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Abstract—Given that approximate quantum error-correcting
(AQEC) codes have a potentially better performance than perfect
quantum error correction codes, it is pertinent to quantify their
performance. While quantum weight enumerators establish some
of the best upper bounds on the minimum distance of quantum
error-correcting codes, these bounds do not directly apply to AQEC
codes. Herein, we introduce quantum weight enumerators for am-
plitude damping (AD) errors and work within the framework of
approximate quantum error correction. In particular, we introduce
an auxiliary exact weight enumerator that is intrinsic to a code
space and moreover, we establish a linear relationship between the
quantum weight enumerators for AD errors and this auxiliary exact
weight enumerator. This allows us to establish a linear program
that is infeasible only when AQEC AD codes with corresponding
parameters do not exist. To illustrate our linear program, we
numerically rule out the existence of three-qubit AD codes that are
capable of correcting an arbitrary AD error.

I. INTRODUCTION

The distance of an error-correcting code is of central im-

portance in coding theory, because it quantifies the number of

adversarial errors that can be corrected. For codes of fixed length

and rate, upper and lower bounds on their distance can be

determined. The best lower bounds can be obtained from various

randomized code constructions that yield the Gilbert-Varshamov

bound [1] and this is also true in the quantum case [2], [3], [4]).

On the contrary, markedly different techniques are used to derive

upper bounds. In classical coding theory, weight enumerators

count the weight distribution of codewords in a code [1]. The

MacWilliams identity establishes a linear relationship between

the weight enumerators of a code and that of its dual code. This

allows one to obtain upper bounds on the distance of codes.

Further extensions of this technique leads to the celebrated linear

programming bounds [5] and their generalizations [6].

The notion of weight enumerators in the quantum setting is

less obvious, because quantum codes on n qubits are subspaces

of C2n , and these subspaces do not in general admit a combina-

torial interpretation. Shor and Laflamme nonetheless introduced a

meaningful definition for weight enumerators for quantum codes

[7] in terms of the codes’ projectors P and a nice error basis

for matrices. In particular, the Shor-Laflamme (SL) quantum

weight enumerators are sums of terms of the form |tr(EP )|2 and

tr(EPE†P ), respectively, where the sums are performed over all

Paulis E of a given weight. We will call the vector of these

enumerators labeled by Pauli weights the A-type and B-type

quantum weight enumerators, respectively. Shor and Laflamme

showed that the A- and B-type quantum weight enumerators

are still linearly related in a way reminiscent of the classical

relationship [8]. The relation between the two enumerators is the

quantum analogue of the famous MacWilliams identity. Variations

on the SL enumerators were then studied by Rains, which allowed

better bounds on the parameters of quantum codes [9]. Because

of the existence of a linear relationship between the two types

of enumerators, linear programming techniques can be applied

to establish upper bounds on the minimum distance for (small)

quantum stabilizer codes [10]. Algebraic linear programming

bounds based on the MacWilliams identity, such as the Singleton,

Hamming, and the first linear programming bounds, are also

derived for general quantum codes [11]. These results have been

extended to entanglement-assisted quantum stabilizer codes [12],

[13] and quantum data-syndrome codes [14]. Also there is a

MacWilliams identity for (entanglement-assisted) quantum con-

volutional codes [15].

Although the distance of a quantum code is a meaningful metric

with respect to adversarial noise, estimates on the performance

of a quantum code derived from the distance under specific

noise models are often overly pessimistic. For instance, while

a minimum of five qubits is needed to perfectly correct an

arbitrary error [7], four qubits suffice to correct a single amplitude

damping (AD) error [16]. Quantum codes designed specifically to

combat AD errors are called AD codes and are well-studied [16],

[17], [18], [19], [20], [21], [22], [23], [24]. However, existing

quantum weight enumerators give no direct result regarding

limits on the ultimate performance of AD codes. To better

understand these fundamental limits, it would be advantageous to

have MacWilliams-type identities for different quantum weight

enumerators defined for various noisy quantum channels. In

spite of this, finding suitable generalizations of the quantum

weight enumerators to specialized noise models remains an open

problem.

There are several challenges in generalizing linear program-

ming bounds for quantum codes to allow the consideration of AD

errors. First, quantum weight enumerators only describe quantum

error correction in the perfect setting [9], and therefore cannot

describe quantum codes designed for the AD channel that often

approximately satisfy the Knill-Laflamme perfect quantum error

correction conditions [25]. Second, while the Pauli errors used to

express quantum weight enumerators form a nice error basis, the

Kraus operators of an AD channel do not span the matrix space

on all of the qubits.

In this work, we overcome the above challenges, and extend

the theory of quantum weight enumerators to deal with approx-

imate quantum error-correcting (AQEC) codes and AD errors.

Namely, we generalize the two SL quantum weight enumerators

to address quantum codes that approximately correct AD errors.



While we do not have a MacWilliams identity that establishes a

direct linear relationship between these two generalized quantum

weight enumerators, we do establish an indirect linear relationship

between them. To enable this, we introduce an auxiliary exact

weight enumerator with respect to Pauli operators, which is exact

in the sense that it depends explicitly on the matrix decomposition

of the code projector P in the Pauli basis. We thereby show linear

connections between this enumerator and our two generalized

quantum weight enumerators. This allows us to establish a linear

program that is infeasible only when AQEC AD codes do not

exist. To illustrate our linear program, we numerically rule out

the existence of three-qubit AQEC AD codes that are capable

of correcting an arbitrary AD error. Our linear program cannot

eliminate the existence of a four-qubit code that can correct one

AD error and this agrees to the four-qubit AD code proposed

in [16].

This paper is organized as follows. In the next section, we

review notation for Pauli operators, amplitude damping channels,

and review quantum weight enumerators. In Sec. III, we introduce

our quantum weight enumerators specialized to deal with AD

errors and approximate quantum error correction. In Sec. IV,

we introduce auxiliary weight enumerators, and in Sec. V, we

propose connection matrices that establish linear relationships

between our quantum weight enumerators and the auxiliary

weight enumerators. In Sec. VI, we formulate a linear program

that is infeasible only when the corresponding AD-code does not

exist. We conclude our results and discuss the potential for further

work in Sec. VII,

II. PRELIMINARIES

A. Pauli Operators

A single-qubit state space is a two-dimensional complex Hilbert

space C2, and a multiple-qubit state space is simply the tensor

product space of single-qubit spaces. The Pauli matrices

I2 =

[

1 0
0 1

]

, X =

[

0 1
1 0

]

, Z =

[

1 0
0 −1

]

, Y = iXZ

form a basis of the linear operators on a single-qubit state space.

Let

Gn = {M1 ⊗M2 ⊗ · · · ⊗Mn : Mj ∈ {I2, X, Y, Z}},
which is a basis of the linear operators on the n-qubit state space

C2n . We denote the weight of any element of Gn as wt (E), which

is the number of Mj’s that are non-identity matrices.

B. Amplitude Damping Channel

Amplitude damping (AD) errors model energy relaxation in

quantum harmonic oscillator systems and photon loss in photonic

systems. By ensuring that each quantum harmonic oscillator

couples identically to a unique bosonic bath, in the low tem-

perature limit, the effective noise model can be described by

an AD channel. When quantum information lies in a qubit, the

corresponding AD channel Nγ models energy loss in a two-level

system, where γ is the probability that an excited state relaxes to

the ground state, and Nγ has two Kraus operators A0 and A1,

where

A0 =

[

1 0
0

√
1− γ

]

, A1 =

[

0
√
γ

0 0

]

.

When energy loss occurs independently and identically in an n-

qubit system, the corresponding noisy channel can be modeled

with Nn,γ = N⊗n
γ . The set of all Kraus operators of Nn,γ can

be written as

K = {Ax , Ax1
⊗ · · · ⊗ Axn

: x ∈ {0, 1}n}. (1)

Since the Kraus operator A1 models energy loss on one qubit, it

is useful to know how many times the Kraus operator A1 occurs

in Ax. Hence we define the following property of Ax.

Definition 1. The weight of Ax is defined as wt (x).

The weight of Ax counts the number of qubits where

Ax induces energy loss. For example, wt (A1 ⊗A0 ⊗A1) =
wt (A101) = 2, which corresponds to energy loss in two qubits.

Using this notion of weight, we partition the set of Kraus

operators K accordingly. Namely, by denoting

Ki = {E ∈ K : wt (E) = i}, (2)

we have K = K0 ∪ · · · ∪Kn. In this terminology, a code corrects

t errors perfectly if all the errors in Ki for i ≤ t satisfy the

Knill-Laflamme quantum error correction criterion [25].

C. Quantum Codes and Weight Enumerators

An ((n,M)) quantum code Q is an M -dimensional subspace

of C2n . Let P denote the codespace projector of Q. Shor and

Laflamme define two weight enumerators {ASL

i } and {BSL

i } of

Q by

ASL

i =
1

M2

∑

E∈Gn,wt(E)=i

Tr (EP )Tr
(

E†P
)

, (3)

and

BSL

i =
1

M

∑

E∈Gn,wt(E)=i

Tr
(

EPE†P
)

, (4)

for i = 0, . . . , n [8]. Note that Gn is a basis for the linear

operators on C2n . These two weight enumerators will be called

SL enumerators in this article. The power of the SL enumerators

is that the perfect quantum error correction criterion of Knill and

Laflamme are equivalent to certain linear constraints on these

SL enumerators. From this context, perturbations to the Knill-

Laflamme quantum error correction criterion can be understood

by directly perturbing linear constraints on quantum weight

enumerators.

III. QUANTUM WEIGHT ENUMERATORS FOR AMPLITUDE

DAMPING ERRORS

In what follows, we generalize the SL enumerators to allow

direct consideration of AD errors. The above-mentioned key

technical difficulty is inability of the corresponding set of Kraus

operators K to span the space of linear operators on C2n . We

nonetheless can generalize SL enumerators to deal with AD

channels. Our new enumerators are vectors with coefficients

Ai =
1

(trP )2

∑

E∈Ki

tr(EP )tr(E†P ), i = 0, . . . , n, (5)

Bi =
1

trP

∑

E∈Ki

tr(EPE†P ), i = 0, . . . , n. (6)

It can be shown, as in [11] that

Bi ≥ Ai, i = 0, . . . , n. (7)

Furthermore, since the code projector P is Hermitian and we have

the cyclic property of the trace, it is clear that tr(EP )tr(E†P ) =



tr(EP )tr(P †E†) = |tr(EP )|2. This implies that Ai is always a

sum of non-negative terms, and hence we must have

Ai ≥ 0, 0 ≤ i ≤ n. (8)

Now the sum of B type enumerators retains interpretation as the

fidelity of a quantum code after the action of the AD channel

without error correction. Hence

B0 + · · ·+Bn ≤ 1. (9)

Since the only Kraus operator in K0 has a minimum singular

value of (1− γ)n/2 for A0, we have the lower bound

A0 ≥ (1 − γ)n. (10)

This is reminiscent of the scenario for SL weight enumerators,

where we have ASL

0 = 1.
Furthermore, it is easy to see that every Bi is at most of

order O(γi), Since the operator norm of Kraus operators from

Ki is γi/2, the operator norm of EPE† for any E ∈ Ki is at

most γitr(P ). Hence it follows from the Hölder inequality on the

Hilbert-Schmidt inner product that

|tr(EPE†P )| = |〈EPE†, P 〉| ≤ ‖EPE†‖‖P‖1,
where ‖ · ‖1 denotes the trace norm and ‖ · ‖ denotes the operator

norm, which is the maximum singular value of a matrix. Thus by

counting the number of terms in Ki, we have

Bi/γ
i ≤

(

n

i

)

. (11)

In what follows, we use the Dirac ket notation to represent weight

enumerators as in [15]. Let {|0〉, . . . , |n〉} be an orthonormal basis

of Rn+1. The SL enumerators of Q for AD channels are

|A〉 = A0|0〉+ · · ·+An|n〉,
|B〉 = B0|0〉+ · · ·+Bn|n〉. (12)

In this paper, we define approximate quantum error correction

using the language of quantum weight enumerators. In the case

of perfect quantum error correction, for a quantum code that has

minimum distance d, we must have

BSL

i −ASL

i = 0, i = 0, . . . , d− 1.

These equations can be relaxed to yield the following definition

of approximate quantum error correction for AD channels.

Definition 2. An ((n,M)) quantum code is called a (t, c)-AD

code if its quantum weight enumerators satisfy the constraints

Bi −Ai ≤ cγt+1, i = 0, . . . , t. (13)

Example 1. The four-qubit code in [16] has two logical code-

words

|0〉L =
1√
2
(|0000〉+ |1111〉) ,

|1〉L =
1√
2
(|0011〉+ |1100〉) .

It has weight enumerators

A0 = γ4/64− γ3/4 + 5γ2/4− 2γ + 1;

A1 = A2 = A3 = 0;

A4 = γ4/64.

B0 = γ4/16− γ3/4 + 5γ2/4− 2γ + 1;

B2 = 3γ4/8− 3γ3/4 + 3γ2/4;

B4 = γ4/16;

B1 = B3 = 0.

Therefore, this code cannot be a (2, c)-AD code for any c > 0,

and is consistent with the fact that this code corrects a single AD

error [16].

Example 2. The weight enumerators of the nine-qubit Shor

code are as follows. Note that (7) holds here. In addition, by

Definition 2, this code cannot correct AD errors of weight three.

A0 = B0 = 1− 9γ/2 + 153γ2/16

− 399γ3/32 + 351γ4/32 +O(γ5);

Ai = Bi = 0, i = 1, 2, 4, 5, 7, 8;

A3 = A9 = 0;

B3 = 3γ3/4 +O(γ4);

B9 = γ9/32;

A6 = 3γ6/16 +−9γ7/32 + 45γ8/256 +O(γ9);

B6 = 3γ6/16− 9γ7/32 + 9γ8/32 +O(γ9).

Since the leading order of B3 −A3 in γ is cubic, the Shor code

cannot be a (3, c)-AD code for any c > 0. Hence, this is consistent

with the fact that the Shor code corrects two AD errors [26].

IV. AUXILIARY WEIGHT ENUMERATORS

Without the existence of a MacWilliams identity, we can

nonetheless establish a linear relationship between |A〉 and |B〉 by

introducing additional vectors that reside on an auxiliary space.

We call these vectors auxiliary exact weight enumerators or

auxiliary weight enumerators for short. Now the projector P of

a quantum code, when decomposed in the Pauli basis, can be

written as

P =
∑

σ∈Gn

tr(σP )

2n
σ. (14)

Our auxiliary weight enumerator depends on the Pauli decompo-

sition (14), and is given by

|AUX〉 = |φ〉 ⊗ |φ〉, (15)

where

|φ〉 =
∑

σ∈Gn

tr(σP )|σ〉. (16)

The auxiliary weight enumerator is exact in the sense that it

encompasses complete information about the quantum code’s

projector. We emphasize that the state |φ〉 depends only on the

code’s projector P . Hence |φ〉 is independent of the parameters of

the AD channel. Since tr(σP )tr(τP ) is invariant under the swap

of σ and τ , it follows that

Π|AUX〉 = |AUX〉, (17)

where

Π =
∑

σ,τ∈Gn

|σ〉〈τ | ⊗ |τ〉〈σ|. (18)

We later exploit this permutation symmetry to introduce addi-

tional constraints in our linear programming bound for amplitude

damping channels.



V. CONNECTION MATRICES

To establish the connection between our auxiliary weight

enumerator with the two generalized weight enumerators, we

define matrices that relate the A- and B-type generalized weight

enumerators with the auxiliary weight enumerator as follows:

MA =

n
∑

i=0

∑

E∈Ki

∑

σ,τ∈Gn

2−2ntr(Eσ)tr(E†τ)|i〉〈σ|〈τ |, (19)

MB =

n
∑

i=0

∑

E∈Ki

∑

σ,τ∈Gn

2−2ntr(EσE†τ)|i〉〈σ|〈τ |. (20)

The matrices MA and MB establish an indirect linear relationship

between the generalized enumerators |A〉 and |B〉 via an addi-

tional linear relationship with the auxiliary weight enumerator.

Namely, we have the following linear relationships.

Lemma 3. The following matrix identities hold.

MA|AUX〉 = (trP )2|A〉, (21)

MB|AUX〉 = trP |B〉. (22)

Proof. By expanding the code projector P in the Pauli basis, we

get

|A〉 = 1

(trP )2

n
∑

i=0

∑

E∈Ki

2−2n
∑

σ,τ∈Gn

tr(Eσ)tr(E†τ)

× tr(σP )tr(τP )|i〉. (23)

Also we can see that

MA|AUX〉 =
n
∑

i=0

∑

E∈Ki

σ,τ∈Gn

tr(Eσ)tr(E†τ)

22n
|i〉tr(σP )tr(τP ). (24)

Hence (21) holds.

To obtain the second result, we also expand the code projector

P in the Pauli basis to get

|B〉 = 1

tr(P )

n
∑

i=0

∑

E∈Ki

2−2n
∑

σ,τ∈Gn

tr(EσE†τ)tr(σP )tr(τP )|i〉.

(25)

Next, note that

MB|AUX〉 =
n
∑

i=1

∑

E∈Ki

σ,τ∈Gn

2−2ntr(EσE†τ)|i〉tr(σP )tr(τP ). (26)

The result MB|AUX〉 = tr(P )|B〉 then follows.

While we do not have a direct linear relationship between the

generalized quantum weight enumerators |A〉 and |B〉, Lemma 3

establishes a linear relationship between each generalized quan-

tum weight enumerator and the auxiliary weight enumerator. This

thereby establishes an indirect linear relationship between |A〉 and

|B〉, which later allows us to obtain linear programming bounds

for amplitude damping codes.

It is also important to note the following properties of connec-

tion matrices.

1) The connection matrices MA and MB are devoid of in-

formation content about the code, because they are both

independent of the code projector P .

2) The connection matrices MA and MB depend on the

damping parameter γ of AD channel.

|AUX〉

|A(γ1)〉

|B(γ4)〉

|B(γ2)〉

|B(γ3)〉

|A(γ3)〉

|A(γ4)〉

|A(γ2)〉|B(γ1)〉

M
(γ1)
A M

(γ2)
B

M
(γ4)
B M

(γ3)
A

M
(γ1)
B

M
(γ2)
A

M
(γ3)
BM

(γ4)
A

Fig. 1. The relationship between various enumerators is depicted here. Every A
and B-type enumerator for differing values of AD parameter γi relates linearly
to the same auxiliary enumerator.

VI. LINEAR PROGRAMMING BOUNDS

From the above discussion, the weight enumerators |A〉 and

|B〉 of a (t, c)-AD code must satisfy (13), (21), and (22). We

formulate a linear program with a constant objective function, and

find non-negative variables A0, . . . , An, B0, . . . , Bn that belong

to a particular feasible region. The feasibility problem of our

linear program is then equivalent to the following.

Find A0, . . . ,An, B0, . . . , Bn

subject to (trP )2|A〉 = Mwe

A |AUX〉
trP |B〉 = Mwe

B |AUX〉
(Bi −Ai)/γ

t+1 ≤ c, 0 ≤ i ≤ d− 1

Bi/γ
i ≤

(

n

i

)

, 0 ≤ i ≤ n

B0 + · · ·+Bn ≤ 1

Ai ≥ 0, 0 ≤ i ≤ n

Π|AUX〉 = |AUX〉. (27)

Since integer programs are hard to solve in general, our feasibility

conditions are attractive because they have no integer constraints,

in contrast to many other linear programming bounds for stabilizer

codes [10], [12], [13], [14]. Hence, we have a linear program

as opposed to an integer program. However, one may wonder

whether such a linear program is sufficiently constrained to be

potentially infeasible. We demonstrate numerically that our linear

program can be infeasible, by analyzing the potential of using

three qubits to correct a single AD error. To do this, we have an

additional observation that our linear program is parameterized

by γ. Since a (t, c)-AD code is defined for an arbitrary γ, we

can concatenate the linear constraints for various values of γ.

Crucially, constraints for different values of γ are related because

|AUX〉 is independent of γ. We illustrate the linear dependence of

all of our linear constraints in Fig. 1.

To determine if our concatenated linear program is feasible,

we code up the linear constraints in the Matlab solver cvx,

and use the algorithm SDPT3. In the linear constraints of (27),

we write the monomials of γ as denominators. This normalizes

our constraints so that a numerical solver can be numerically

stable even for small values of γ. Also, when coding up the linear



constraints of (27) in a solver, we do not explicitly construct

the permutation matrix Π because it is much too big. Rather we

specify its implied linear constraints directly into the optimizer

environment for our linear program.

In our numerical study, we analyze the possibility of correcting

a single AD error using three qubits. We obtain mainly no-go

results on the existence of a three-qubits code that corrects a

single AD error. For this, we consider four different values of

γ in the construction of our linear program. More precisely, we

numerically find the maximum c for which the convex solver

returns a result that says that the linear program is infeasible.

Example 3. For n = 3, M = 2, t = 1, we rule out c = 9.8×104

using γ = 0.1, 0.05, 0.01, 0.0001.

VII. DISCUSSIONS

In this paper, we showed that quantum weight enumerators can

be generalized to the setting of AQEC AD codes. Key to our anal-

ysis is our introduction of auxiliary weight enumerators, which

allows us to establish an indirect linear relationship between the

generalized quantum weight enumerators.

As it stands, the auxiliary weight enumerator is a vector of

size 42n in the number of qubits n. If we restrict our attention to

stabilizer codes, this size potentially can be greatly reduced. This

is because the representation of the code projectors of stabilizer

codes in the Pauli basis can be written entirely in terms of the

code’s stabilizers. Since the number of stabilizers for an [[n, k]]
code is 2n−k, this number is far fewer than 42n. In view of this,

we will discuss the extent in which the connection matrices and

auxiliary weight numerators can be compressed in a subsequent

work. This will make tractable exploration of the performance of

larger sized codes.
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