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We must protect inherently fragile quantum data to unlock the potential of quantum technologies. A pertinent

concern in schemes for quantum storage is their potential for near-term implementation. Since Heisenberg

ferromagnets are readily available, we investigate their potential for robust quantum storage. We propose to

use permutation-invariant quantum codes to store quantum data in Heisenberg ferromagnets, because the ground

space of any Heisenberg ferromagnet must be symmetric under any permutation of the underlying qubits. By

exploiting an area law on the expected energy of Pauli errors, we show that increasing the effective dimension

of Heisenberg ferromagnets can improve the storage lifetime. When the effective dimension of Heisenberg

ferromagnets is maximal, we also obtain an upper bound for the storage error. This result relies on perturbation

theory, where we use Davis’ divided difference representation for Fréchet derivatives along with the recursive

structure of these divided differences. Our numerical bounds allow us to better understand how quantum memory

lifetimes can be enhanced in Heisenberg ferromagnets.

DOI: 10.1103/PhysRevB.103.144417

Introduction. Decoherence quickly renders unprotected

quantum data unreliable. To combat this, it becomes necessary

to encode quantum data into quantum error correction codes.

The challenge in designing robust quantum memories arises

from the difficulty of simultaneously (i) utilizing an easily ac-

cessible physical system, (ii) having a quantum code that lies

within the ground space of the system’s Hamiltonian H , and

(iii) having an increased storage lifetime τ with an increasing

number of qubits N in the physical system. Self-correcting

quantum memories [1,2] should satisfy (ii) and (iii), but are

challenging to implement in a multitude of desirable settings

[3–14]. Indeed, constraint (i) does easily not hold, which

frustrates the design of reliable quantum storage. For instance,

quantum memories based on stabilizer codes which correct at

least one error and also satisfy (ii) unfortunately reside in un-

physical systems with many-body interactions, and can only

be approximately constructed [4,15–17]. Of these constraints,

it is most pertinent to satisfy (i), because physically unrealistic

quantum memories will be difficult to engineer.

There are two reasons to store quantum data within the

ground space and thereby satisfy constraint (ii). First, a grow-

ing energy gap can suppress excitations from the ground space

[18]. Second, storing quantum data within the ground space

avoids unnecessary errors that can occur even in the complete

absence of noise. Any state within the ground space is an

eigenstate of the physical system, and for such states, they

are left unchanged by a unitary operation Uτ that the system’s

natural dynamics induces, after a storage time of τ elapses.

By avoiding the need to uncompute Uτ , we would not suffer

*y.ouyang@sheffield.ac.uk

from an imperfect reversal of Uτ caused by our imprecise

knowledge of τ .

Storage within the ground space, while satisfying con-

straint (ii), is not enough to result in self-correcting quantum

memories and thereby satisfy constraint (iii). Moreover,

many physically realistic systems satisfying constraint (i)

comprising of two-local terms are surprisingly incompatible

with constraint (iii) [12]. However, this no-go result does

not preclude physical systems comprising of noncommuting

two-body interactions from satisfying constraint (iii). Con-

sequently, determining whether such physical systems can

satisfy constraint (iii) is especially pertinent. In this paper

we study Heisenberg ferromagnets as a media for quantum

storage because they comprise of noncommuting two-body

interactions and therefore sidestep the no-go result of [12].

We also study to what extent Heisenberg ferromagnets satisfy

constraint (iii).

The Heisenberg ferromagnet (HF) is a model of quantum

magnetism, and is prevalent in many naturally occurring phys-

ical systems, and thereby satisfies constraint (i). For instance,

the HF is found in various cuprates [19,20], in solid helium-3

[21], and more generally in systems with interacting electrons

[22]. Even in many physical systems that cannot be naturally

interpreted as ferromagnets, effective HFs can nonetheless be

engineered, for instance by symmetrizing systems dominated

by dipole interactions using dynamic pulse sequences [23].

Effective HFs have also been engineered in ultracold atomic

gases [24] and quantum dots [25]. Specifically, we study spin-

half HFs in the absence of an external magnetic field, with

Hamiltonian of the form

H = −
∑

{i, j}∈E

J (1 − πi, j ). (1)
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Here 1 denotes an N-qubit identity operator, πi, j denotes a

swap operator on the ith and jth qubits, J denotes the ex-

change constants, and E denotes the set of interactions. Such

HFs have J > 0 and ground state energy set to zero.

By storing quantum data using permutation-invariant (PI)

codes in HFs, we automatically satisfy constraint (ii). This is

because symmetric states lie within the ground space of any

HF, and quantum data in PI codes, by being invariant under

any permutation of their underlying qubits, are symmetric

states. Such codes are well studied both in the context of

perfect quantum error correction [26–29], and approximate

quantum error correction [28,30,31]. PI codes have not only

been studied in the qubit setting, but have also recently been

considered in bosonic settings [32]. While prior research on

PI codes shows that quantum error correction is possible

within the ground space of HFs, this is only suggestive that

constraint (iii) can be compatible with PI codes. This is

because the coding parameters of PI codes alone, being inde-

pendent of the parameters in HFs, are not enough to determine

what happens when physical noise applies to PI codes stored

in HFs. To better understand the extent in which HFs with

PI codes can satisfy constraint (iii), we study bounds on the

storage error of PI codes under the action of two different

noise models, where both bounds depend on properties of the

underlying HF.

Our first noise model applies to HFs of any geometry, and

introduces Pauli errors. These Pauli errors occur with proba-

bilities that are thermodynamically related to their expected

energies on the codespace of a specific family of PI codes

[28]. To derive an upper bound on the storage error, we find

an area law on the expected energy of a Pauli error, which

demonstrates that a quantum memory based in a HF can have

a macroscopic energy barrier for Pauli errors. This allows

us to show that the storage error decreases with increasing

dimensionality of the HF.

Our second noise model introduces unitary errors proba-

bilistically, where each unitary arises from a local perturbation

of the underlying Hamiltonian. Such a noise model can de-

scribe the effects of unwanted physical interactions, such as

spurious local fields afflicting each particle independently.

We use perturbation theory to bound the storage error by

using Davis’ divided difference representation of these taking

Fréchet derivatives. Because we require complete knowledge

of the Hamiltonian’s spectrum, we restrict our analysis to

exactly solvable mean-field HFs. In such HFs every pair of

spins interacts with equal strength. Since such HFs have an

infinite effective dimension, analyzing them is indicative of

the ultimate limits of robust quantum storage in HFs.

With respect to both noise models, we provide upper

bounds for the storage error of quantum memories in HFs that

are numerically tractable. In both cases we find that quantum

memories in HFs are partially self-correcting in the sense

that is an optimal system size for fixed noise parameters that

minimizes our upper bounds on the storage error.

Energy of Pauli errors and their geometry. We use GNU

codes [28] to elucidate the dependence of a HF’s dimension

with respect to the storage error of quantum data. GNU codes

depend on three parameters g, n, and u, and encode a single

qubit into N = gnu qubits. Here g and n quantify the distance

of the GNU code with respect to bit-flip and phase-flip errors,

respectively, while u is a scaling parameter where u � 1.

When g = n = 2t + 1, the GNU code corrects t errors. A GNU

code has logical codewords

|rL〉 =
∑

0� j�n
mod( j,2)=r

√

(

n

j

)

2n−1

∣

∣D
gnu

gj

〉

, (2)

where r = 0, 1, and |DN
w
〉 are Dicke states of weight w

[33,34].1

We quantify a HF’s dimension using properties of its un-

derlying graph of interactions [35]. This graph G has vertices

labeled from 1 to N , and edges E that correspond to the

interactions in the HF’s Hamiltonian H . Given a subset S of

{1, . . . , N}, let ∂E S denote its edge boundary with respect to

the edge set E , which is the set of edges in E with exactly

one vertex in S. When every subset S satisfies the inequality

|∂E S| � c min(|S|, N − |S|)1−1/δ , the graph and HF have di-

mension δ with isoperimetric constant c.

Given a set P of N-qubit Pauli errors that afflict at most

N/2 qubits, let

〈P〉 = min
|ψ〉∈C

〈ψ |PHP|ψ〉 (3)

denote the minimum expected energy of P ∈ P on the code

C . When C is a GNU code, we derive a lower bound on 〈P〉
in terms of the edge boundary V (P), where V (P) denotes

the set of vertices on which P acts nontrivially. In particular,

Theorem 1 below gives an area law on the minimum size of

〈P〉, which we prove in the Supplemental Material [36].

Theorem 1. Let C be an N-qubit GNU code with parameters

g = n = 2t + 1 and u = 2, where N = 2(2t + 1)2 and t � 1.

Then with respect to the Hamiltonian H given by (1) with

exchange constants J and set of interactions E , for every N-

qubit Pauli P in P , we have

〈P〉 � χJ|∂E [V (P)]|,

where χ = min{2μ, 1 − 4μ} and

μ = (1 + 5t + 6t2)/(4 + 32t + 32t2).

The significance of Theorem 1 lies in the geometric in-

terpretation it imparts to 〈P〉. Namely, when the graph G

has dimension δ and isoperimetric number c, we have the

isoperimetric inequality

〈P〉 � Jχc|P|1−1/δ, (4)

where |P| = |V (P)| denotes the weight of P. For a HF on a

one-dimensional (1D) spin chain, 〈P〉 � Jχ. For a HF on a

square lattice [37], with our result implies that 〈P〉 � Jχ
√

|P|.
Whenever δ > 1, the expected energy of P grows with its

weight, and we have a macroscopic energy barrier [38]. This

suggests that when δ > 1, HFs can be good quantum memo-

ries. To see this, consider a noisy channel T that introduces

Pauli errors P ∈ P with probability proportional to e−β〈P〉 and

1Dicke states are uniform superpositions of computational basis

states labeled by binary vectors of Hamming weight w.

144417-2
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FIG. 1. When a HF stores an encoded qubit within a GNU code on

N = 2(2t + 1)2 physical qubits that corrects t errors, we use (7) to

obtain upper bounds on the storage error ut with respect to the HF’s

dimension δ and t . Here βJ = 13 and c = 1.

with effective inverse temperature β. Explicitly,

T (ρ) =
∑

P∈P

(e−β〈P〉/Z )PρP, (5)

where Z =
∑

P∈P
e−β〈P〉. The corresponding probability of

obtaining an uncorrectable error, which is the storage error

under the assumption of perfect error correction, is then

ut =
1

Z

∑

P∈P
|P|�t+1

e−β〈P〉. (6)

From the isoperimetric inequality (4) and the bound

|∂EV (P)| � 
|P|, where 
 is the maximum vertex degree of

G, we obtain

ut �

(

N/2
∑

w=t+1

(

N

w

)

3we−βJχcw1−1/δ

)(

N/2
∑

w=0

(

N

w

)

3we−βJ
w

)−1

.

(7)

We illustrate (7) in Fig. 1 with 
 = 4, c = 1, βJ = 13,

and vary the dimension δ and number of correctible errors

t . We see that increasing δ decreases ut . Moreover, when

2 � δ < 4, the optimal PI code has 1 � t � 4. This shows

that for low-dimensional systems with δ � 2, our is partially

self-correcting, where increasing the system size cannot in-

definitely reduce the storage error.

Random coherent noise and storage error. A good quan-

tum memory preserves entanglement. Given a quantum code

C with logical codewords |0L〉, . . . , |(M − 1)L〉, consider the

entangled state |�C 〉 =
∑M−1

j=0 | j〉 ⊗ | jL〉/
√

M. The storage

error of C with respect to a noisy channel N is

ǫ(N ,C ) = min
R

1
2

∥

∥|�C 〉〈�C | − R(N (|�C 〉〈�C |))
∥

∥

1
,

where R = I ⊗ R, N = I ⊗ N , I is an identity chan-

nel, the minimization is over all recovery maps R, and ‖ · ‖1

denotes the trace norm. For simplicity, when the code C and

noise model N are implicit, we write ǫ = ǫ(N ,C ).

Let perturbations A1, . . . , Aα to the Hamiltonian H occur

with probabilities p1, . . . , pα , respectively. These perturba-

tions model the coupling of qubits to spurious classical fields.

Each perturbation A j is a linear combination of operators that

acts nontrivially on a single qubit, and induces a unitary evo-

lution U j = g(H + A j ), where g(x) = e−ixτ . In what follows,

we consider a random coherent noise channel Nτ , which is

parametrized by its noise strength a = max j ‖A j‖/N , and for

any initial state ρ,

Nτ (ρ) =
α

∑

j=1

p jU jρU
†
j . (8)

For any perturbation A j , the Taylor series of the unitary g(H +
A j ) gives

g(H + A j ) = g(H ) +
∞

∑

k=1

D[k]
g (H, A j )/k!, (9)

where

D[k]
g (H, A j ) =

dk

dξ k
g(H + ξA j )|ξ=0 (10)

are Fréchet derivatives of g(H ) in the matrix direction A j

[39,40]. Now the correctible component of g(H + A j ) with

respect to a code that corrects t errors comprises of Fréchet

derivatives of order at most t , because these Fréchet deriva-

tives are polynomials in A j of order no more than t . Therefore,

we study only the high order Fréchet derivatives. These

Fréchet derivatives allow us to bound the storage error.

Lemma 2. Given a quantum code C that corrects t

errors, let R j =
∑∞

k=t+1 D[k]
g (H, A j ) and define ‖R‖C =

max j{‖R j |ψ〉‖ : |ψ〉 ∈ C }. Then ǫ � ‖R‖C + ‖R‖2
C

.

We prove Lemma 2 in the Supplemental Material [36].

From the integral representation of R j [41], we exploit the fact

that g(H + A j ) is unitary for Hermitian H and A to get

‖R‖C � max
j

max
{∥

∥D[t+1]
g (H, A j )

∣

∣ψ〉‖ : |ψ〉 ∈ C
}

(t + 1)!
, (11)

which depends only on a single Fréchet derivative instead of

infinitely many. Given (11), one can clearly bound ‖R‖C in

terms of just ‖H‖ and aN . However, such a bound increases

with increasing ‖H‖, and exhibits a behavior contrary to the

numerical evidence in Fig. 1. Increasing the number of long-

range interactions increases both ‖H‖ and dimensionality, but

since increasing dimensionality should decrease the storage

error, this suggests that the storage error should instead de-

crease with increasing ‖H‖. We solve this conundrum by

using Davis’ representation [42] of Fréchet derivatives, which

reveals the intricate dependence of Fréchet derivatives on

the spectral decomposition H =
∑

j�0 λ j� j . Here λ j strictly

increase with j and � j are eigenprojectors. Namely, we can

write D[k]
g (H, A j )/k! as
∑

n0,...,nk

g(λn0
, . . . , λnk

)(�nk
A j ) · · · (�n1

A j )�n0
. (12)

Here g(λn0
, . . . , λnk

) are divided differences that arise natu-

rally from the theory of Lagrange interpolation. To unravel

(12), we leverage on the remarkable properties of divided
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differences. First, divided differences are invariant under

any permutation of their arguments. Hence, we can al-

ways arrange the arguments of a divided difference in

nondecreasing order. Second, divided differences general-

ize scalar derivatives, because the divided difference of a

vector with k identical arguments is proportional to the

(k − 1)th derivative of the underlying function. For the

exponential function, |g(y1, . . . , yk )| = τ k−1/(k − 1)! when

y1 = · · · = yk . For instance, |g(2, 2)| � τ . Third, a divided

difference when not evaluated on identical arguments can

be recursively defined; whenever yi and y j are distinct,

g(y) = {g(y[not i]) − g(y[not j])}/(yi − y j ), where y[not i]

denotes a vector obtained from y by deleting its ith compo-

nent. From (11) and (12) we find that

‖R‖C � (aN )t+1

(

ht+1 +
τ t+1

(t + 1)!

)

. (13)

Here τ t+1/(t + 1)! arises from the divided difference with

all arguments equal to zero. The term ht+1 is the sum of all

|g(0, λn1
, . . . , λnt+1

)| where n1 + · · · + nt+1 > 0.

Evaluating a bound on ht+1 requires knowing the eigen-

values of H . Since finding the eigenvalues of H for arbitrary

E is difficult [35], we study an exactly solvable HF where

every pair of spins interacts equally with Ji, j = J . We call

such a HF a mean-field HF, and its ground state energy is

λ0 = 0 and its higher energy eigenvalues are λ1 = JN, λ2 =
2J (N − 1), λ3 = 3J (N − 2). In general, λ j = J j(N + 1 − j)

[35]. Now denote δ j as the minimum energy needed to tran-

sition away from λ j . For instance, δ0 = λ1 − λ0 = JN , δ1 =
λ2 − λ1 = J (N − 2), and δ2 = λ3 − λ2 = J (N − 4). In gen-

eral, δ⌊N/2⌋ = 2 + (N − 2⌊N/2⌋) and δ j = J (N − 2 j) for all

j = 0, . . . , ⌊N/2⌋ − 1. Importantly, δ j is nonincreasing in j

and is maximal when j = 0. Exploiting the recursive structure

of divided differences, one gets
∣

∣g(0, λn1
, . . . , λnt

)
∣

∣ � 2t+1δ−1
0

(

δn1
· · · δnt+1

)−1
. (14)

We provide the full details of obtaining this upper bound in the

Supplemental Material [36]. When a divided difference has

repeated arguments, we overestimate its contribution to ht+1

by severe overcounting. For this we first use (14) for divided

differences even when there are r repeated arguments. Sec-

ond, for divided arguments with r repeated entries, we count

the contributions from leaves that terminate with all possible

divided differences with repeated identical arguments.

If the contribution to the divided differences is domi-

nated by leaves with no repeating indices, the total con-

tribution of such leaves to ht+1 is at most St 2t+1/δ0,

where S = δ−1
0 + · · · + δ−1

t+1. The contribution to ht+1

by leaves that terminate with r repeated arguments is

[τ r−1/(r − 1)!]St+1−r/δ0. From this we get ht+1 � θ where

θ =
St+1

δ0

+
n/2 + 1

δ0

t+1
∑

r=2

(

t+1

r−1

)

τ r−1

(r − 1)!
St+2−r . (15)

From Lemma 2, (13) and (15), we get the following result.

Theorem 3. Let H be a mean-field HF with exchange con-

stant J , and C be any PI code that corrects t errors. Let Nτ

be the random coherent noise channel (8). Then ǫ(Nτ ,C ) �

� + �2, where � = (aN )t+1[θ + τ t+1/(t + 1)!], and θ is

given in (15).

FIG. 2. When a mean-field HF stores an encoded qubit within

an N-qubit PI that corrects t errors, we use Theorem 3 to obtain

upper bounds for the corresponding storage error ǫ after a target

storage lifetime of τ . The baseline lifetime and storage error for an

unprotected qubit are 12 ns and 0.00048, respectively. The shaded

region indicates where ǫ is smaller than the baseline.

Theorem 3 implies that the quantum memory is partially

self-correcting, because the bound on ǫ contains a term

(Nτ )t/t! which diverges for large t , since N is quadratic in

t . Hence for fixed noise parameter a and exchange constant

J , our scheme for a quantum memory has an optimal system

size. Figure 2 illustrates only results for optimal system sizes.

Recently, a superconducting qubit was stored between 12

to 20 ns with a fidelity of 0.9995 [43]. Using our noise model,

these experimental parameters can be recast into a baseline

storage error of 5 × 10−4 with a memory lifetime of 12 ns and

a noise strength of a = 0.04 MHz. Given this noise model,

we use Theorem 3 to obtain upper bounds on the storage

error ǫ of an encoded qubit within a PI code in a mean-field

HF, and we depict these numerical results in Fig. 2. Here the

number of qubits for t = 1 is seven [27], and when t � 2,

N = (2t + 1)2. From Fig. 2, if one uses a seven-qubit PI

code with J = 103 GHz, the qubit’s storage lifetime can be

improved to over 100 ns. In addition, if one uses a 25 qubit PI

code that corrects two errors [28], the qubit’s storage lifetime

can be enhanced to over 120 ns when J = 104 GHZ. Similarly,

if J = 106 GHZ, the qubit’s storage lifetime can be enhanced

to over 150 ns using a 49 qubit PI code that corrects three

errors. From this we can see how increasing J and the number

of qubits in HFs can enhance the storage lifetime.

Discussions. Here we study quantum storage in a physi-

cally abundant physical system, the HF. Since our scheme is

a physical model that is simple to realize, it will be easier

to implement than those built upon many-body interactions.

Because Pauli errors on PI codes exhibit a macroscopic en-

ergy barrier, we see evidence that a quantum memory based

in a HF can become increasingly robust with increasing di-

mensionality of the HF. Moreover, we find that strengthening

the coupling strengths can extend the storage lifetime of HF-

based quantum memories when used in concert with PI codes.

For this we analyze an infinite-dimensional HF, namely the

144417-4
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mean-field HF, and find numerically tractable upper bounds

on the storage error. Our derivation of the bounds relies on

a novel approach based on the connection between matrix

perturbation theory and divided differences.

Since our analysis technique extends to any physical

system with a completely understood spectral structure,

it applies also to other code-inspired Hamiltonians, and

lays the foundations for analyzing quantum memories us-

ing our new methodology. While PI codes can be pre-

pared in superconducting charge qubits [44], it remains to

integrate the initialization Hamiltonian with HFs. Further-

more, constructing explicit protocols for the decoding of

PI codes can bring quantum memories in HFs closer to

implementation.
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