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A B S T R A C T   

Wheat is one of the most important global crops, understanding the drivers of wheat yield has significant societal 
benefits. Climate variables are particularly important in determining interannual variations in wheat yield, either 
as primary factors which directly influence the stages of wheat growth, or as secondary factors through their 
influence on pests, diseases and soil conditions. Here we present a new approach to model wheat yield; an 
empirical method based on nonlinear complex systems identification, known as NARMAX (Nonlinear AutoRe-
gressive Moving Average with eXogenous inputs model). We deploy the NARMAX analytical approach for a 
specific site, Rothamsted, UK, where detailed meteorological variables are available, together with specific in-
formation on site conditions and crop growth stages. NARMAX yield forecasts are compared with those from the 
WOFOST crop model and nine state-of-the-art machine learning (ML) models; experimental results show that 
NARMAX outperforms all the compared methods in both prediction accuracy and model interpretability. We also 
develop regional wheat yield forecasts derived from a new gridded meteorological data product. 

The NARMAX approach produces skillful forecasts (r = 0.78) of Rothamsted wheat yield for a validation 
period, with small errors. The NARMAX regional forecasts, based on less specific information than WOFOST, also 
show a high degree of skill (r = 0.73). In addition, the predictor terms chosen for the model are identifiable and 
can help to give insight into potential key processes involved in the determination of wheat yield at a specific 
location. This approach can be extended in principle to other crop types and locations. It is straightforward and 
inexpensive to implement, using a limited number of meteorological predictor variables, which can be taken 
from site-based observations, or from gridded meteorological datasets. The method is a new tool to understand 
the environmental drivers of wheat yields on an annual basis.   

1. Introduction 

Wheat (Triticum aestivum L.) is one of the most important global 
crops. It forms the basis of many foodstuffs, providing c.20 % of all 
calories consumed by people and critical for animal feed (Shiferaw et al., 
2013). In the UK, there has been a sustained increase in productivity 
over the period 1945 to 1995, but evidence indicates that this has since 
flattened at c. 8 t ha−1 (Knight et al., 2012). Globally, wheat yields are 
only increasing by c. 0.9% per annum whilst c. 2.4 % growth is required 
to meet the food requirements of an expanding population (Ray et al., 
2013). Much of this increase in yield is due to technological de-
velopments in the breeding of new strains of wheat (e.g. Foulkes et al., 
2007). However, plant growth and development are affected by a 
number of environmental factors which can cause significant 

fluctuations in productivity from year to year. It has been estimated that 
climate variability can account for more than 60 % of interannual 
variability in crop yields (Ray et al., 2013), while the prevalence of pests 
and diseases can also be influenced by weather conditions at key points 
in the crop life cycle. In the light of this it is particularly important to 
develop a thorough understanding of the impacts of climate on wheat 
yields, enabling society to better respond to shocks in food production. 
Accurate quantification of wheat yield is important for policymaking 
and farm management. 

There are two approaches to forecasting wheat yield: (1) the use of 
crop growth simulation models (CGSM), such as WOFOST (Boogaard 
and Kroes, 1998), APSIM (Keating et al., 2003), or now multi-model 
ensembles (e.g. Asseng et al., 2015), which currently encompass up to 
32 different CGSM platforms (Asseng et al., 2019), and (2) empirical 
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approaches (e.g. Landau et al. 2000, Lobell and Field, 2007). The CGSM 
are mechanistic, in that they try to explain both the relationship between 
parameters and the simulated variables, and also the biological mech-
anisms involved (Challinor et al., 2009). However, given that best 
forecasting skill has been achieved with multi-ensemble models (Asseng 
et al., 2019), it is clear that no one model is accepted as a definitive 
description of the effects of environment on wheat growth and yield. 
This suggests considerable opportunity exists to improve forecast skill 
within solus CGSMs. Statistical models on the other hand have offered 
less insight into processes. Due to possible overfitting, there are 
considerable risks when using model for prediction beyond the observed 
samples (Rosenzweig et al., 2013). To date they have shown limited 
forecasting skill, Chmielewski and Potts (1995)- using longterm yield 
data (1854 to 1967) at Rothamsted, UK, showed highest wheat yields 
occurred in dry or cool years with a multi-regression model skill of r =
0.33 with temperature and precipitation as critical environmental var-
iables. Likewise, Landau et al. (2000) used a parsimonious approach 
resulting in a 17-parameter model that quantified the effects of envi-
ronment on UK wheat yields, showing modest skill (r = 0.41) across a 
large observation data set of 2000 yields. 

Recent advances in machine learning have led to the development of 
new techniques for yield forecasting. Pantazi et al. (2019) use machine 
learning to quantify wheat yield by combining advanced sensing of soil 
properties with neural networks and self-organising maps; however, 
such a forecast is site-specific and data intensive. Similarly, Cai et al. 
(2019) used multiple machine learning techniques combined with 
climate and satellite data to forecast Australian wheat yield (r = 0.87). 
Machine learning techniques offer an array of black-box tools that 
demonstrate high modelling skill but can provide little insight into un-
derpinning mechanisms. 

In this study we move the state of the art forward by presenting novel 
statistical models based on a Nonlinear AutoRegressive Moving Average 
with eXogenous inputs (NARMAX) approach used for system identifi-
cation (Billings, 2013). The NARMAX approach is a subcategory of 
machine learning, but it is different from other machine learning 
methods in that models resulting from this approach are transparent: 
that is the predictor variables are apparent, the models are easily 
interpretable and the relationships between the response and explana-
tory variables are explicitly known. In addition, NARMAX can be used 
with relatively small datasets such as the time series available here. We 
use NARMAX to predict wheat yields for a specific location, given 
detailed monthly meteorological data only. NARMAX has been suc-
cessful in revealing linear and non-linear relationships across a range of 
scales, in engineering, biological and environmental sciences (Billings, 
2013); however, it has not previously been applied to crop yield pre-
diction. Here we compare the NARMAX results with those from CGSMs, 
in this case WOFOST, as well as other typical machine learning ap-
proaches. WOFOST requires fewer input data and parameters than 
APSIM, and WOFOST has more simulation tests in Europe. WOFOST 
(WOrld FOod STudies) is a mechanistic crop growth model for the 
quantitative analysis of the growth and production of annual field crops 
(Van Diepen et al., 1989; Boogaard and Kroes, 1998; Supit et al, 1994; de 
Wit et al., 2019). It uses a general model to describe the process of crop 
growth and development. By changing crop parameters, it can be 
applied to different crop species or varieties. WOFOST can be applied in 
two modes: potential, where crop growth is caused only by solar radi-
ation and temperature and there are no growth limiting factors, and a 
water limited mode which uses water availability to limit crop growth. 

A typical limitation of CGSMs is that they are developed for field- 
level data. In reality, this situation hardly ever occurs as site-specific 
information is rarely available, and CGSMs are increasingly used for 
regional forecasts (e.g. Boogaard et al., 2013; van der Velde et al., 2019). 
It is therefore important to be able to upscale, making regional gener-
alisations based on CGSMs (e.g. Asseng et al. 2015; 2019). However, 
there are issues with this approach for CGSMs, as biased simulations can 
result since biophysical processes depend on scale (Hansen and Jones, 

2000) and the models built to represent processes at a given scale may 
not produce valid results when scaled up. Furthermore, there may be a 
nonlinear aggregation error arising from changing resolution (Hoffmann 
et al, 2016). In addition to spatial aggregation, further considerations 
are crop model parameters (Iizumi et al., 2014) and climate data, for 
example temperature biases due to mean elevation difference between a 
coarse grid cell and specific site (Baron et al, 2005). However, a NAR-
MAX approach based on meteorological parameters suffers from no such 
issues, so we also present a regional forecast model for selected England 
wheat-growing regions, using the NARMAX methodology. 

To fairly evaluate the strengths of the proposed approach, we also 
compare the NARMAX results with those from nine state-of-the-art 
machine learning (ML) models, namely, least absolute shrinkage and 
selection operator (LASSO) (Hastie, Tibshirani and Friedman, 2008), 
decision tree (DT) (Breiman et al., 1984; Loh, 2002), random forest (RF) 
(Breiman, 2001; Hastie, Tibshirani and Friedman, 2008), generalized 
additive model (GAM) (Hastie, Tibshirani and Friedman, 2008; Lou 
et al., 2013), Gaussian process regression (GPR) (Rasmussen and Wil-
liams, 2006), support vector machine (SVM) (Fan, Chen and Lin, 2005), 
feedforward neural network (FFNN, shallow neural network) (Reed and 
Marks, 1999), Long-Short-Term Memory (LSTM, deep neural network) 
(Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005; 
Bengio, 2013), and bidirectional LSTM (BiLSTM) (Schuster and Paliwal, 
1997; Goodfellow, Bengio, and Courville, 2016; Siami-Namini et al., 
2019). Note that whilst NARMAX models are transparent and parsimo-
nious, most of these nine ML models (e.g., the last six) are opaque and 
complex, and cannot be written down and easily explained. Experi-
mental results show that NARMAX outperforms all these compared 
methods in both prediction accuracy and model interpretability. 

The main contributions and advantages of the work are as follows:  

• It presents a new approach to wheatyield modelling based on an 
empirical method based on nonlinear complex system identification, 
known as NARMAX.  

• It demonstrates the NARMAX analytical approach for a specific site, 
Rothamsted, UK, where detailed meteorological variables are avail-
able, together with specific information on site conditions and crop 
growth stages.  

• It also demonstrates how regional wheatyield forecasts might be 
derived from a new gridded meteorological data product.  

• Unlike most other machine learning methods which work in a black- 
box manner, the proposed model is completely explainable due to its 
transparent, interpretable, reproducible and parsimonious (TRIP) 
properties. It explicitly tells us which meteorological factors signif-
icantly affect wheat yield, and reveals the relationship between 
wheat yield and meteorological factors.  

• The performance of the identified NARMAX models is compared 
with those of nine state-of-the-art machine learning models; it turns 
out that NARMAX outperforms all the nine compared models. 

2. Data 

2.1. Rothamsted 

Rothamsted is a long-established agricultural research station in 
Hertfordshire, north of London. Our data are taken from the Broadbalk 
winter wheat experiment, started in 1843, one of the oldest agronomic 
experiments in the world (Perryman et al., 2018; MacDonald et al., 
2018). Detailed management and agronomic data are available, 
together with daily data from an on-site meteorological station 
(51.8066 N, −0.3602E, 128 m asl). We use meteorological and wheat 
yield data from Rothamsted Research, Hertfordshire, UK, for the period 
1968–2018, as in 1968 short-stalked wheat varieties were introduced; 
resulting in a large increase in yield. We use winter first wheat yield, 
which is typically sown in October and rotated round a limited number 
of plots within a field. Winter wheat is always grown on Broadbalk, with 
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the exception of the 2015 yield, when weather conditions prevented the 
sowing of winter wheat and a spring wheat variety was substituted. For 
the CGSMs, date of sowing and harvesting is available for each harvest, 
together with cultivar information. Soil data are taken from Salter and 
Williams (1969) and the Rothamsted electronic archive (http://www. 
era.rothamsted.ac.uk/Broadbalk). 

For the NARMAX and ML models we have selected 13 meteorological 
variables that may be important for influencing wheat yield, listed in 
Table 1. These variables may have a direct influence on yield and 
potentially influence secondary considerations such as pests and 
diseases. 

Daily data are available and have been aggregated to provide 
monthly mean values for each of the 11 variables. We have focussed 
purely on wheat yield prediction based on meteorological inputs; we do 
not consider variations in drainage and soil type for example, although 
on the Rothamsted plot these are likely to be small. We assume that the 
impacts of cultivar changes during the period are likely to be of sec-
ondary importance. Since the wheat is sown in October, we include 
meteorological variables from the preceding August, to try and capture 
any preconditioning that may influence crop yield prior to sowing, such 
as soil moisture content. We do not detrend data, but the magnitudes of 
the explanatory meteorological variables show considerable variation. 
To alleviate this inbalance in magnitude, the mean value for the period is 
subtracted from each monthly value. 

2.2. Regional forecasts 

England is divided into eight administrative regions (hereafter AR to 
distinguish them from the wider regional forecasting) (Fig. 1). 

Here we use monthly HadUK-Grid meteorological variables (Met 
Office 2018), which are available for each AR separately, averaged over 
the AR. The product interpolates data from meteorological stations onto 
a range of uniform grids and at different resolutions. Details of the 
interpolation methods can be found in Perry and Hollis (2005). A 

different range of variables is available from this product, compared 
with data available from Rothamsted (Table 1), although there is 
considerable overlap. Our aim here is to demonstrate that NARMAX can 
be used for regional forecasting without the need for gridded meteoro-
logical data. WOFOST is not used for these forecasts as it requires daily 
data as input. 

Total national wheat yield is supplied from the UK DEFRA open 
datasets (DEFRA, 2019) available from 1885, which also provide an 
indication of the percentage of total wheat harvest contributed by each 
AR (from 1999), summarised in Table 2. While these figures are for 
2018, they are relatively constant over time. 

Four ARs account for 75 % of the England annual wheat yield; 
Yorkshire and Humber, East Midlands, East of England and the South 
East. Due to the proximity of the UK to the jet stream, ARs show 
considerable variations in weather conditions for a given season and 
year. For example, the north and west of England receive much more 
rainfall than the south and east, due to orographic influences and jet 
stream variability (Hall and Hanna, 2018). We therefore focus on 
developing a regional wheat yield forecast for the four most significant 

Table 1 
Meteorological variables available for use in NARMAX and the WOFOST crop 
model, and the source of the data.  

Rothamsted Regional  
NARMAX WOFOST NARMAX Abbreviation 

used 
Source: Rothamsted 

Met station 
Source: 
Rothamsted Met 
station 

Source: HadUK- 
Grid  

Monthly 
(aggregated from 
daily data) 

daily monthly  

Dewpoint /◦C   dp 
Solar radiation /J 

cm−2 
Solar radiation /J 
cm−2  

sol 

Rainfall /mm Rainfall /mm Rainfall/mm rain 
Relative humidity  Relative 

humidity 
rhum 

Sun hours  Sun hours sun 
Max temperature 

/◦C 
Max temperature 
/◦C 

Max temperature 
/◦C 

Tmax 

Min temperature 
/◦C 

Min temperature 
/◦C 

Min temperature 
/◦C 

Tmin 

Wet bulb 
temperature /◦C   

Twb 

Vapour pressure 
/mb 

Vapour pressure 
/mb 

Vapour pressure 
/mb 

VP 

Wind run /km   wrun 
Average wind speed 

/ms−1 
Average wind 
speed /ms−1 

Average wind 
speed /ms−1 

wind   

Ground frost 
days 

grf   

Atmospheric 
pressure /mb 

AP  

Fig. 1. Administrative regions of England used in the regional forecasts. 
(Basemap: Wikipedia.org). 

Table 2 
Percentage of total England wheat yield provided by each administrative region 
2018 (DEFRA, 2019) and the contributions of the 4 main wheat growing ARs to 
the regional yield.  

Administrative Region % of national wheat yield % of regional yield 
North East 4 NA 
North West 2 NA 
Yorkshire and Humber 14 18.67 
East Midlands 20 26.67 
West Midlands 10 NA 
East of England 28 37.33 
South East and London 13 17.31 
South West 9 NA  
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wheat-producing ARs combined, which are more homogenous in terms 
of meteorological variability, being located in east and south-east En-
gland, in the rain shadow of the upland regions. We use a time-constant 
weighted average of the meteorological variables, based on the contri-
bution of each AR to the regional wheat yield given in Table 2. For 
example, for rainfall, the AR value is multiplied by the fraction of 
regional wheat total contributed by the AR (Table 2): in the case of East 
of England, all meteorological variables are multiplied by 0.3733, 
whereas those for Yorkshire and the Humber are multiplied by 0.1867. 
This weighting ensures the contribution of meteorological variables 
from the ARs is in direct proportion to the contribution to the regional 
wheat yield. 

3. Methods 

3.1. NARMAx 

NARMAX can reveal and describe non-linear dynamic relationships 
between a range of input variables (predictors), and the output 
(response), in this case wheat yield. NARMAX will construct the most 
parsimonious or compact model that best describes the system; therefore 
if a linear model provides a good representation of the system, the 
method will stop at this point (Billings, 2013, p9). 

The general form of the NARMAX model for a multiple input single 
output (MISO) case can be given by (Wei, 2019; Wei and Billings, 2022): 
y(k) = F

[
y(k − 1), y(k − 2)⋯, y

(
k − ny

)
, u1(k − d), u1(k − d

− 1), u1(k − d − 2),⋯, u1(k − nu), u2(k − d), u2(k − d − 1),⋯, u2(k

− nu),⋯, ur(k − d), ur(k − d − 1),⋯, ur(k − nu), e(k − 1), e(k

− 2),⋯, e(k − ne)
]
+ e(k)

(1)  

where y(k) is the measured system response, uj(k) (j = 1,2, …, r) are the 
inputs at time k, e(k) is a noise sequence which is not measurable but can 
be estimated once a model is built; r being the number of input variables; 
ny, nu, and ne are the maximum lags for the system output, input, and 
noise; F(•) is some non-linear function to be determined; and d is a time 
delay (typically d = 0 or d = 1). For an identified model, the noise e(k)
can be estimated as the prediction errors: e(k) = y(k)−ŷ(k), where ŷ(k)
is the predicted value at time instant k generated by an estimated model. 
The noise terms are included to accommodate the effects of measure-
ment noise, modelling errors, and/or unmeasured disturbances. Note 
that the NARMAX model (1) for a single-input and single-output case 
can easily be extended to multiple-input and multiple-output cases 
(Billings, 2013). 

In this study, we consider a special case of model (1), with the 
following considerations: 1) the time delay and the maximum time lags 
being zero, that is, d = ny = nu = ne = 0; 2) and the total number of input 
(candidate explanatory) variables used for building models is r. The 
NARMAX model for such a special case can be written as: 

y(k) = f (u1(k), u2(k),⋯ur(k)) + e(k) (2) 
For example, a simple special case with two inputs u1 and u2, the 

initial full model of degree 2 would be: 
y(k) = a0 + a1u1(k)+ a2u2(k) + a3u1

2(k)+ a4u1(k)u2(k)+ a5u2
2(k)+ e(k)

(3) 
Note that although power-form polynomials are commonly used as 

the basic elements for model building in many real applications (e.g. 
Ayala-Solares et al., 2016, 2018; Aguirre, 2019; Hall et al., 2019; Gu 
et al., 2019), other types of functions such as fractional-power poly-
nomials (Royston and Sauerbrei, 2008; Wei et al., 2012), and Gaussian 
and radial basis functions (Chen et al., 1990) can also be used as building 
elements for model construction. 

Also note that in most applications , the identified model is much 

simpler than the initial full model, because those candidate model terms 
which are not important are removed from the full model, and only the 
most important model terms that make significant contributions to 
explaining the variation of the system output are included in the final 
model. NARMAX uses an orthogonal forward selection algorithm, called 
the Forward Regression Orthogonal Least Squares (FROLS) algorithm 
(Billings, 2013), to select the important terms. Taking the case of multi- 
input, single-output systems as an example, the idea of the FROLS al-
gorithm is as follows. The procedure of NARMAX modelling begins by 
specifying a dictionary D consisting of a number (say M) of elements 
(possible useful model terms). The algorithm searches for and selects the 
first model term from D in such a way that it explains the variation of the 
system response (output) better than any other candidate elements. This 
model term is called B1. The algorithm then searches for and selects the 
second model term B2 as follows: the combination of B1 and B2 better 
explains the variation of the system response than any other combina-
tion of B1 and Bx where Bx can be any of the remaining M−1 elements in 
D (without including B1). The process continues until the penalized 
error-to-signal ratio (PESR), a metric used to measure both model per-
formance and model complexity, reaches a minimum. The search pro-
cedure is implemented with an orthogonal least squares or one of its 
variants, in each search step the importance of the selected model term 
is measured by an index called the error reduction ratio (ERR) (Chen 
et al. 1990; Billings, 2013). This allows the model to be built up term by 
term in a manner that exposes the significance of each new term that is 
added. Model structure detection is a fundamental part of the NARMAX 
procedure because searching for the structure ensures that the model is 
as simple as possible and a model with good generalisation properties is 
obtained. In this way, the model can be written down, and the depen-
dent relationship of the response on the predictor variables and the in-
teractions between the predictors can be analysed. Further details may 
be found in Wei et al. (2004; 2008), Wei et al. (2007). 

In this study, a leave-v-out cross-validation, with v being approxi-
mately 10 % of the training sample, is considered in NARMAX for 
searching the most important regressors (predictors and cross-product 
terms) by using a FROLS algorithm. A sparse and parsimonious com-
mon model is identified from subsets of the training period, and common 
model parameters are then estimated using all the training data. 

We now present the model specifications, considering the regional 
model first as its terms are simpler. 

3.1.1. Regional model specification 
The dataset involves a total of 108 candidate predictors, all of which 

are considered as candidate model inputs in the initial stage. The initial 
model is of the form: 
y(k) = f (u1(k), u2(k),⋯, ur(k) )+ e(k)

= a0 + a1u1(k) + a2u2(k)+⋯+ arur(k)+
∑r

i=1

∑r

j=1

aijui(k)uj(k)+ e(k) (4)  

where r = 108, y(k) represents the wheat yield in year k, and u1(k), u2(k),
⋯ur(k) represent the meteorological input variables. Following Billings 
(2013), the initial full model (4) involves a total of ((r + 1)×(r + 2))/2 =
(109 × 110)/2 = 5995 candidate model terms. However, as will be 
shown later that the model can be greatly reduced using the FROLS 
algorithm. 

As growing systems and genetics change, we limit the data to 
1984–2017 (34 data points). Earlier data are not used due to in-
consistencies in changes in wheat yield during this earlier period. 
Following a conventional practice, about 70 % of the data are used for 
model training and the remaining 30 % for model test. For the regional 
modelling case here, the first 24 years of the data (1984–2007) are used 
for model estimation, and the remaining 10 years are used as the vali-
dation dataset. For convenience of model explanation, data are not pre- 
processed, as pre-processing would normally result in the loss of the 
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original physical meanings of the model input variables. 
The final identified models are shown in Table 3, where it can be 

noticed that the FROLS algorithm can generate very simple but accurate 
nonlinear models for wheat yield prediction. 

3.1.2. Rothamsted model specification 
While for the regional data case, ordinary power-form polynomial 

models supply the best fit, our numerical experiments show that such 
models cannot well capture the varying trend of the response variable 
(wheat yield) for the Rothamsted case study. This motivated us to 
consider fractional polynomials. More specifically, for this case we use 
the following 5 groups of variables to build NARMAX models:  

where Group (1) contains the original basic 132 explanatory variables, 
Group (2) contains 132 new variables derived from the 132 basic vari-
ables, and so on for Groups (3)–(5). Therefore, there are a total of 132 ×

5 = 660 variables in the 5 groups. For convenience, denote by x1, x2, ...
, x660 the newly derived variables, and denote by y wheat yield. The 
following dictionaries are defined: 

D0 = {1} (constant) 
D1 = {x1,x2, ...,x660} 
D2 = {x1x1,x1x2, ...,x1x660, x2x2, ...,x2x660, x659x660, x660x660} 

Note that the dictionary D2 contains a total of 661 × 660/2 = 218130 
elements (candidate model terms), which is equivalent to the number of 
all possible selections of 2 elements taken from 660 objects with repe-
titions being allowed. The NARMAX model is constructed using the 1 +

660 + 218130 = 218791 elements in D0 + D1 + D2 as the building 
blocks. 

Experimental results (see below) show that fractional polynomials 
are preferred in this model as a better fit between predictor and pre-
dictand is obtained, compared with the use of standard polynomials. 
Fractional powers offer a greater range of curved fits than lower-order 
polynomials, which are the alternative given the short dataset (Roy-
ston and Sauerbrei, 2008). Another advantage of using fractional poly-
nomials is that the initial full model is still a linear-in-the-parameters (i. 
e., the response variable linearly depends on all the model parameters) 
form and the resulting models are transparent and interpretable as 
shown in equations (7) and (8). 

The NARMAX approach will build a model based on a training set of 
the data, with reserved years not included in the model construction 
being used as a test dataset (out-of-sample). Here, again we use around 
70 % of the samples (i.e. the 35 data values of the period 1969–2003) for 
model estimation, and the remaining 30 % (i.e. the 15 data values of the 
period 2004–2018) is used for model performance examination. It is 
important to emphasise that the 2004–2018 data are not used in any 
stage of the model development. 

3.1.3. Model averaging 
Given the relatively short timeseries available for constructing the 

models, the number of observations is small and much smaller than the 
number of regressors that are available (the explanatory variables and 
their cross-product interactions). This means that the models can be very 
sensitive to adding or removing a particular explanatory term. To reduce 
the risk of using a single model, with its associated uncertainties, we use 
a model-averaging approach of either two or three models. These models 
are the best ones selected from a total of 661x662/2 = 218791 candidate 
models. The models used in model averaging differ only in the number 
of terms used and have most of their predictors in common. We use a 
weighted average of the selected best models, to produce a model 
average. The variance of the prediction errors over the training period 
are calculated for each model, σ̂12 and σ̂22. The weighted average pre-
diction of two models is defined as: 
ŷ = w1 ŷ1 +w2 ŷ2 (5)  

where ŷ1 and ŷ2 are model predictions from the two models, respec-
tively, and w1 and w2 are weight coefficients, defined as 

w1 =
1
/

σ̂
2

1

1
/

σ̂
2

1 + 1̂/σ
2

2

andw2 =
1
/

σ̂
2

2

1/σ̂
2

1 + 1/σ̂
2

2

(6) 

By extension, a similar procedure can be applied to three models, as 

Table 3 
Parameters and coefficients for the best three regional NARMAX models, with 
verification statistics, including those for the average model.  

Variable Parameter of 
9-term model 

Parameter of 
10-term model 

Parameter of 
11-term model 

P-value 

[aug Tmax]* 
[sep rhum] 

0.0023 0.0014 0.0012  3.24x10-4 

[jun Tmin]* 
[jul Tmax] 

0.0146 0.0130 0.0097  1.57x10-6 

[jan wind]* 
[dec grf] 

0.0146 0.0153 0.0151  8.28x10-10 

[sep Tmin]* 
[oct sun] 

0.0003 0.0005 0.0004  0.01 

[jul rain]* 
[jul wind] 

−0.0014 −0.0013 −0.0018  1.29x10-6 

[mar VP]* 
[may 
wind] 

0.0662 0.0685 0.0617  3.69x10-8 

[apr wind]* 
[jun VP] 

−0.0464 −0.0518 −0.0545  1.58x10-8 

[may Tmin]* 
[dec wind] 

0.0293 0.0316 0.0334  6.50x10-7 

[apr VP]* 
[sep wind] 

−0.0315 −0.0291 −0.0282  8.36x10-5 

[jul VP]* 
[aug 
Tmax]  

0.0053 0.0063  8.42x10-5 

[jun Tmax]* 
[jul rhum]   

0.0009  2.84x10-3  

RMSE_train =
0.11 
RMSE_test =
0.60 

RMSE_train =
0.08 
RMSE_test =
0.60 

RMSE_train =
0.06 
RMSE_test =
0.61   

MAE_train =
0.09 
MAE_test =
0.43 

MAE_train =
0.06 
MAE_test =
0.47 

MAE_train =
0.05 
MAE_test =
0.46   

Corr_train =
0.98 
Corr_test =
0.74 

Corr_train =
0.99 
Corr_test =
0.71 

Corr_train =
0.99 
Corr_test =
0.73  

Model 
Averaging: 

RMSE_train = 0.06, RMSE_test =
0.60 
MAE_train = 0.05, MAE_test =
0.46 
Corr_train = 0.99, Corr_test =
0.73    

x1, ..., x132⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
Group 1

, |x1|
1/2, ..., |x132|

1/2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Group 2

, |x1|
1/3, ..., |x132|

1/3

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Group 3

, |x1|
1/4, ..., |x132|

1/4

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Group 4

, |x1|
1/5, ..., |x132|

1/5

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Group 5   
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is the case with the regional forecasting models. 

3.2. Other machine learning methods 

Apart from NARMAX, nine state-of-the-art ML methods, mentioned 
in Section 1 are also used to build models for the same datasets – both for 
the Reginal case and Rothamsted case. The nine ML methods are very 
briefly introduced as follows. LASSO (least absolute shrinkage and se-
lection operator) is used for estimating sparse linear regression models; 
the coefficient estimates can be used to determine which predictors 
should be included in a model. DT (decision tree) is a non-parametric 
algorithm and graphical representation of all the possible outcomes of 
a decision based on the explanatory variables; it has a tree-like structure 
where each node represents a decision, each branch represents the 
outcome of that decision, and each leaf node represents the final deci-
sion. RF (random forest) uses a combination of many decision trees; it 
effectively makes use of trees via ensemble learning approach. GAM 
(generalized additive model is a non-parametric method for dealing 
with generalized linear models where the response is represented as a 
linear combination of a set of unknown smooth functions determined by 
a number of the candidate variables. GPR (Gaussian process regression) 
is a non-parametric approach which uses Gaussian kernel functions of all 
candidate predictors as basis functions to build regression models to 
approximate variation of the response variable. SVM (support vector 
machine) is a non-parametric method for building regression models 
with kernel functions (e.g. radial basis functions, polynomial functions); 
kernel parameters are determined defining a hyperplane which controls 
the egression model performance over the training data; model hyper- 
parameters are estimated by using some optimization algorithms. 
FFNN (feedforward neural network) is a type of shallow neural networks 
which usually only have a single hidden layer. LSTM (Long-Short-Term 
Memory) is a special type of recurrent neural networks (RNN); it is a 
sequential neural network with deep learning, suitable for time series 
prediction. BiLSTM (bidirectional LSTM) is a variant of LSTM; it allows 
the input signals flows in both forward and backword directions. 

3.3. WOFOST parameterisation for Rothamsted 

The WOFOST model was parameterized by using the data of sowing 
date, maturity date (using harvest date as a proxy) and yield of winter 
wheat from 1969 to 2003 at Rothamsted. In this study, the development 
process of WOFOST is changed from the temperature sum model 
(TSUM) (Supit et al., 1994) to a total heat model (THU) (Matthews and 
Hunt, 1994). The development parameters included heat units accu-
mulated during sowing to emergence (THUEM), emergence to flowering 
(THU1), and flowering to maturity (THU2). Using the observation data, 
THU from sowing to maturity in each year was calculated, and the three 
cardinal temperatures were 0, 26 and 34 ℃, respectively. The THUEM 
was determined by assuming that winter wheat emerged when THU 
accumulated to 75 degree days after sowing. Among the other THU, 
THU1 accounts for 0.64 and THU2 for 0.36. The initial development 
value (sowing date) of the model was taken from the measured values 
from Rothamsted for each year. 

It is assumed that the growth differences of winter wheat in different 
regions are determined by the parameters of some key varieties. Ac-
cording to sensitivity and constraints analysis, they mainly include leaf 
maximum photosynthetic capacity (AMAX), specific leaf area (SLA) and 
life span of leaves growing at 35 Celsius (SPAN). These parameters were 
optimized by using the winter wheat yield data of Rothamsted from 
1969 to 2003. The values of the three parameters were 37.5 
μmol•m−2•s−1, 0.0016 ha•kg−1 and 38 days respectively. 

Soil parameters are obtained from Salter and Williams (1969), 
including soil moisture content at field capacity, wilting point and 
saturation. In addition, due to the lack of observational data it is 
assumed that the initial value of soil moisture in the surface layer is 50 % 
of the field holding capacity and 60 % of the root layer is the field 

holding capacity. In practice, in places like the UK where there is suf-
ficient rainfall, the effect of this parameter is eliminated. The wheat 
yield data of 2004–2017 were used for the independent simulation test 
of WOFOST. The development parameters and initial values (sowing 
date) of WOFOST were used for the average values from 1969 to 2003. 

4. Results 

4.1. Regional forecasts 

4.1.1. Regional NARMAX forecasts 
Table 3 presents the three best models identified using the NARMAX 

method and selected from a total of 5595 candidate models, with 9, 10 
and 11 parameters respectively. Note that the predictors in the table are 
the standardized versions of their corresponding original predictors as 
follows: 

xnew = (xold − mold)/sold, where mold and sold are the mean and 
standard deviation of the associated variable. Data standardization does 
not change the model structure but the model parameters, with and 
without standardization, will be different. 

The averaged regional model also provides a skilful forecast of wheat 
yield for the validation period (r = 0.73), with RMSE 0.60. The regional 
forecast is comparable in skill to the Rothamsted version (see below), 
with a slightly lower correlation (0.73 c.f. 0.78) and an improved RMSE 
(0.60c.f. 0.82). Fig. 2 shows the time series of actual and predicted 
regional yield, using the averaged NARMAX model. Years with large 
prediction errors are 2008, 2013 and 2015. 

Note that the models shown in Table 3 are completely explainable 
due to their transparent, interpretable, reproducible and parsimonious 
(TRIP) properties. They explicitly show which factors significantly affect 
the annual wheat yield, and reveal the quantitative relationship between 
wheat yield and the most important meteorological factors. 

4.1.2. Regional forecasts using other machine learning models 
To further evaluate the performance of the proposed NARMAX 

approach for UK wheat yield modelling and prediction, we also applied 
nine state-of-the-art machine learning (ML) models, mentioned in Sec-
tion 3.2, to the same dataset: 1984–2017 (34 samples) in total, of which 
the first 24 samples (70 %) were used for model training and the 
remaining 10 samples (30 %) for model testing. 

Prediction results from the nine ML models and comparison with 
actual wheat yield are shown in Fig. 3. For the last three models (arti-
ficial neural networks, ANN), their structures are as follows. FFNN: 3 
layers, hidden layer with 7 neurons; LSTM: 5 layers, 1 fully connected 

Fig. 2. Observed regional wheat yield and predicted values from the averaged 
NARMAX model. Black vertical line separates training and testing data (out-of- 
samples), which are not used in any stage of the model development. The 
number of candidate predictors used is 108. 
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layer, LSTM layer with 16 hidden units, dropout rate being 20 %; 
BiLSTM: 4 layers, 1 fully connected layer, BiLSTM layer with 12 hidden 
units, dropout rate being 20 %. For all the three neural networks, the 
input layer has a total of 108 variables. These models are implemented 
in Matlab (R2022a), and these settings are optimized through cross- 
validations on the training datasets. Our experiments showed that 
increasing the numbers of hidden neurons (nodes) or adding hidden 
layers did not help improve the network performance. 

The values of the three metrics, RMSE, MAE and correlation coeffi-
cient, on the training and test datasets, calculated from the model 

predictions are shown in Table 4. 
From Fig. 3 and Table 4, it can be observed that the performances of 

these ML models are not as good as that of the NARMAX models. The 
reason may be that the small sample size of the datasets makes most of 
these ML methods ineffective at finding a good model with satisfactory 
generalization properties (prediction ability). Our previous experience, 
together with the results here, shows that NARMAX is suitable for 
solving not only large data modelling problems but also small data 
modelling tasks; it can usually perform well for solving ‘small n, large p’ 

problems with small datasets, where the number of observations (n) is 
far smaller than the number of input variables (p). 

4.2. Rothamsted wheat yield forecasts 

4.2.1. Rothamsted yield forecasts using NARMAX models 
Using the NARMAX and the FROLS algorithm, we have identified 

two of the best models below, which will be used in the model aver-
aging: 
Model 1 : yield = 16.97 |may rain|1/5

+ 0.37(feb rain × jul Tmax)

−6.97
(
|may rain|1/3 × |may rain|1/4

)

−3.35
(
|jan sun|1/4 × |jun Twb|1/5

)
(7)  

Fig. 3. Prediction results from nine ML models and comparison with actual regional wheat yield. Thin blue line (with squares): actual yield; thick red line: prediction 
on training dataset; thick yellow line: predictions on test dataset (out-of-samples). The values of the 108 candidate predictors used for these ML models are the same 
as that of for the NARMAX model listed in Table 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
The values of the three metrics, RMSE, MAE and correlation coefficient calcu-
lated based on the model predictions of regional wheat yield (1984–2017). The 
values of the 108 candidate predictors used for these ML models are the same as 
that of for the NARMAX model listed in Table 3.  

Methods Metrics 
Training Dataset Test dataset (out-of-sample) 
RMSE MAE Corr RMSE MAE Corr 

LASSO  0.3129  0.2546  0.9308  0.9341  0.7728 −0.1869 
DT  0.2364  0.1618  0.9249  0.8025  0.6393 0.3695 
RF  0.0503  0.0379  0.9985  0.7786  0.5589 0.3642 
GAM  0.1655  0.1366  0.9925  0.7600  0.6314 0.5966 
GPR  0.1859  0.1518  1.0000  0.8818  0.7372 0 
SVM  0.0617  0.0617  0.9964  1.3738  1.2466 0.4745 
FFNN  0.2729  0.1949  0.9004  1.0252  0.8588 0.3893 
LSTM  0.2135  0.1528  0.9748  0.7586  0.6881 0.5108 
BiLSTM  0.0955  0.0812  0.9973  0.8435  0.7598 0.4759 
NARMAX  0.06  0.05  0.99  0.60  0.46 0.73  
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Model 2 : yield = 17.96 |may rain|1/5

+ 0.31(feb rain × jul Tmax)

−7.57
(
|may rain|1/3 × |may rain|1/4

)

−3.72
(
|jan sun|1/4 × |jun Twb|1/5

)

+0.60(may rain × jun Twb)

(8) 

Note that the predictors in (1) and (2) are the mean-removed ver-
sions of their corresponding original predictors as follows: xnew = xold - 
mold, where mold is the mean of the associated variable. 

A limited range of explanatory variables were selected within the 
models: February and May rainfall, July Tmax, January sun and June 
Twb. May rainfall has been converted to absolute anomalies as part of 
the pre-processing, and so indicates the magnitude of the May rainfall 
anomaly, not its sign. The variances of the prediction errors, over the 
training data, from the two models are σ̂2

1 = 0.8721 and σ̂2
2 = 0.6211, 

respectively. Some basic model statistics are shown in Table 5. 
Fig. 4 shows the inter-annual variability of the averaged NARMAX 

model compared with the Rothamsted annual wheat yields. It is notable 
that the local maxima and minima of interannual wheat yield are well 
captured by the NARMAX models over the testing period, with the 
exception of the period 2010–2013, where errors are largest. The 
greatest error occurs in 2013. This coincides with a very late sowing due 
to wet autumn and winter, so the model may not capture the yield of this 
particular year, predicting a lower yield influenced by the wet winter. 
The correlation of training and testing period data are comparable for 
the average model, (0.83c.f. 0.78), and the RMSE for the testing period is 
only slightly greater than that obtained for the training period (0.90c.f. 
0.80). 

4.2.2. Rothamsted yield forecasts using other machine learning models 
In this section, the nine machine learning methods used in Section 

4.1.2 are employed to model Rothamsted wheat yield. The samples 

considered are limited to the period 1969–2008. There are a total of 50 
samples, of which around 70 % of the samples (i.e. the 35 data values of 
the period 1969–2003) is used for model estimation, and the remaining 
30 % (i.e. the 15 data values of the period 2004–2018) is used for model 
performance testing. Again, it is important to emphasise that the 
2004–2018 data are not used in any stage of the model development. 
Prediction results from the nine ML models, and the comparison with 
actual wheat yield are shown in Fig. 5. The values of the three metrics, 
RMSE, MAE and correlation coefficient, on the training and test datasets, 
calculated from the model predictions are shown in Table 6. 

Note that the results shown in Fig. 5 and Table 6 were produced from 
the nine ML models trained using the 132 input variables, rather than 
the 660 candidate predictors mentioned in Section 3.1.2. To fairly 
compare these ML models with the proposed method, further experi-
ments have been conducted by using all the 660 predictors. All the other 
experimental settings are the same as that for the 132 predictors. 

Prediction results from the nine ML models are shown in Fig. 6. The 
values of the three metrics, RMSE, MAE and correlation coefficient, on 
the training and test datasets, calculated from the model predictions are 
shown in Table 7. 

Comparing Fig. 6 and Fig. 5 (Table 7 and Table 6, respectively), it can 
be observed that the inclusion of the 528 extended candidate predictors 
into the ML model inputs does not help improve their prediction 
performances. 

4.3. WOFOST model for Rothamsted 

The WOFOST model, albeit with minimal local parameterisation, 
shows an overall correlation of 0.31 with the actual crop yield. For the 
model-building period to 2003, the correlation is 0.39. While some pe-
riods are modelled well (e.g. 1974–1984; Fig. 7 other periods show 
limited correlation. 

Indeed, the pattern of 11-year running correlations is of concern, 
showing that after initial success, the WOFOST model correlation de-
teriorates (Fig. 8). 

Fig. 9 compares WOFOST predicted yield and that from NARMAX, 
for the NARMAX validation period and the WOFOST independent 
simulation period (2004–2018). Over this period, while WOFOST has a 
correlation of 0.09 and RMSE of 4.11, the respective values for NARMAX 
are 0.80 and 0.90. Certain years, such as 2005, 2014 and 2017 are well- 
predicted by both NARMAX and WOFOST, while 2012 is relatively 
poorly predicted by both. NARMAX performs particularly well for the 
periods 2005–2009 and 2014–2018. 

4.4. Analysis of Rothamsted NARMAX model terms 

The NARMAX model terms selected for Rothamsted are few, and 
being site-specific, may offer some insight into physical processes that 
influence wheat yield, when many of the variables such as soil and 
drainage are controlled. However, for the regional forecasts, while the 
skill levels are high, many more terms are selected, which are less easily 
explained, as a result of increased uncertainty in the data and con-
founding effects of different variables and physical interactions in the 
different regions. However, the model still provides highly skilful fore-
casts and should perhaps be better regarded as a black box approach 
more akin to other machine learning methods. 

Tables 8 organises the selected predictors from the Rothamsted 
NARMAX models according to wheat growth stage (AHDB, 2018). 

5. Discussion 

Using the NARMAX methodology, we have made skilful out-of- 
sample predictions of wheat yield for Rothamsted (r = 0.80) and for 
regional wheat production (r = 0.73). These improve on the skill ob-
tained from other empirical studies (e.g. Chmielewski and Potts (1995), 
r = 0.33; Landau et al., 2000 (r = 0.41), while the more advanced 

Table 5 
Root mean square error (RMSE) correlation and adjusted R2 for NARMAX 
models and the model average. Values are given for both training and testing 
data. The number of candidate predictors used is 132.   

RMSE Correlation Adjusted R-squared  
Training 
data 

Test 
data 

Training 
data 

Test 
data 

Training 
data 

Test 
data 

Model 1 0.92 0.98 0.76 0.80 0.58  0.49 
Model 2 0.78 0.91 0.84 0.78 0.70  0.54 
Model 

average 
0.80 0.90 0.83 0.78 Overall R-squared =

0.69 
Adjusted R-squared 
not available (it 
depends on No of 
model terms)  

Fig. 4. Predictions from averaged Rothamsted NARMAX model and the actual 
wheat yield. Bold vertical line separates the training and testing periods. The 
number of candidate predictors used is 132. 
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approach of Cai et al., (2019), which combines machine learning ap-
proaches with satellite data, achieves a skill of 0.87. However, the 
simplicity of the NARMAX approach, with its use of monthly meteoro-
logical variables only, yet high level of skill, and its usefulness for both 
individual location and regional predictions, make it a valuable contri-
bution to wheat yield forecasting, which can be extended to other re-
gions and crop types, being inexpensive to implement and only requires 
relatively small amounts of data. First in this section we consider how 
the above results obtained using NARMAX may be interpreted, although 

within the constraints of the available data there are naturally some 
remaining uncertainties and limitations. Further experimental in-
vestigations would be required to confirm the specific drivers of seasonal 
yield; however, the NARMAX approach has highlighted the potential 
significance of key parameters, such as high sensitivity to May rainfall 
(Rothamsted dataset). We then consider the wider implications of our 
findings. 

Term 1 (|may rain|1/5) in equations (7) and (8) emphasises the 
importance of May rainfall in the construction stage of wheat growth. 
Subtraction of term 3 (|may rain|1/3 × |may rain|1/4) has the effect of 
reducing the input value for particularly high or low years of term 1 (| 
may rain|1/5). It should be remembered that May rainfall has been 
converted to absolute values as part of the fractional polynomial NAR-
MAX methods (see Section 3.1.2), so |may rain| indicates the magnitude 
of the May rainfall anomaly, not its sign. The fractional power terms for 
May rain effectively damp the signal. Interestingly, when mapping back 
to the absolute rainfall anomalies, it is the years with very small or vary 
large anomalies, of either sign, that would be predicted to have a lower 
wheat yield, other thing being equal, based on terms 1 and 3 alone. Thus 
significant departures from the average May rainfall in either direction, 
have negative impacts on predicted wheat yield. This makes sense 
physiologically. May is an important time for the development of the 
wheat crop: too dry and the canopy will not expand and assimilation will 
be reduced, whereas too wet means the crop may suffer detrimentally 
from increased fungal infections. It is both interesting and significant 
that NARMAX has identified this variable as being important. 

Terms 2 (feb_rainxjul_Tmax) and 4(|jan_sun|1/4x|jun_Twb|1/5) 
(equations (7) and (8) consist of meteorological variables some months 

Fig. 5. Machine learning model prediction results and comparison with the actual wheat yield (Rothamsted). Thin blue line (with squares): actual yield; thick red 
line: prediction on training dataset; thick yellow line: predictions on test dataset (out-of-samples). The values of the 132 candidate predictors used for these ML 
models are the same as that of for the NARMAX models given by (7) and (8). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Table 6 
The values of the three metrics, RMSE, MAE and correlation coefficient calcu-
lated from the model predictions of Rothamsted wheat yield (1969–2018). The 
values of the 132 candidate predictors used for these ML models are the same as 
that of for the NARMAX models given by (7) and (8).  

Methods Metrics 
Training Dataset Test dataset (out-of-sample) 
RMSE MAE Corr RMSE MAE Corr 

LASSO  0.6389  0.4687  0.9107  1.6410  1.2307  −0.2656 
DT  0.6130  0.4793  0.9017  1.5492  1.3754  0.2372 
RF  0.3244  0.3111  0.9965  1.4423  1.1706  0.0612 
GAM  0.1618  0.1222  0.9966  1.4012  1.0258  −0.2063 
GPR  0.4211  0.3332  1.0000  1.3174  0.9680  0.0284 
SVM  0.1351  0.1351  0.9955  2.8033  2.2069  0.1606 
FFNN  0.8186  0.5389  0.8271  1.4940  1.0685  0.2128 
LSTM  0.4938  0.3577  0.9789  1.2739  0.9905  0.1937 
BiLSTM  0.3300  0.2559  0.9920  1.3313  1.0172  0.0122 
NARMAX  0.80  0.67  0.83  0.90  0.69  0.78  
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apart. Term 2 is based on straightforward anomalies; the sign and 
magnitude are both important. However, term 4 is again based on ab-
solute anomalies, with fractional powers, therefore it is the magnitude 
and not sign of these anomalies in term 4 that are important. The second 
term (feb_rainxjul_Tmax) is added, therefore high values contribute to 
higher wheat yields. As values are determined by multiplication of 
positive and negative anomalies, positive contributions to wheat yield 
arise when both components of the term have the same sign: positive/ 
negative July Tmax anomalies combined with positive/negative 
February rain anomalies. On the other hand, the lowest values of term 2, 
reducing predicted wheat yield, occur when February rain and July 
Tmax are of opposite signs. Largest contributions occur in 2014, 1995, 

1993, 1990 and 1998, whereas the greatest reductions to predicted 
wheat yield from this term occur in 1974, 1976, 2007,1977 and 2006. 
1995 is a “bust forecast”, where this term may have had undue influence 
on predicting a yield that was quite a bit higher than the actual yield. A 
drier than normal February followed by a warmer than average July, or 
a wet February followed by a cool July, both have a negative impact on 
predicted wheat yield. This may reflect a priming process whereby 
environmental conditions in February prime the wheat to respond more 
sensitively to July Tmax. 

The fourth term is subtracted and hence always has a negative in-
fluence, possibly related to diseases linked to humidity variability. High 
values for this term have the biggest negative impact on wheat yield. 
Both large above and below average anomalies of each component 
contribute to this negative impact on wheat yield. This is the hardest 
term to interpret and patterns are less clear. High humidity may have an 

Fig. 6. Machine learning model prediction results and comparison with the actual wheat yield (Rothamsted). Thin blue line (with squares): actual yield; thick red 
line: prediction on training dataset; thick yellow line: predictions on test dataset (out-of-samples). The 660 candidate predictors used for these ML models are the 
elements of the dictionary D1 defined in Section 3.1.2; the values of these 660 variables are the same as that of for the NARMAX models given by (7) and (8). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 7 
The values of the three metrics, RMSE, MAE and correlation coefficient calcu-
lated from the model predictions of Rothamsted wheat yield (1969–2018). The 
660 candidate predictors used for these ML models are the elements of the 
dictionary D1 defined in Section 3.1.2; the values of these 660 variables are the 
same as that of for the NARMAX models given by (7) and (8).  

Methods Metrics 
Training Dataset Test dataset (out-of-sample) 
RMSE MAE Corr RMSE MAE Corr 

LASSO  0.2957  0.2292  0.9867  0.9012  0.9310  0.3315 
DT  0.3690  0.3013  0.9655  1.2546  1.4004  −0.0702 
RF  0.3659  0.3075  0.9889  1.6780  0.9823  0.2172 
GAM  0.0102  0.0106  0.9998  1.3383  0.9906  −0.0270 
GPR  0.4211  0.3332  0.9997  1.3704  0.9680  0.0284 
SVM  0.1351  0.1351  0.9957  1.3174  2.1734  0.1333 
FFNN  1.1336  0.5421  0.7127  2.5962  1.6860  0.0799 
LSTM  0.1766  0.1026  0.9962  2.1119  0.9926  0.2546 
BiLSTM  0.2957  0.2292  0.9987  1.3155  0.9310  0.2744 
NARMAX  0.80  0.67  0.83  0.90  0.69  0.78  

Fig. 7. WOFOST modelled and actual crop yields, Rothamsted first wheat, 
1969–2017. Bold vertical line separates training and testing periods. 
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adverse impact through diseases such as mildews, while low humidity 
may adversely affect other processes such as pollination. Again, partic-
ularly large January sun anomalies, either positive or negative, may 
serve to precondition the wheat to susceptibility to humidity variations 

in June. 
The fifth term is only used in model 2 (equation (8); (may_r-

ainxJun_Twb). The components of the term are not fractional powers. If 
both May rain and June Twb anomalies are of the same sign, the effect is 
a positive one on wheat yield, while if they are of opposite sign, the 
effect is negative. This term plays a minor role in the model averaging 
procedure. 

It is interesting that the meteorological predictors selected for the 
regional models are almost entirely different to those identified for 
Rothamsted and are much more complex. While initially surprising, 
further reflection indicates that this is likely to be the case. The corre-
lation between Rothamsted and regional wheat yields is 0.08, indicating 
that different processes are influencing yield variability. A forecast 
model for an individual location will be heavily influenced by local 
factors, which even out over the regional forecasts, which will be more 
impacted by larger scale weather variability. For example, the loamy soil 
at Rothamsted has a high field capacity and will result in a negative 
impact of increased rainfall on yield (Chmielewski and Potts,1995). The 
pooling of different ARs in the regional forecast increases uncertainty 
and the model will be unable to explain secondary impacts of meteo-
rological variables on wheat yield due to the confounding influences of 
conditions in different regions. However, this regional model still proves 
highly skilful when predicting yields for a validation dataset, and can be 
used as a “black box” forecasting tool, akin to other machine learning 
techniques. 

While the criticism of empirical models focuses on how they 
approximate the underlying processes that determine crop yield 
(Landau et al., 2000), here the emphasis is on providing a simple, easy- 
to-implement predictive tool. However, the predictors selected, while 
complex, show some agreement with those identified in previous studies 
and may help to shed some light on important links between crop 
physiology, meteorological variables and secondary impacts such as 
pests and diseases. 

A limitation of crop models such as WOFOST is that they are unable 
to replicate these secondary effects, whereas in reality crop yield is 
heavily influenced by the interaction of meteorological variables with 
pests, disease, soil conditions and the effectiveness of management re-
sponses to these (Jamieson et al., 1999). While May rainfall maybe 
particularly relevant to Rothamsted due to soil types, in other locations 
where the soil is different this may not be a factor. Baier and Robertson 
(1968) find soil moisture to be more important in determining yield than 
rainfall. In particular, soil moisture before anthesis is identified as crit-
ical, which may relate to the May rainfall selected for the Rothamsted 
model. As they use a number of sites, this could be a reflection of the 
interaction of rainfall with soil type. At a specific site, soil does not vary, 
and therefore rainfall is likely to be a useful variable, although the na-
ture of the impact of rainfall in different months will vary between sites 
according to soil type. Hence a model developed for a specific location 
such as Rothamsted cannot be used directly for another location where 
very different local conditions will interact with the meteorological 
variables. Similarly, interactions with local conditions may favour or 
discourage pests and diseases at different times of the year in different 
locations. 

February rainfall is identified for Rothamsted. Higher rainfall alone 
would indicate an increased yield, at odds with other studies which find 
a negative relationship with February rainfall (e.g. Landau et al., 2000), 
who suggested it might be a possible consequence of leached fertiliser 
which is often applied at this time. Here, as noted above, the February 
rainfall is an interaction term with July Tmax. There are two possible 
explanations here. It is possible for a connection to exist between these 
meteorological variables several months apart. Previous studies 
(Wedgbrow et al., 2002; Kettlewell et al., 2003; Qian and Saunders 
2003) find a link between the winter North Atlantic Oscillation (NAO), a 
semi-permanent dipole of high and low pressure over the Atlantic 
(Hurrell, 1995; Hanna and Cropper, 2017) and weather conditions in the 
following summer. For Rothamsted, a positive winter NAO would be 

Fig. 8. 11-year running correlations between actual and WOFOST modelled 
first wheat yield, Rothamsted, 1969–2017. Bold horizontal line denotes 95 % 
significance (p = 0.05) correlation value. 

Fig. 9. Comparison of NARMAX and WOFOST predicted yields and actual 
yields from Rothamsted, 2004–2018. 

Table 8 
Predictor variables from the NARMAX Rothamsted models, organised by wheat 
development phase.  

Variable Development 
Phase 

Physiological 
processes 

Notes 

May rain Construction 
GS39 

Start of ear formation/ 
root growth, stem 
storage & elongation 

Main N uptake time. 
Soil N release 
stimulated by warm 
moist soils 
N availability 
controls canopy 
expansion 

Feb rain foundation tillering/leaf 
emergence/root 
growth 

Ear initiation 

July 
Tmax 

production Grain filling Disease, water 
availability 
Hot weather reduces 
grain growth by 
shortening growing 
period 

June wet 
bulb T 

Construction/ 
production 
GS59 

Ear formation/ 
flowering/grain filling 

Potential impact of 
pests and diseases 

January 
sun 

FoundationGS21  
(main shoot, 1 
tiller, >9 leaves) 

Tillering/leaf 
emergence/root 
growth 

Ear initiation  
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associated with mild, yet dry conditions (Hall and Hanna, 2018), fol-
lowed by a more positive NAO in summer, with warmer drier weather, 
which has been shown to impact on yield (Atkinson et al., 2005). 
However, the signs of relationship are not correct, as a wetter winter 
followed by a warmer summer would enhance wheat yields and vice 
versa. This is in agreement with Brown (2013) who finds that the winter 
NAO relationship with wheat yield does not hold for Scotland. Hall and 
Hanna (2018) show that the relationship of the NAO with regional 
temperature and rainfall is not consistent across the country: the usual 
association of a positive winter NAO being wet only holds for the 
western side of the UK. It is more likely that the earlier meteorological 
variables (February rain, term 2; January sun, term 4) have an impact on 
wheat physiology which can precondition wheat to the influence of the 
second variable later in the season (July maximum temperature, term 2; 
June wet bulb temperature, term 4). For example, ear initiation takes 
place in the foundation stage. This may affect certain attributes of the 
ear which are later susceptible to either July maximum temperatures 
(term 2) or June wet bulb temperatures (term 4). 

NARMAX or other machine learning tools will never substitute for 
CGSMs and vice versa. NARMAX is a complementary tool that can 
provide forecasts with significant skill, whilst also showing some insight 
into key environmental drivers of crop responses (e.g. sensitivity to May 
rainfall). NARMAX models cannot be extended beyond the extent of the 
data within which they are parameterised. However, CGSMs benefit 
from describing the state-of-the-art in mechanistic understanding of the 
key bio-physical driving crop growth, and as such should provide an 
excellent tool for forecasting impacts of long-term climate change on 
yield. 

NARMAX is capable of generating skilful wheat yield forecasts, at 
both site and regional levels. It provides an easy-to-implement predic-
tion tool, circumventing the problem of limited data availability for 
specific sites. The HadUK-Grid dataset can be used for sites where there 
is no meteorological data. However, a next step is to make the fore-
casting operational; HadUK-Grid is not available in near-real time and so 
would be unable to provide an up-to-date prediction. It will be necessary 
to find or develop other meteorological products to meet this need, or to 
work closely with operational forecasting centres. It would also be 
possible to develop a spatio-temporal version of NARMAX, which takes 
into account meteorological variables and wheat yields at a range of 
locations, together with other local information such as soil and crop- 
husbandry factors, and furthermore the method can easily be applied 
to other crops. 
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