a

priori known amplitudes c0 and c1. For arbitrary unknown

amplitudes c0 and c1, it is also possible to create any state

in the code-space C by resorting to a sequence of CNOT

gates. Suppose initially we have state c0|−〉 + c1|+〉. By

adding in eight ancillary qubits prepared in state |−〉, we have

c0| − − − − − − − −−〉 + c1| + − − − − − − −−〉. Appl-

ying a sequence of CNOT gates yields the state c0|9, 0〉 +
c1|9, 9〉. The CNOT gates can be implemented based on

Hamiltonian Eq. (1) as shown in Refs. [10,23]. Hence, by

applying the above sequence of selective oscillations between

neighboring Dicke states, we can obtain c0|0L〉 + c1|1L〉,

012335-4
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which is an arbitrary encoded state in the nine-qubit QECC.

Thus, we can in principle encode any qubit holding our

quantum data into a nine-qubit permutation-invariant code

that corrects one error using the selective resonance interac-

tion. Moreover, since our methodology can generate generic

superpositions of Dicke states, we can also initialize any

permutation-invariant quantum state in the code-space of any

permutation-invariant quantum error-correction code, where

N can be in general larger than nine [17–20]. Although

the minimum number of qubits required for a permutation-

invariant code to correct one error is seven [21], we choose

to use a nine-qubit permutation-invariant quantum code code

to illustrate our methodology. This is because the nine-qubit

permutation-invariant quantum code exhibits a robustness

against phases appended onto the Dicke states of the code’s

logical codewords that the seven-qubit permutation-invariant

quantum code need not have. In particular, when the phases

for the seven-qubit permutation-invariant quantum code are

perturbed, the resultant code may no longer be able to correct

an arbitrary single-qubit error.

The implementation of our scheme can be possibly

achieved with superconducting charge qubits which have been

demonstrated to describe quantum spin models by resorting

to a mutual inductance, a capacitance, or a LC resonator

[24–28]. Given a system of identical charge qubits coupled by

a common superconducting inductance, each charge qubit is a

Cooper-pair box in which a superconducting island is weakly

coupled by two symmetric dc superconducting quantum inter-

ference devices (SQUIDs) and biased by an applied voltage

through a gate capacitance, and each SQUID is pierced by

a magnetic flux. Therefore, each qubit is controllable by the

magnetic flux and the voltage applied via the gate capacitance.

The system Hamiltonian is of the following form [26]:

H =
∑

i

(

h̄ǫσ i
z − h̄�σ i

x

)

+
∑

i,j

h̄�ijσ
i
xσ

j
x . (3)

The qubit parameters and qubit-qubit coupling strength in the

Hamiltonian are adjustable. The Hamiltonian is of a similar

form to Hamiltonian Eq. (1) with controllable parameters,

and hence our scheme to initialize the QECC may be imple-

mentable in the system.

IV. THE EFFECT OF DECOHERENCE

In practice, decoherence due to the coupling of the system

to the environment is inevitable. We discuss the performance

of the quantum operations based on selective resonant inter-

action in the presence of noise. The evolution of the system is

governed by the following master equation in the presence of

noise:
dρ

dt
= −i[H, ρ]

+
∑

k=z,−
γk

(

LkρL
†
k −

1

2
L
†
kLkρ −

1

2
ρL

†
kLk

)

, (4)

where γz,− are the decay rates of qubit dephasing and re-

laxation respectively, and Lz =
∑9

j=1 σ
j
z , L− =

∑9
j=1 σ

j
−,

where σ
j
− = 1

2
(σ

j
x − iσ

j
y ).

Given the above master equation describing the decoher-

ence process, we can quantify the fidelities Fi (i = 1, . . . , 6)

TABLE II. The effect of qubit dephasing on the performance of

the generation of the nine-qubit QECC.

Fidelity No noise γz = 10−3
� γz = 2 × 10−3

�

F1 0.9992 0.859 0.75

F2 0.9972F1 0.753F1 0.597F1

F3 0.997F2 0.708F2 0.534F2

F4 0.9972F3 0.693F3 0.514F3

F5 0.997F4 0.689F4 0.508F4

F6 0.9972F5 0.693F5 0.514F5

of the generated states |ψi〉 using the selective resonance

transition in the presence of noise. The numerical results

for different decay rates are listed in Tables II and III. The

physical parameters are chosen as �/2π = 5 × 108 Hz, ǫ =
0.06�, and � is changing step by step. We study how the

dephasing and relaxation noise affect the performance of our

scheme individually. We choose γ− = 0 but vary γz firstly,

and numerical results are shown in Table II. Next, we select

γz = 0 but vary γ−; see Table III for details. It is illustrated

by the numerical results that the gate fidelities are more robust

against qubit relaxation than qubit dephasing. When the decay

rates are increased, the gate fidelities are largely affected by

the noise as compared with the fidelities in the absence of

decoherence. This suggests that our scheme is vulnerable to

large decay rates, which is expected from a scheme based

on selective resonant interaction. The presence of the noise

may affect the large detuning constraint and thereby result in

imperfect selective resonant interaction.

V. THE SELECTIVE RESONANT INTERACTION FROM

QUBIT-RESONATOR COUPLING

Our scheme can also be implemented using a system with

N qubits coupled to a quantum harmonic oscillator with

resonance frequency ωr . The system’s Hamiltonian is

H ′ =
N

∑

j=1

h̄ǫ

2
σ j

z +
h̄�

2
σ j

x + h̄ωra
†a + h̄g(a† + a)σ j

x , (5)

where a and a† denote the Bosonic ladder operators for the

resonator, ǫ and � are the parameters describing the energy

of each qubit, and g denotes the coupling strength between

each qubit and the resonator. For simplicity, we take every

qubit to be identical. Upon conjugating H ′ by a unitary trans-

formation U = exp (− g

ωr

∑N
j=1 [(a† − a)σ

j
x ]), we obtain the

TABLE III. The effect of qubit relaxation on the performance of

the generation of the nine-qubit QECC.

Fidelity No noise γ− = 10−3
� γ− = 2 × 10−3

�

F1 0.9992 0.974 0.949

F2 0.9972F1 0.933F1 0.874F1

F3 0.997F2 0.913F2 0.837F2

F4 0.9972F3 0.899F3 0.812F3

F5 0.997F4 0.884F4 0.787F4

F6 0.9972F5 0.869F5 0.762F5
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transformed Hamiltonian H = UH ′U † with decomposition

H = H0 + HI . Here, H0 and HI denote Hamiltonians with

and without qubit-resonator couplings, respectively, where

H0 = h̄ωra
†a +

N
∑

j=1

h̄�

2
σ j

x −
N

∑

j=1

j−1
∑

i=1

2h̄g2

ωr

σ i
xσ

j
x ,

HI =
h̄ǫ

2

N
∑

j=1

[

D

(

2g

ωr

)

σ
j
z − iσ

j
y

2
+ D

(

−
2g

ωr

)

σ
j
z + iσ

j
y

2

]

,

(6)

and D(α) = eα(a†−a) denotes the displacement operator.

Denoting |∅〉 as the vacuum state of the resonator, one

can easily show that |N, n〉|∅〉 is an eigenstate of H0 with

energy En = 2n−N
2

h̄� + h̄g2

ωr
(N − 4n2 + 4Nn − N2). The en-

ergy gap Dn = En+1 − En between two neighboring energy

levels can be written as Dn = h̄� + 4h̄g2

ωr
(N − 2n − 1). We

consider case that Dn0
= 0 for some n0 and Dn �= 0 for all

n �= n0, and in this case the effective coupling strengths of

the transitions |N, n〉|∅〉 ⇆ |N, n + 1〉|∅〉 is of the following

form gn,eff = h̄ǫ
√

(N − n)(n + 1)e−2g2/ω2
r /2. Given the large

detuning constraint that the energy gaps Dn are much larger

than gn,eff for all n �= n0, the system’s evolution is nothing but

the selective resonant interaction,

Heff = gn0,eff (|N, n0〉〈N, n0 + 1| ⊗ |∅〉〈∅|
+ |N, n0 + 1〉〈N, n0| ⊗ |∅〉〈∅|), (7)

since the other transitions corresponding to n �= n0 are disper-

sive. In the following, we neglect the resonator vacuum state

since it can be decoupled from the qubit state.

With controllable parameters to implement the selective

resonant interaction, a permutation-invariant QECC code may

be generated in a broad coupling regime of light-matter inter-

action, including the weak, strong, and ultrastrong coupling

regimes. In the following, we numerically describe the perfor-

mance of the selective resonant interaction in the ultrastrong

coupling regime. Let the system evolve from different initial

states by fixing the parameters g = 1/8ωr , ǫ = 0.001ωr , and

ωr = 2π × 1 GHz while adjusting �. The numerical results

are summarized in Fig. 2. It is clearly demonstrated that we

have obtained nearly perfect oscillations between the neigh-

boring states, and therefore the initialization of the QECC can

be achieved with excellent fidelities in the system. We can

obtain |ψ ′

i〉 with i = 1, . . . , 6 (which are different from |ψi〉 in

phases) numerically, and eventually obtain |ψ ′

6〉 with a fidelity

of F
′

6 ≈ 0.996 and total evolution time T
′ = 6.7 × 10−7 s.

The Hamiltonian in Eq. (5) with adjustable ǫ and � can

be naturally implemented in the circuit QED systems with

charge and flux qubits. The flux qubits, which have been

demonstrated to be capable of reaching the ultrastrong and

deep strong coupling regimes [29–31], may require less gate

operation time. However, it is hard to implement our QECC

scheme since the g and � cannot be individually adjusted to

satisfy the large detuning constraint [32,33]. Nevertheless, it is

possible to implement our QECC scheme in the circuit QED

systems with superconducting charge qubits working in the

strong coupling regime [33–35].

FIG. 3. Schematic of circuit QED design to generate the

permutation-invariant QECC code. An array of charge qubits array

are placed inside a transmission line resonator.

We consider the case with nine charge qubits placed at the

antinodes of the magnetic field induced by the oscillating su-

percurrent in the transmission line resonator (TLR), as shown

in Fig. 3. Each charge qubit comprises of a dc supercon-

ducting quantum interference device (SQUID) formed by a

superconducting island connected to two Josephson junctions.

In this situation, the external magnetic flux threading the j th

dc-SQUID �
j
e is the sum of the classically applied magnetic

flux �
j

e0 and the quantized magnetic flux induced by the

TLR �
j
r [33–35]. By expanding the Josephson energy to

linear order in π�
j
r /�0, where �0 = h/2e is the magnetic-

flux quantum, we attain the linear interaction between the

charge qubits and the quantized field of the TLR. The total

Hamiltonian is then [33,35]

H =
N

∑

j=1

E
j

C

4

(

2nj
g − 1

)

σ j
z − E

j

J cos

(

π
�

j

e0

�0

)

σ j
x

+ h̄ωra
†a +

N
∑

j=1

h̄gj (a† + a)σ j
x , (8)

where E
j

C (E
j

J ) is the Coulomb (Josephson) energy of the

j th qubit, �
j
e is the external magnetic flux, n

j
g = C

j
gV

j
g /2 is

the bias charge number which can be controlled by the gate

voltage V
j
g , and C

j
g is the gate capacitor. The Pauli matrices of

the j th qubit σ
j
z = |1j 〉〈1j | − |0j 〉〈0j | and σ

j
x = |0j 〉〈1j | +

|1j 〉〈0j | are defined in terms of the charge eigenstates |1j 〉
and |0j 〉, which denote 0 and 1 excess Cooper pair on the

corresponding island, respectively. The coupling parameter

is [33,35]

gj = π
S

j

0 EJ

d�0

√

lωr

h̄L0

sin

(

π
�

j

e0

�0

)

, (9)

where S
j

0 is the enclosed area of the dc-SQUID, l is the

inductance per unit length, L0 is the geometric length of the

TLR, d is the distance between the qubit and the transmission

line. From Eq. (8), the free-charge qubit can be controlled

by both the gate voltage and the external magnetic fluxes.

The coupling parameter gj is also adjustable through the

applied magnetic flux. For simplicity and without loss of

generality, we assume all the charge qubits to be identical so
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that C
j
g = Cg , E

j

J = EJ , E
j

C = EC . We choose the follow-

ing experimentally accessible parameters [34–36]: S0/d ≈
100 μm, EJ ≈ 110 μeV, L0 ≈ 1.5 cm, l ≈ 2 × 10−6 Hm−1,

ωr ≈ 2π × 1 GHz, which results in a maximized normalized

coupling strength of gmax/ωr = g
j
max/ωr ≈ 0.0382.

Since Eq. (8) has the same form as Hamiltonian Eq. (5)

with ǫ = EC

2
(2ng − 1), � = −2EJ cos θ , and g = gmax sin θ

where θ/π = �
j

e0

�0
, we can use the six-step evolution men-

tioned earlier to create the QECC in this physical system with

strong qubit-resonator couplings by choosing ǫ = 0.0004ωr ,

ωr = 2π × 1 GHz and varying θ . We find |ψ ′′

i 〉 with i =
1, . . . , 6 (which are different from |ψi〉 and |ψ ′

i〉 in phases)

with the corresponding θ , and thus |ψ ′′

6〉 with a fidelity of

F
′′

6 = 0.92 and total evolution time is T
′′ = 1.64 × 10−6 s.

With the strong qubit-resonator coupling, the required evo-

lution time is slightly increased and fidelity is reduced as

expected. According to our scheme, further increase in fidelity

and decrease in operation time is possible if � and ǫ were

to be tunable with stronger qubit-resonator coupling. These

improvements that require achievable stronger qubit-resonator

coupling and adjustable parameters in Hamiltonian await fur-

ther theoretical and experimental advances.

VI. CONCLUSION

To summarize, we have presented a scheme to create a

nine-qubit permutation-invariant QECC in two physical sys-

tems by resorting to the selective resonant interaction. First,

we considered a system of qubits coupled to each other. It

is possible to create the nine-qubit QECC in nanoseconds

with very high fidelity via six-step evolution of the system.

With the aid of single- and two-qubit operations, any state in

the code-space C with unknown amplitudes can be generated

based on the selective resonant interaction. Our results pave

a promising way toward achieving fast generation of the

multiqubit QECC and thus reduce the errors incurred at the

level of creating QECC. The effect of decoherence on our

scheme has been explored and we found that our scheme is

largely affected when the decay rate of noise is increasing.

To ensure the excellent performance of our scheme, small

decoherences are preferred.

The selective resonant interaction can also be derived in

a system of qubits coupled to a quantum resonator. Upon a

unitary transformation, the transformed system Hamiltonian

is just the selective resonant interaction. In our scheme, the

large detuning constraint of the selective resonant interaction

is crucial and the constraint can be fulfilled with controllable

system parameters. With adjustable parameters to implement

the selective resonant interaction, the nine-qubit QECC may

be initialized in a broad coupling regime of light-matter

interaction. In the ultrastrong coupling regime, the evolution

time can be further reduced and fidelity can be improved as

expected. These improvements await future advances in both

theory and experiment.
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