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The recent discovery of fully homomorphic classical encryption schemes has had a dramatic effect on the

direction of modern cryptography. Such schemes, however, implicitly rely on the assumption that solving certain

computation problems is intractable. Here we present a quantum encryption scheme which is homomorphic for

arbitrary classical and quantum circuits which have at most some constant number of non-Clifford gates. Unlike

classical schemes, the security of the scheme we present is information theoretic and hence independent of the

computational power of an adversary.
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I. INTRODUCTION

Harnessing the power of quantum mechanics to build

cryptosystems [1,2] is a key motivation for developing quan-

tum technologies. Quantum cryptography often provides

information-theoretic security guarantees relying only on the

correctness of quantum mechanics and avoids the need for

assumptions about the computational hardness of certain

problems as is commonplace in many classical cryptographic

protocols. Such successful quantum approaches to crypto-

graphic problems include secure randomness generation [3,4],

coin flipping [5–7], secret sharing [8–10], and bit commit-

ment [11–14]. One area in particular that has seen significant

progress in recent years is the development of quantum cryp-

tographic protocols for delegated computation [15], which

includes blind quantum computation [16–21] and verifiable

quantum computation [22–27]. Homomorphic encryption has

been recognized as an important primitive for building secure

delegated computation protocols for many decades [28]. It

provides a processing functionality for encrypted quantum

data which stays secret during the evaluation, and a scheme is

said to be fully homomorphic if it allows for arbitrary quantum

computation. Despite widespread interest in this problem, it

was not until 2009 that a computationally secure classical

scheme for fully homomorphic encryption (FHE) was discov-

ered [29], with many improvements following rapidly from

this initial discovery [30,31]. Recently, this topic also has

drawn attention within the quantum information community

[32–37]. One might wonder if quantum cryptosystems can of-

fer unconditionally secure homomorphic encryption schemes

and whether homomorphic encryption could be extended to

allow for evaluation of quantum circuits.

Like their classical counterparts, quantum homomorphic

encryption (QHE) schemes comprise four parts: key gener-

ation, encryption, evaluation, and decryption. Unlike blind

quantum computation [16], in which the computation to be

performed forms part of the secret, QHE schemes do not

*yingkai_ouyang@sutd.edu.sg

have secret circuit evaluations. Rather, they serve to obscure

only the information that is contained within the state to be

processed using the chosen circuit. The extent to which a

scheme is secure depends on its specifics and in previous

work has varied depending on the precise nature of the set

of computations which can be performed on the encrypted

input. Quantum homomorphic encryption schemes described

in Refs. [36,37] offer some information-theoretic security, but

this is only in the form of a gap between the information

accessible with and without the secret key, a notion of se-

curity which does not imply the stronger notion of security

under composition. These schemes are also limited in the

set of operations that can be performed on the encrypted

data. The scheme in [36] only allows computations in the

boson sampling model, while that in [37] is not known

to support encoded universal quantum computing. Recently,

Dulek et al. [38] used the garden-hose model of computation

with Broadbent and Jeffery’s quantum homomorphic schemes

[39] to allow the evaluation of polynomial-depth circuits.

Several other schemes for computing on encrypted data have

previously been introduced which offer universal quantum

computation, but require interactions between the client and

evaluator [32–35]. This requirement for interaction places

them outside the formalism of homomorphic encryption.

The difficulty in creating a perfectly secure quantum fully

homomorphic encryption scheme persists and is in line with

the no-go results that perfect [40] and approximate [41]

information-theoretic security while enabling arbitrary pro-

cessing of encrypted data is impossible, unless the size of the

encoding grows exponentially. Nonetheless, given the grow-

ing interest in QHE schemes and the multitude of possibilities,

Broadbent and Jeffery set out to provide a rigorous frame-

work for defining QHE schemes [39], basing their security

definitions on the requirement for indistinguishability of code-

words under chosen plaintext attack. Broadbent and Jeffery

also require that a quantum fully homomorphic encryption

satisfies two properties: correctness and compactness. Perfect

correctness occurs when the evaluated output on the cipher-

state after decryption is equivalent to the output of the direct

evaluation on the quantum plaintext. A scheme is compact

2469-9926/2018/98(4)/042334(7) 042334-1 ©2018 American Physical Society
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if the circuit complexity of the decryption algorithm does

not depend on the computation to be evaluated and scales

only polynomially in the size of the plaintext. An important

implication of the compactness requirement for QHE schemes

is that the decryption algorithm of such schemes cannot in any

way depend on the evaluated computation. This necessarily

implies that a one-time-padding scheme, where random Pauli

matrices encrypt the quantum input, does not qualify as a

QHE scheme. This is because the decryption algorithm of a

one-time-padding scheme is not independent of the evaluated

computation.

We present a QHE scheme that supports evaluation

of quantum circuits with a constant number of T gates

on multiple copies of the input qubits while providing

strong information-theoretic security guarantees. The pro-

posed scheme, which requires the encoder to be able to pro-

duce multiple copies of the input state, builds on constructions

taken from quantum codes to provide gates for universal

quantum computation. The block of qubits that contains the

code is embedded in a larger set of qubits that are initialized

in a maximally mixed state. The qubits are then shuffled in a

specific but random way to hide the qubits that contain that

code. In our scheme, the evaluation of each T gate succeeds

with a probability of 1
2
. This leads to a trade-off between the

size of the encoding and the success probability, since the

probability of success can be amplified by encoding several

instances of the plaintext in parallel. To achieve a constant

success probability, however, the size of this encoding would

scale exponentially in the total number of T gates to be

performed. Hence, in order to maintain compactness, we

restrict evaluation to circuits containing at most some constant

number of T gates. The computational model that we consider

is nontrivial in the sense that even performing just the Clifford

operations on an arbitrary quantum input is known to be hard

unless the polynomial hierarchy collapses [42–45].

Our protocol guarantees that the trace distance between

ciphertexts corresponding to arbitrary pairs of quantum inputs

is exponentially suppressed in the key size less half the total

number of qubits used for the quantum input. An encryption

scheme has entropic security if an adversary whose minimum

entropy on the encrypted message is upper bounded cannot

guess any function of the message [46,47]. When the quantum

minimum entropy of the source in our scheme is sufficiently

large, the trace distance between ciphertexts is exponentially

suppressed in only the key size. Since an exponentially

suppressed trace distance implies entropic security [46], our

scheme is also secure for high-entropy quantum inputs on any

number of qubits with a constant key size.

This is a significantly stronger security guarantee than

previous homomorphic encryption schemes presented in

Refs. [36,37]. Moreover, the computational power of our

scheme is similar to that of Broadbent and Jeffery’s while

avoiding reliance on the classical homomorphic encryption

scheme. This use of classical fully homomorphic encryption is

the weakest link in the Broadbent-Jeffery cryptosystem, since

it relies on computational assumptions.1 When considering

1We note that since the Broadbent-Jeffery cryptosystem utilizes the

classical FHE to compute sums of hidden subsets, it may be possible
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FIG. 1. The shaded circles represent data qubits. Within the xth

row, the n data qubits are in a code encoded by Ux . The unshaded

circles are ancilla qubits which are completely mixed. There are b

copies of r logical qubits. A random permutation of the columns

completes the encryption procedure of our quantum homomorphic

encryption scheme.

the case of no T gates, it is instructive to compare the de-

cryption complexities of our QHE scheme and the non-QHE

quantum one-time-padding scheme. In the one-time-padding

scheme, it is necessary for the decryption routine to take into

account a description of the entire circuit which has been

performed. Due to the number of Clifford group operations,

this implies that the decryption algorithm has complexity at

least quadratic in the plaintext size. In contrast, our QHE

scheme requires only a linear complexity for decryption, as

long as it has at most a constant number of T gates in the

evaluated computation.

II. OUR QHE SCHEME

Our QHE scheme takes as its input an r-qubit state ρinput

and t independent copies of the magic state |T 〉〈T | = I
2

+
X+Y

2
√

2
, all arranged in a single column (see Fig. 1), where I ,

X, Y , and Z are the usual Pauli matrices. We then introduce

2n − 1 more columns of maximally mixed qubits to obtain

a grid of qubits with r + t rows and 2n columns. Here we

require n−1
4

to be a non-negative integer. Of the new columns

introduced, n − 1 of them are incorporated as data qubits

while the remaining n columns are used as ancillae in the

encryption. An encoding quantum circuit U = U1 ⊗ · · · ⊗
Ur+t applies row-wise on the first n columns, where Ux

operates on the xth row (see Fig. 2). We take Ax and Bx to

denote the first and last n − 1 gates in Ux , respectively, so

Ux = BxAx . Applying U spreads the quantum input from just

the first column to the first n columns. Since every qubit not

residing on the first column is maximally mixed, the encoding

circuit on each row encodes the quantum data on the first

column into a random quantum code, the resultant quantum

information of which resides in a random codespace on the

first n columns. Namely, on the xth row, the encoding maps an

arbitrary state ρinput = I+rXX+rY Y+rZZ
2

in the first column and

with maximally mixed states on the remaining n − 1 columns

to remove the computational assumptions by replacing the FHE

scheme with an information-theoretic secure scheme which allows

evaluation of only linear circuits. However, no analysis of such a

modification has yet appeared in the literature.

042334-2
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FIG. 2. Encoding quantum circuit Ux = BxAx that is applied on

the first n qubits in the xth row. Each line represents one qubit and

the gates are applied in the order from left to right.

to the mixed state Ux[ I+rXX+rY Y+rZZ
2

⊗ [( I
2

)⊗n−1]]U
†
x , which

is equivalent to 2−n(I⊗n + rXX⊗n + rY Y⊗n + rZZ⊗n). We

emphasize at this point that any state in our random codespace

is a highly mixed state. Encryption is then achieved via ran-

domly permuting the 2n columns using a secret permutation

κ . Permuting the columns brings the quantum information

to be processed from the first n columns to the columns

k1, . . . , kn, where 1 � k1 < · · · < kn � 2n. For the decryp-

tion algorithm, one performs the inverse permutation of the

columns κ−1, followed by the inverse unitary U † on the first

n columns of the grid. Finally, every qubit in the rows r + 1

to r + t is measured in the computation basis. The quantum

output of our scheme is then located on the first r rows of the

first column of our grid of qubits.

The single-qubit logical Clifford operators of each of our

random codes on n qubits are transversal gates on those

n qubits. This means that a logical G operator on the xth

row is G⊗n that operates on the first n columns for every

Clifford gate G in the set generated by {S,H }, where S =
|0〉〈0| + i|1〉〈1| and H = X+Z√

2
is the Hadamard matrix. To

see this, notice that Ux (Z ⊗ I⊗n−1) = BxAx (Z ⊗ I⊗n−1) =
Bx (Z ⊗ I⊗n−1)Ax = Z⊗nBxAx = Z⊗nUx . Hence our encod-

ing circuit Ux maps the physical Z on one qubit to Z⊗n. Sim-

ilarly, Ux (X ⊗ I⊗n−1) = BxAx (X ⊗ I⊗n−1) = BxX
⊗nAx =

Xn ⊗ X⊗n−1BxAx . Since n is odd, we get Ux (X ⊗ I⊗n−1) =
X⊗nUx . Thus our encoding circuit Ux maps the physical X on

one qubit to X⊗n. Since Y = iXZ and n − 1 is also divisible

by 4, our encoding circuit Ux maps the physical Y on one

qubit to Y⊗n. Now X⊗n and Z⊗n anticommute because n is

odd, and the Y⊗n anticommutes with X⊗n and Z⊗n. Upon

conjugation by H⊗n, X⊗n becomes Z⊗n and Z⊗n becomes

X⊗n, and Y⊗n becomes −Y⊗n. Upon conjugation by the S⊗n

gate, X⊗n and Y⊗n become Y⊗n and −X⊗n, respectively.

Transversality of the logical CNOT operation with the control

and target on distinct rows follows immediately from the

transversality of the logical X operation. Thus the transversal

Clifford operations on the n columns containing the encoded

quantum data are precisely the logical Clifford operations.

The evaluator operates independently and identically on

not n but 2n columns of qubits, n columns of which are

the maximally mixed state. The independent and identical

structure of the evaluator’s operations allows these operations

to commute with any secret permutation of the columns of

the qubits on the grid. In addition, the evaluators’ operations

necessarily map the n columns of qubits initialized in the max-

imally mixed state to the maximally mixed state, thereby im-

plementing independently and identically quantum operations

TH|0 Z meas

|ψ T |ψ with probability 1

2

FIG. 3. Gate teleportation of the T gate without correction.

on only the columns containing the encoded quantum data.

This allows the evaluator to perform transversal gates on the n

columns with the quantum data without knowing where they

are located.

The evaluation algorithm takes as input a sequence of

unitary operations V1, . . . , Vd to be performed securely on r

qubits, where each Vi either applies a Clifford gate or a T gate

locally on a single qubit or applies a CNOT gate locally on a

pair of qubits. The number of T gates to be applied locally

among the unitary operations V1, . . . , Vd is at most t . The

circuit to be evaluated is V = Vd , . . . , V1, where the evaluator

applies homomorphisms of the gates V1, . . . , Vd sequentially.

When Vi is a unitary operation that applies a Clifford

gate G locally on the xth qubit, the evaluator can apply the

logical G gate on our random code on the xth row without

any knowledge of the data columns k1, . . . , kn. To do so, the

evaluator simply applies the unitary G⊗2n on the 2n qubits

located on the xth row on each copy. Since conjugating a

maximally mixed state I
2

by any qubit unitary operation yields

also a maximally mixed state, the net effect is to apply the

unitary G⊗n on the qubits in the encrypted data columns

k1, . . . , kn on the xth row, which is the logical G gate on the

xth row.

When Vi is a unitary operation that applies a CNOT gate

with a control on the xth qubit and a target on the yth

qubit, denoted by CNOTx,y , the evaluator can also apply the

corresponding logical CNOT gate on our random code on the

xth and yth row without any knowledge of the data columns

k1, . . . , kn. To do so, the evaluator simply applies a CNOT gate

with a control qubit on the xth row and the j th column and

a target qubit on the yth row and the j th column for every

j = 1, . . . , 2n. As before, the net effect is to apply the unitary

CNOT
⊗n gate on the qubits in the encrypted data columns

k1, . . . , kn with control qubits on the xth row and target qubits

on the yth row, which is the correct logical CNOT gate, which

we denote by CNOTx,y .

When Vi is a unitary operation that applies the kth non-

Clifford gate T = |0〉〈0| + eiπ/4|1〉〈1| on the xth qubit, the

evaluator has to perform gate teleportation [48,49]. Now

consider gate teleportation of a single-qubit gate T . Omitting

the correction operation required by gate teleportation allows

this procedure to succeed with probability 1
2
, as depicted

in Fig. 3. The principle of deferred measurement [50] al-

lows deferment of the required measurement until decryp-

tion. To implement gate teleportation of the logical T op-

eration, the evaluator applies homomorphisms for CNOTx,r+k

and CNOTr+k,x sequentially. Because of the ancilla columns

being in the maximally mixed state, the unitary CNOTx,r+k

and then the unitary CNOTr+k,x are effectively applied on

the data columns k1, . . . , kn. For the data qubits encoded on

the random codespace, this action implements a logical T

gate on the random codespace with probability 1
2

when the
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outcome of the logical Z measurement is 0. This scheme

works because by replacing each Pauli operator in the Pauli

decomposition of |T 〉〈T | with the corresponding logical Pauli

operator, we obtain precisely the logical |T 〉〈T | state. We

emphasize that the outcome of the logical Z measurement

is a flag for the correctness of the implementation of the T

gate: If the outcome is 0 the gate is successfully implemented;

otherwise the implementation fails.

Our scheme with heralded success satisfies the correctness

condition of Broadbent and Jeffery. Each copy of our scheme

yields the correct quantum output with constant probability

2−t . Extra copies simply amplify the probability of success.

Thus, although each instance of our scheme implements T

nondeterministically, it has heralded perfect completeness:

Namely, b = ⌊
√

α
2

+ 1⌋222t copies of our scheme yield the

correct output in at least one copy with probability at least

1 − e−α and we know which of the b copies yields the correct

output. A large α amplifies the success probability close to

unity.

In the three-part algorithm for the decryption, U † requires

2(n − 1)b(r + t ) gates and unpermuting of the columns re-

quires at most (2n − 1)b(r + t ) gates (the largest cycle con-

tained in any element of S2n is a 2n-cycle which can be

written as a product of 2n − 1 swaps). The remainder of

the decryption involves a readout of Z measurements and

discarding a subsystem. Since t is constant, b is also constant,

and the total number of gates required for decryption scales

linearly with r and is independent of the depth of the circuit

to be evaluated. Hence, our scheme is compact for the family

of circuits on r qubits with a constant maximum number of T

gates and any number of Clifford gates.

Randomly permuting the columns of qubits obfuscates the

subset of columns where the quantum information resides,

thereby encrypting the quantum data. The maximum trace

distance between any two quantum ciphertexts with minimum

entropy h is

ǫ �
√

2p−h

(

2n

n

)−1/2

, (1)

where p = b(r + t ). In the worst case, where h = 0, ǫ is

exponentially suppressed in n as long as the key size n grows

linearly with the input size r . However, when t = 0, b = 1,

and h = r − x for any constant x, the key size n can be

independent of the input size r while having ǫ exponentially

suppressed in n. In both cases, any two quantum ciphertexts

are essentially the maximally mixed state and hence indistin-

guishable in our scheme.

To obtain Eq. (1), we first obtain a Pauli decomposition of

any arbitrary state that the evaluator receives. Let the density

matrices ρ and ρ ′ on b copies of 2n(r + t ) qubits be any two

arbitrary inputs to the scheme before encoding and encryption.

Let ρ̃ and ρ̃ ′ be the corresponding states after encoding and

encryption. Then ǫ = 1
2

maxρ,ρ ′ ‖ρ̃ − ρ̃ ′‖tr. In this maximiza-

tion, only the p = b(r + t ) qubits in the first column are

arbitrary and the remaining columns are in the maximally

mixed state. Note that ‖ρ̃ − ρ̃ ′‖tr = Tr[M (ρ̃ − ρ̃ ′)] for some

optimal Hermitian M diagonal in the same basis as ρ̃ − ρ̃ ′,
with eigenvalues equal to +1 or −1. More precisely, if

ρ̃ − ρ̃ ′ has the spectral decomposition
∑

i λi |i〉〈i|, then M =

∑

i sgn(λi )|i〉〈i|, where sgn(λi ) = 1 if λi � 0 and sgn(λi ) =
−1 otherwise. Now define σ0 = I , σ1 = X, σ2 = Y , and σ3 =
Z. Let Mp,2n(Z4) denote the set of all matrices with p rows

and 2n columns and entries from {0, 1, 2, 3}. Given any matrix

A ∈ Mp,2n(Z4), let ax,y denote its component in the xth

row and the yth column. Define the unitary matrix σA to

be one that applies σax,y
on the xth row and yth column of

our grid of qubits for every x = 1, . . . , p and y = 1, . . . , 2n.

Define the set of all column permutations of σA as SA and

the corresponding symmetric sum of σA as σ̃A =
∑

τ∈SA
τ .

Let � denote the set of nonzero column vectors of length p

with entries from {0, 1, 2, 3}. For all v ∈ �, let ϕ(v) denote

a matrix with p rows and 2n columns such that its first n

columns are identical to v and the last n columns have all en-

tries equal to zero. Notice that for distinct v, v′ ∈ �, σ̃ϕ(v) and

σ̃ϕ(v′ ) are also distinct. Let S denote some minimal subset of

Mp,2n(Z4) such that {σ̃A : A ∈ S} = {σ̃A : A ∈ Mp,2n(Z4)}.
Now we can always have ϕ(v) ∈ S for every v ∈ �. Let M̃ =

1
(2n)!

∑

π πMπ †, where π is any column permutation. Then

we can write M̃ =
∑

A∈S aAσ̃A for appropriate real constants

aA.

Linearity and the cyclic property of the trace give

Tr[M (ρ̃ − ρ̃ ′)] = Tr[M̃ (ρ − ρ ′)]. Using the decomposition

ρ − ρ ′ =
∑

v∈�

rv−r ′
v

22np σϕ(v) for appropriate real constants rv

and r ′
v, the decomposition of M̃ , the linearity of trace, and

the triangle inequality, we get

‖ρ̃ − ρ̃ ′‖tr �
∑

v∈�

∑

B∈S

∣

∣

∣

∣

Tr aB σ̃B

rv − r ′
v

22np
σϕ(v)

∣

∣

∣

∣

. (2)

Orthogonality of the Pauli operators under the Hilbert-

Schmidt inner product gives

‖ρ̃ − ρ̃ ′‖tr �
∑

v∈�

|Tr aϕ(v)(rv − r ′
v )|. (3)

The Cauchy-Schwarz inequality implies that ‖ρ̃ − ρ̃ ′‖tr �
√

∑

v∈�
a2

ϕ(v)

√

∑

v∈�
(rv − r ′

v)2. Since in Loewner

order M̃2 � I and hence Tr(M̃2) � Tr(I ), we have
∑

v∈�
a2

ϕ(v)

(

2n

n

)

� 1. Next we show that
∑

v∈�
(rv − r ′

v )2 �

2p−h+2 if the p-qubit inputs to the first column of our

scheme have a quantum minimum entropy [51] of h.

Let τ and τ ′ be unencrypted p-qubit states, with ρ =
U [τ ⊗ (I/2)⊗(2n−1)p]U † and ρ ′ = U [τ ′ ⊗ (I/2)⊗(2n−1)p]U †.

The Pauli decompositions τ = 2−p
∑

v∈�
rvσv and

τ ′ = 2−p
∑

v∈�
rvσv imply that Tr[(τ − τ ′)2] =

∑

v∈�
(rv −

r ′
v )22−p. Given the minimum entropy of τ and τ ′, their

maximum eigenvalue is 2−h. Hence Tr[(τ − τ ′)2] � 2−h+2.

Then
∑

v∈�
(rv − r ′

v )2 � 2p−h+2 and Eq. (1) can thereby be

obtained.

III. CONCLUSION

In summary, our QHE scheme encodes the quantum input

using random codes, encrypts and decrypts via a secret permu-

tation, and allows the evaluator to compute a constant number

of non-Clifford (T ) gates on the encrypted data. Since the en-

crypted quantum ciphertexts are almost indistinguishable, the

evaluator is essentially oblivious to the quantum input, which

gives our scheme its information-theoretic security. Moreover,
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our scheme trivially allows homomorphisms of arbitrary re-

versible linear Boolean circuits using the homomorphisms of

CNOT and X gates. Our scheme may also offer robustness to

noise when the encrypter holds purifications to the maximally

mixed states used in the random encodings and performs a

recovery operation dependent on the classical measurement

outcomes on the encrypter’s ancillary registers, and we leave

this for future study. We would also like to point out that it

is sometimes preferable to use a quantum one-time-padding

scheme as opposed to our scheme for delegated computation,

for example, when no T gates need to be performed and when

all the input states are stabilized by Clifford gates.

ACKNOWLEDGMENTS

The authors thank Anne Broadbent and Stacey Jeffery for

useful correspondence about quantum homomorphic encryp-

tion. J.F.F. also thanks Renato Renner for useful discussions

related to security definitions. This material was based on

research supported in part by the Singapore National Research

Foundation under NRF Award No. NRF-NRFF2013-01. J.F.F.

and S.-H.T. acknowledge support from the Air Force Office of

Scientific Research under AOARD Grant No. FA2386-15-1-

4082.

APPENDIX: SECURITY PROOF

Here we provide a detailed proof of Eq. (1). We begin by

reviewing some terminology.

In our scheme, qubits are arranged on a grid with p

rows and 2n columns. In the encryption procedure, the

columns of 2n qubits are randomly permuted. Hence we

consider S2n, a symmetric group of order 2n, and its rep-

resentation νp,2n. For every permutation π ∈ S2n and every

A =
∑p

x=1

∑2n
y=1 ax,y |x〉〈y| ∈ Mp,2n, we let νp,q : S2n →

M(C2np ) be a representation of S2n such that for every matrix

representation Pπ = νp,q (π ) of π ∈ S2n we have

PπσAP †
π =

2n
⊗

y=1

⎛

⎝

p
⊗

y=1

σax,π (y)

⎞

⎠. (A1)

The matrices Pπ are the permutation operations that permute

the columns in our scheme. With these permutation opera-

tions, we can define the set of Pauli matrices generated from

all possible column permutations of a particular Pauli matrix

σA, given by

SA = {PπσAP †
π : π ∈ S2n}. (A2)

The symmetrized Pauli matrix associated with the Pauli ma-

trix σA is the sum of all the terms in SA given explicitly by

σ̃A =
∑

τ∈SA
τ .

Equation (1) provides an upper bound on the trace norm of

the difference between two encrypted inputs to our scheme,

given by ρ̃ and ρ̃ ′, respectively. Here ρ̃ and ρ̃ ′ are uniform

mixtures of all column permutations of the unencrypted inputs

ρ and ρ ′, respectively, where

ρ̃ =
1

(2n)!

∑

π ∈ S2n

PπρP †
π , ρ̃ ′ =

1

(2n)!

∑

π ∈ S2n

Pπρ ′P †
π .

(A3)

The matrix ρ̃ − ρ̃ ′ admits the spectral decomposition

ρ̃ − ρ̃ ′ =
∑

i

λi |ψi〉〈ψi | , (A4)

where {|ψi〉} is an eigenbasis of ρ̃ − ρ̃ ′. Now let

M =
∑

i sgn(λi ) |ψi〉〈ψi |, where sgn(x) = 1 if x � 0 and

sgn(x) = −1 if x < 0. From the definition of the trace norm,

we have ‖ρ̃ − ρ̃ ′‖tr = Tr[M (ρ̃ − ρ̃ ′)] because

‖ρ̃ − ρ̃ ′‖tr = Tr |ρ̃ − ρ̃ ′| = Tr[

√

(ρ̃ − ρ̃ ′)2]

=
∑

i

|λi | =
∑

i

sgn(λi )λi

= Tr[M (ρ̃ − ρ̃ ′)]. (A5)

The trace norm is non-negative and hence equal to its absolute

value. Thus,

‖ρ̃ − ρ̃ ′‖tr =| Tr[M (ρ̃ − ρ̃ ′)]|, (A6)

and using the cyclic property of the trace, we get

‖ρ̃ − ρ̃ ′‖tr =| Tr[M̃ (ρ − ρ ′)]|, (A7)

where

M̃ =
1

(2n)!

∑

π ∈ S2n

PπMP †
π . (A8)

The decomposition of M̃ into the symmetrized Pauli matrices

and the decomposition of the traceless quantity ρ − ρ ′ into the

usual Pauli matrices can be substituted into Eq. (A7) to yield

‖ρ̃ − ρ̃ ′‖tr =

∣

∣

∣

∣

∣

Tr

(

∑

A∈S

aAσ̃A

∑

v∈�

rv − r ′
v

22np
σϕ(v)

)
∣

∣

∣

∣

∣

. (A9)

Recall that � is the set of all nonzero column vectors of length

p with components from the set {0, 1, 2, 3}, and for every

v ∈ �, ϕ(v) is a matrix with 2n columns where the first n

columns are identical to v and the remaining n columns are

zero vectors. Using the orthogonality of the Pauli operators

on Eq. (A9) yields

‖ρ̃ − ρ̃ ′‖tr =

∣

∣

∣

∣

∣

Tr

(

∑

v∈�

aϕ(v)

rv − r ′
v

22np
σ 2

ϕ(v)

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

v∈�

aϕ(v)(rv − r ′
v )

∣

∣

∣

∣

∣

. (A10)

Applying the Cauchy-Schwarz inequality on the above yields

‖ρ̃ − ρ̃ ′‖tr �

√

∑

v∈�

a2
ϕ(v)

√

∑

v∈�

(rv − r ′
v )2. (A11)

Now define the input states on only the first column of qubits

to be

τ =
I⊗p +

∑

v∈�
rvσv

2p
, τ ′ =

I⊗p +
∑

v∈�
r ′

vσv

2p
. (A12)

The maximum eigenvalue of each of these states is 2−h, where

h is their minimum entropies. We can use these states to obtain

an upper bound on
∑

v∈�
(rv − r ′

v )2. Note that

Tr[(τ − τ ′)2] � ‖τ − τ ′‖tr‖τ − τ ′‖∞, (A13)
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where ‖τ − τ ′‖∞ denotes the ∞-norm on the eigenvalues

of τ − τ ′. Since ‖τ − τ ′‖tr � ‖τ‖tr + ‖τ ′‖tr � 1 + 1 = 2 and

‖τ − τ ′‖∞ � ‖τ‖∞ + ‖τ ′‖∞ = 2−h + 2−h = 2−h+1, we get

Tr[(τ − τ ′)2] � 2−h+2. (A14)

Note also that by the orthogonality of the Pauli operators,

Tr[(τ − τ ′)2]

= Tr

[(

∑

v∈�

(rv − r ′
v )2−pσv

)(

∑

w∈�

(rw − r ′
w )2−pσw

)]

= Tr

(

∑

v∈�

(rv − r ′
v)22−2pσ 2

v

)

=
∑

v∈�

(rv − r ′
v)22−p. (A15)

Hence
√

∑

v∈�

(rv − r ′
v)2 � 2

√
2p−h. (A16)

To obtain an upper bound for
√

∑

v∈�
a2

ϕ(v), we obtain

upper and lower bounds on Tr(M̃2). Now we obtain an

upper bound for Tr(M̃2). By Hölder’s inequality, Tr(M̃2) �

‖M̃‖tr‖M̃‖∞. Convexity of the norms then implies that

Tr(M̃2) � ‖M‖tr‖M‖∞ = 22np. (A17)

The lower bound on Tr(M̃2) requires us to expand M̃ in terms

of the symmetrized Pauli operators. Then

Tr(M̃2) = Tr

(

∑

A,A′∈S

aAaA′ σ̃Aσ̃A′

)

. (A18)

By the orthogonality of the symmetrized Pauli operators and

linearity of the trace, we get

Tr(M̃2) = Tr

(

∑

A∈S

a2
A(σ̃A)2

)

=
∑

A∈S

a2
A Tr((σ̃A)2)

�
∑

v∈�

a2
ϕ(v) Tr[(σ̃ϕ(v))

2]. (A19)

Now σ̃ϕ(v) is the sum of
(

2n

n

)

Pauli operators, because there

are
(

2n

n

)

ways to permute the 2n columns of a matrix with n

identical columns and n columns of zeros. Thus Tr(σ̃ 2
ϕ(v)) =

(

2n

n

)

2np and

Tr(M̃2) �
∑

v∈�

a2
ϕ(v)

(

2n

n

)

22np. (A20)

Equations (A17) and (A20) together imply that

√

∑

v∈�

a2
ϕ(v) �

(

2n

n

)−1/2

. (A21)

Hence

‖ρ̃ − ρ̃ ′‖tr � 2
√

2p−h

(

2n

n

)−1/2

. (A22)

The trace distance between two states is half of the trace

norm of the difference between the two states and hence

ǫ �
√

2p−h(
2n

n
)−1/2.
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