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Permutation-invariant codes encoding more than one qubit
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A permutation-invariant code on m qubits is a subspace of the symmetric subspace of the m

qubits. We derive permutation-invariant codes that can encode an increasing amount of quantum
information while suppressing leading order spontaneous decay errors. To prove the result, we use
elementary number theory with prior theory on permutation invariant codes and quantum error
correction.

The promise offered by the fields of quantum cryp-
tography [1, 2] and quantum computation [3] has fueled
recent interest in quantum technologies. To implement
such technologies, one needs a way to reliably transmit
quantum information, which is inherently fragile and of-
ten decoheres because of unwanted physical interactions.
If a decoherence-free subspace (DFS) [4] of such inter-
actions were to exist, encoding within it would guaran-
tee the integrity of the quantum information. Indeed,
in the case of the spurious exchange couplings [5], the
corresponding DFS is just the symmetric subspace of the
underlying qubits. In practice, only approximate DFSs
are accessible because of small unpredictable perturba-
tions to the dominant physical interaction [6], and using
approximate DFSs necessitate a small amount of error
correction. When the approximate DFS is the symmet-
ric subspace, permutation-invariant codes can be used to
negate the aforementioned errors [7–9]. However, as far
as we know, all previous permutation-invariant codes en-
code only one logical qubit [7–9]. One may then wonder if
there exist permutation-invariant codes that can encode
strictly more quantum information than a single qubit
whilst retaining some capability to be error-corrected.

The first example of a permutation-invariant code
which encodes one qubit into 9-qubits while being able to
correct any single qubit error was given by Ruskai over a
decade ago [7]. A few years later, Ruskai and Pollatshek
found 7-qubit permutation invariant codes encoding a
single qubit which correct arbitrary single qubit errors [8].
Recently permutation-invariant codes encoding a single
qubit into (2t+ 1)2 qubits that correct arbitrary t-qubit
errors has been found [9]. Here, we extend the theory of
permutation-invariant codes. Our permutation-invariant
code C has as its basis vectors the logical 1 of D distinct
permutation invariant codes given by [9], where each such
code encodes only a single qubit. Surprisingly, this sim-
ple construction can yield a permutation-invariant code
encoding more than a single qubit while correcting spon-
taneous decay errors to leading order.

Permutation-invariant codes are particularly useful in
correcting errors induced by quantum permutation chan-

nels with spontaneous decay errors, with Kraus decom-
position N (ρ) = A(P(ρ)) =

∑

α,β AβPαρP
†
αAβ , where P

and A are quantum channels satisfying the completeness
relation

∑

α P
†
αPα =

∑

β A
†
βAβ = 1 and 1 is the identity

operator on m qubits. The channel P has each of its
Kraus operators Pα proportional to eiθαâα , where θα is
the infinitesimal parameter and the infinitesimal genera-
tor âα is any linear combination of exchange operators.
By a judicious choice of θα and âα, the channel P can
model the stochastic reordering and coherent exchange
of quantum packets as well as out-of-order delivery of
classical packets [10]. The channel A on the other hand
models spontaneous decay errors, otherwise also known
as amplitude damping errors, where an excited state in
each qubit independently relaxes to the ground state with
probability γ. Our permutation-invariant code is inher-
ently robust against the effects of channel P , and can
suppress all errors of order γ introduced by channel A,
and is hence approximately robust against the composite
noisy permutation channel N .
We quantify the error correction capabilities of our

permutation-invariant codes C with code projector Π be-
ginning from the approximate quantum error correction
criterion of Leung et al. [11]. Since the Kraus operators
Pα of the permutation channel leave the codespace of any
permutation-invariant code unchanged, it suffices only to
consider the effects of the amplitude damping channel
A. The optimal entanglement fidelity between an ad-
versarially chosen state ρ in the permutation-invariant
codespace and error-corrected noisy counterpart is just

1− ǫ = sup
R

inf
ρ
Fe(ρ,R ◦ A), (1)

where ǫ is the the worst case error [9] that we need to
suppress. Lower bounds for the above quantity can be
found using various techniques from the theory of op-
timal recovery channels [9, 12–17], but we restrict our
attention to the simpler (but suboptimal) approach of
[9, 11]. Suppose that we can find a truncated Kraus
set Ω [18] of the channel A such that for every distinct
pair of A,B ∈ Ω, the spaces AC and BC are pairwise
orthogonal. Then the truncated recovery map of Leung
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et al. RΩ,C(µ) :=
∑

A∈ΩΠU †
AµUAΠ is a valid quantum

operation, where UA is the unitary in the polar decompo-
sition of AΠ = UA

√
ΠA†AΠ. Since RΩ,C is now a special

instance of a recovery channel in Eq. (1), we trivially
get ǫ ≤ 1− infρ Fe(ρ,RΩ,C ◦ A). As explained in [9], the
analysis of Leung et al. [11] allows one to show that

Fe(ρ,RΩ,C ◦ A) ≥
∑

A∈Ω

λA, (2)

where λA = min |ψ〉∈C
〈ψ|ψ〉=1

〈ψ|A†A|ψ〉 quantifies the worst

case deformation of each corrupted codespace AC.
The symmetric subspace of m qubits is central to the

study of permutation-invariant codes, and has a conve-
nient choice of basis vectors, namely the Dicke states

[9, 19–21]. A Dicke state of weight w, denoted as |Dmw 〉,
is a normalized permutation-invariant state on m qubits
with a single excitation on w qubits. Our code C is the
span of the logical states |dL〉 for d = 1, . . . , D, and these
states can be written as superposition over Dicke states,
with amplitudes proportional to the square root of the
binomial distribution. Namely for positive integers nd
and gd,

|dL〉 =
∑

j∈Id

√

(

nd

j

)

2nd−1
|Dmgdj〉 (3)

and the set Id comprises of the odd integers from 1 to
2
⌊

nd−1
2

⌋

+ 1.. The states |dL〉, A|dL〉 can be made to be
pairwise orthogonal via a judicious choice of constraints
on the positive integer parameters n1, . . . , nD, g1, . . . gD
and m.
We elucidate the case for D ≥ 3 since permutation

invariant codes encoding only one qubit [9] are already
known. Here, we require n1, . . . , nD to be pairwise co-
prime integers with n1 ≤ · · · ≤ nD, and define their
product to be N = n1 . . . nD. The length of our code is a
polynomial in N , given by m = N q for any integer q ≥ 3.
Moreover we set gd = N/nd so that for distinct d and
d′, the greatest common divisor of gd and gd′ is precisely
gcd(gd, gd′) = N/(ndnd′) > 1, so that gd and gd′ are not
coprime. Furthermore, we require that gd ≥ 3, nd ≥ 4.
The reason for requiring gd and gd′ to not be co-

prime is that it allows the inner products 〈dL|d′L〉 and
〈dL|A†B|d′L〉 to be identically zero for distinct d and d′

and for any operators A,B acting nontrivially on strictly
less than mind gd

2 qubits when N is even. To see this, we
analyze the linear Diophantine equation

xd,d′gd = yd,d′gd′ + s, (4)

with s = 0,±1. This linear Diophantine equation has
a solution (xd,d′ , yd,d′) if and only if s is a multiple of
gcd(gd, gd′). Having gcd(gd, gd′) > 1 ensures that Eq. (4)
has no solution for non-zero s such that |s| < gcd(gd, gd′).
When s = 0, integer solutions (xd,d′ , yd,d′) where 0 <

xd,d′gd = yd,d′gd′ < N do not exist. To see this, note that
the minimum positive solutions of Eq. (4) are precisely
xd,d′ = gd′

gcd(gd,gd′ )
and yd,d′ = gd

gcd(gd,gd′)
, and hence we

must require that gdgd′
gcd(gd,gd′ )

< N be an invalid inequality.

But our construction gives gdgd′
gcd(gd,gd′)

= gdgd′ndnd′

N = N .

This immediately implies several orthogonality condi-
tions on the states given by Eq. (3) for large n1.
We use a sequence of large consecutive primes and an

even number to construct our sequence of coprimes. We
let n1 = pk, where pk denotes the k-th prime, and let
n2 = n1+1. We also let nj = pk+j−2 for all j = 3, . . . , D,
which gives us our D coprime integers. The length of our
code ism = ((pk+1)(pk . . . pk+D−2))

q. In the special case
when D = 3, we can use the existence of twin primes n1

and n3 a bounded distance apart [22] (at most 600 apart
[23]), and let n2 = n1 + 1, which yields m = (n1n3(n1 +
1))q.
The oft used Kraus operators for an amplitude damp-

ing channel on a single qubit are A0 = |0〉〈0| +√
1− γ|1〉〈1| and A1 =

√
γ|0〉〈1| respectively, with γ

modeling the probability for a transition from the excited
|1〉 state to the ground state |0〉. On m qubits, the Kraus
operators of the amplitude damping channel have a ten-
sor product structure, given by Ax1

⊗ · · · ⊗ Axm
where

x1, . . . , xm = 0, 1. We focus our attention on the Kraus
operators K0 = A⊗m

0 , and Fj which applies A1 on the j-
th qubit and applies A0 everywhere else for j = 1, . . . ,m.
The choice of Kraus operators for a quantum channel is
not unique, and we can equivalently consider a subset
of the Kraus operators in a Fourier basis. Namely, for
ℓ = 1, . . . ,m, we define Kℓ = 1√

m

∑m
j=1 ω

(ℓ−1)(j−1)Fj ,

where ω = e2πi/m. We choose the set of Kraus operators
that we wish to correct to be Ω = {K0,K1, . . . ,Km}.
Now the spaces AC and BC are orthogonal for distinct

A,B ∈ Ω. Note that for ℓ, ℓ′ = 1, . . . ,m,

〈dL|K†
ℓKℓ′ |dL〉

=
1

m

m
∑

j=1

m
∑

j′=1

ω−(ℓ−1)(j−1)+(ℓ′−1)(j′−1)〈dL|F †
j Fj′ |dL〉

=

m
∑

j=1

ω(ℓ′−ℓ)(j−1)〈dL|F †
j Fj |dL〉

+
1

m

m−1
∑

d=1

m
∑

j=1

ω−(ℓ−1)(j−1)+(ℓ′−1)(j−1+d)〈dL|F †
j Fj+d|dL〉,

(5)

where the addition in the subscript is performed mod-
ulo m. Using the invariance of 〈dL|F †

j Fj |dL〉 and

〈dL|F †
j Fj′ |dL〉 for distinct j, j′ = 1, . . . ,m along with the

identity

m−1
∑

d=1

m
∑

j=1

ω−(ℓ−1)(j−1)+(ℓ′−1)(j−1+d) = (mδℓ′,1 − 1)mδℓ,ℓ′ ,
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one can simplify (5) to get

〈dL|K†
ℓKℓ′ |dL〉

=δℓ,ℓ′
(

〈dL|F †
1F1|dL〉+ (mδℓ,1 − 1)〈dL|F †

1Fm|dL〉
)

,

(6)

which completes the proof of the orthogonality of AC and
BC for distinct A,B ∈ Ω.
Now we have

〈dL|K†
0K0|dL〉 =

∑

t∈Id

(

nd

t

)

2nd−1
(1− γ)gdt

〈dL|F †
1F1|dL〉 = γ

∑

t∈Id

(

nd

t

)

2nd−1
(1− γ)gdt−1 gdt

m

〈dL|F †
1Fm|dL〉 = γ

∑

t∈Id

(

nd

t

)

2nd−1
(1− γ)gdt−1 gdt(m− gdt)

m(m− 1)
.

(7)

Using the Taylor series (1 − γ)gdt = 1 − gdtγ +
gdt(gdt−1)

2 γ2 + O(γ3) and (1 − γ)gdt−1 = 1 −
(gdt − 1)γ + O(γ2) with the binomial identities
∑nd

t=0 t
(

nd

t

)

= 2nd−1nd,
∑nd

t=0 t
2
(

nd

t

)

= 2nd−2nd(nd + 1)

and
∑nd

t=0 t
3
(

nd

t

)

= 2nd−3n2
d(nd + 3) [9, 24], we get

〈dL|K†
0K0|dL〉 = 1− N

2
γ

+

(

N2 +Ngd
8

− N

4

)

γ2 +O(γ3)

〈dL|F †
1F1|dL〉 =

N

2m
γ −

(

N2 +Ngd
4m

− N

2m

)

γ2

+O(γ3)

〈dL|F †
1Fm|dL〉 =

(

N
2 − N2+Ngd

4m

)

m− 1
γ

+
N3 + 3N2gd
8m(m− 1)

γ2

− (N2 +Ngd)
(

1 + 1
m

)

− 2N

4(m− 1)
γ2

+O(γ3). (8)

Now for all |ψ〉 ∈ C where 〈ψ|ψ〉 = 1, we can

write |ψ〉 =
∑D
d=1 ad|dL〉 such that

∑D
d=1 |ad|2 = 1 +

O(2−n1) [31]. Hence for all A ∈ Ω, 〈ψ|A†A|ψ〉 =
∑D

d=1 |ad|2〈dL|A†A|dL〉 which implies that λA ≥
mind=1,...,D〈dL|A†A|dL〉(1 +O(2−n1)). This implies that

1− ǫ ≥ 1− Ng1
4m

γ − cN2

8
γ2 +O(γ3)+O(2−n1), (9)

where

c = 1 +
2gD − g1

N
− 2

N
+

3g1
m

+
4g1
N
. (10)

Since m = N q, 1 − ǫ ≥ 1 − 1
4Nq−2 γ − cN2

8 γ2 + O(γ3) +
O(2−n1) and for fixedN and large q, the asymptotic error

is second order in γ with ǫ ∼ c′N2

8 γ2 + O(γ3)+O(2−n1),

where c′ = 1 + 2gD−g1
N − 2

N + 4g1
N .

In summary, we have generalized the construction of
permutation-invariant codes to enable the encoding of
multiple qubits while suppressing leading order sponta-
neous decay errors. These permutation-invariant codes
might allow for the construction of new schemes in phys-
ical systems, such as improved quantum communication
along isotropic Heisenberg spin-chains [25–28]. Symme-
try of error-correction codes have also recently been ex-
ploited to symmetrise prover strategies in the context of
interactive proofs [29, 30], and so the extremely high sym-
metry of the codes studied here may also have theoretical
implications.
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