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a b s t r a c t 

Convex quantile regression (CQR) is a fully nonparametric approach to estimating quantile functions, 

which has proved useful in many applications of productivity and efficiency analysis. Importantly, CQR 

satisfies the quantile property, which states that the observed data is split into proportions by the CQR 

frontier for any weight in the unit interval. Convex expectile regression (CER) is a closely related nonpara- 

metric approach, which has the following expectile property: the relative share of negative deviations is 

equal to the weight of negative deviations. The first contribution of this paper is to extend these quan- 

tile and expectile properties to the general set of shape constrained nonparametric functions. The second 

contribution is to relax the global concavity assumptions of the CQR and CER estimators, developing the 

isotonic nonparametric quantile and expectile estimators. Our third contribution is to compare the fi- 

nite sample performance of the CQR and CER approaches in the controlled environment of Monte Carlo 

simulations. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Convex quantile regression (CQR) introduced by Wang et al. 

2014) is a fully nonparametric approach to estimating quantile 

unctions, which has proved useful in many applications of produc- 

ivity and efficiency analysis due to its robustness against random 

oise, heteroscedasticity, and outliers. One of the prime applica- 

ion areas has been shadow pricing of undesirable outputs such as 

reenhouse gas emissions (see, e.g., Dai et al., 2020; Kuosmanen 

t al., 2020; Quinn et al., 2022; Zhao & Qiao, 2022 ). 

In practice, CQR employs a convenient linear programming (LP) 

ormulation that minimizes the weighted sum of positive and neg- 

tive deviations from the frontier, which has the deterministic data 

nvelopment analysis (DEA) as the limiting special case where the 

eight of positive deviations τ approaches to one. 1 Wang et al. 

2014) formally show that the CQR production function satisfies 

he quantile property, which states that the observed data is split 

nto proportions τ below and 1 − τ above the CQR frontier for any 

eight τ in the unit interval. Kuosmanen & Zhou (2021) further 
∗ Corresponding author. 

E-mail addresses: sheng.dai@utu.fi (S. Dai), timo.kuosmanen@utu.fi (T. Kuosma- 

en), xun.zhou@york.ac.uk (X. Zhou) . 
1 Banker et al. (1991) consider a very similar approach to CQR, referring to it as 

stochastic DEA”. 

t

s

i

r

ttps://doi.org/10.1016/j.ejor.2023.04.004 

377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article
xtend the quantile property to the multiple-input multiple-output 

etting using the directional distance function. 

Convex expectile regression (CER) is a closely related nonpara- 

etric approach, which differs from CQR in that the weighted sum 

f squared deviations is minimized instead of the weighted sum 

f absolute deviations. 2 Kuosmanen et al. (2015) motivate the use 

f squared deviations by noting that the CER frontier is always 

nique, whereas the CQR frontier is not necessarily unique if there 

re ties in the data (i.e., x i = x j for some pair of observations i , 

j). Kuosmanen & Zhou (2021) formally show that CER satisfies the 

xpectile property, which states that the relative share of negative 

eviations in the total sum of deviations is always equal to the 

eight ˜ τ of negative deviations. 

Thus far, the quantile property of CQR and the expectile prop- 

rty of CER have been established in the canonical case of mono- 

onic increasing and globally concave production function. How- 

ver, the literature on shape constrained nonparametric regression 

nd frontier estimation includes many other relevant specifications, 

ncluding the constant, non-increasing, or non-decreasing returns 

o scale (e.g., Kuosmanen et al., 2015 ) and the isotonic regres- 

ion (e.g., Keshvari & Kuosmanen, 2013 ) that relaxes the concav- 

ty/convexity assumption. Besides single output production func- 
2 In the parametric stream of literature, Aigner et al. (1976) pioneer the expectile 

egression approach. 
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ions, the joint production of multiple outputs is routinely modeled 

sing the cost functions and distance functions. Finally, additional 

egularizations such as the L 1 norm, L 2 norm, or the Lipschitz norm 

re used to alleviate overfitting and the curse of dimensionality 

e.g., Dai, 2023; Mazumder et al., 2019 ). It is not immediately ob- 

ious whether and to what extent the quantile property of CQR 

r the expectile property of CER carries over to these relevant ex- 

ensions. The first contribution of this paper is to state and prove 

he generalized quantile and expectile properties that apply to any 

hape constrained nonparametric estimators. 

The second contribution of this paper is to relax the con- 

avity assumptions of CQR and CER, building on the work by 

eshvari & Kuosmanen (2013) . Importantly, the generalized quan- 

ile and expectile properties established in this paper also apply 

o the resulting isotonic convex quantile regression and isotonic con- 

ex expectile regression , respectively. Our main motivation for re- 

axing the concavity constraints is to facilitate the comparison of 

he CQR and CER approaches with other commonly used quan- 

ile frontier approaches in the literature. For example, Aragon et al. 

2005) propose the widely used order- α estimator, where no con- 

avity/convexity assumptions are usually imposed. 3 In contrast to 

he direct CQR and indirect CER approaches, the order- α estimator 

rst estimates the quantile of the empirical distribution of devi- 

tions from the best practice frontier and then converts it to the 

orresponding quantile function. Wang et al. (2014) suggest that 

he performance of this procedure heavily depends on the assump- 

ions on the distribution of the composite error term and the func- 

ional form of the underlying regression function (e.g., production, 

ost, or distance function). Thus far, the finite sample performance 

f the direct CQR, the indirect CER, and the order- α estimators has 

ot been systematically examined in the controlled environment of 

onte Carlo simulations. 

Our third contribution is to compare the finite sample perfor- 

ance of the direct CQR estimation versus the indirect CER estima- 

ion of quantiles. While the quantile and expectile functions differ 

see, e.g., Newey & Powell, 1987 ), one can easily convert expectiles 

o quantiles, and vice versa, using a well-established transforma- 

ion (e.g., Efron, 1991; Waltrup et al., 2015 ). In the present context, 

uosmanen & Zhou (2021) hypothesize that the indirect estima- 

ion of quantile frontiers by first estimating multiple CER frontiers 

nd subsequently converting them to relevant quantile functions 

an help to improve statistical performance compared to the direct 

QR estimation. The Monte Carlo evidence presented in this paper 

upports this hypothesis. 

We stress that our main focus is on the further development 

f the CQR and CER estimators. Our main motivation for includ- 

ng the order- α estimator in our Monte Carlo simulations is to put 

he finite sample performance of CQR and CER into an appropri- 

te perspective. While a thorough review of the well-established 

rder- α estimator falls beyond the scope of this paper, our simula- 

ions might provide interesting evidence regarding the finite sam- 

le performance of the order- α estimator as well. For example, we 

ocument that the order- α frontier does not necessarily satisfy the 

uantile property, particularly at low quantile. 

The rest of this paper is organized as follows. Section 2 de- 

cribes the theory on shape constrained nonparametric quantile 

nd expectile regression. Section 3 introduces the operational im- 

lementation of quantile function estimation. Section 4 performs 

 Monte Carlo study to compare the finite sample performance 
3 Of course, one can subsequently convexify the estimated step function, simi- 

ar to Ferreira & Marques (2020) and Polemis et al. (2021) . Note that although the 

rder- α estimator assumes monotonicity, the conditional estimator does not neces- 

arily satisfy monotonicity (see Section 5 for an illustration). The recent paper by 

aouia et al. (2017) avoids this problem by proposing an alternative unconditional 

rder- α estimator. 
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c

C
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915 
mong nonparametric quantile frontier estimators. To illustrate and 

isualize the estimated quantile functions, an empirical application 

o a dataset of U.S. electric power plants is presented in Section 5 .

ection 6 concludes this paper with suggested avenues for future 

esearch. Formal proof and additional Monte Carlo simulation evi- 

ence are provided in Appendices A and B . 

. Theory 

This section introduces the shape constrained quantile regres- 

ion and states the generalized quantile property in Section 2.1 . 

he shape constrained expectile regression and the generalized ex- 

ectile property are introduced in Section 2.2 . Since the main use 

f these methods has thus far been in the context of productiv- 

ty and efficiency analysis, we phrase the results in the context of 

 stochastic nonparametric production model. However, the gen- 

ralized quantile and expectile properties introduced in this sec- 

ion apply more broadly in shape constrained nonparametric esti- 

ation in any context. 

.1. Shape constrained nonparametric quantile regression 

Consider the following nonparametric regression model 

y i = f ( x i ) + ε i , for i = 1 , . . . , n, (1) 

here x ∈ R 

d is the d-dimensional input vector and y ∈ R is the

ingle output, respectively. 4 f : R 

d → R is a nonparametric fron- 

ier production function and the composite error term ε consists 

f the random noise term v and the inefficiency term u according 

o ε = v − u . The nonparametric model (1) does not assume any 

pecific functional form for the regression function f , but rather 

ssumes that f satisfies certain axiomatic properties (e.g., mono- 

onicity, concavity/convexity). As such, one can readily use this 

onparametric model to characterize a production function by im- 

osing shape constraints for all values of x in the support of x (see, 

.g., Kuosmanen, 2008; Kuosmanen & Johnson, 2010; Yagi et al., 

020 ). 

Assume a real valued data set { ( x i , y i ) } n i =1 
and let F be the joint

istribution function of ( x , y ) and F x (x ) be the associated marginal

istribution function of x ( Aragon et al., 2005 ). Given the quantile 

∈ (0 , 1) , the corresponding quantile function is defined as 

Q(τ | x ) := F −1 (τ | x ) = inf { y ≥ 0 | F (y | x ) ≥ τ } (2) 

here F (y | x ) = F ( x , y ) /F x (x ) and it is the conditional distribution

unction of y given x ≤ x . If the distribution function F (y | x ) is

trictly increasing, then Q(τ | x ) = F −1 (τ | x ) , where F −1 (τ | x ) is

he inverse of F (y | x ) . 
Note that when the data are generated according to Eq. (1) and 

he inputs are exogenous in the sense that E (ε| x ) = E (u ) , then the

uantile function (2) can be equivalently stated as 

Q(τ | x i ) = f ( x i ) + F −1 
ε i 

(τ ) (3) 

here F ε is the cumulative distribution function of the composite 

rror term ε. 

The objective of the shape constrained nonparametric regres- 

ion is to find the best-fit function f within the set of functions F . 

or example, f could be specified as a production function as in 

ang et al. (2014) , penalized production function as in Dai (2023) , 

irectional distance function as in Kuosmanen & Zhou (2021) , or 

ome other functions (e.g., cost function). Set F could include the 

lasses of monotonic increasing/decreasing, concave/convex, and/or 
4 In this paper, we focus on the single output case (i.e., y ∈ R ), noting that 

QR/CER and their nonconvex counterparts can also handle multiple outputs, see, 

.g., Kuosmanen & Zhou (2021) . 
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omogenous functions, possibly subject to other restrictions as 

ell. 

In general, the shape constrained nonparametric estimator of 

he quantile function (3) can be stated as 

ˆ Q (τ | x i ) = arg min 

f τ ∈F 
τ

n ∑ 

i =1 

ρτ (y i − f τ ( x i )) (4) 

here ρτ (t) = (τ − 1 { t < 0 } ) t is the check function ( Koenker &

assett, 1978 ). Using Eq. (3) , the estimator can be obtained as the

ptimal solution to the following optimization problem 

min τ
n ∑ 

i =1 

ε + 
i 

+ (1 − τ ) 
n ∑ 

i =1 

ε −
i 

(5) 

s.t. y i = Q(τ | x i ) + ε + 
i 

− ε −
i 

∀ i 

Q ∈ F 

ote that the error term ε i in (1) is now decomposed into two 

on-negative components ε + 
i 

≥ 0 and ε −
i 

≥ 0 such that ε i = ε + 
i 

−
 

−
i 

. 

efinition 1 (Quantile property) . For any τ ∈ (0 , 1) , the number

f strict positive residuals ( ̂  ε + 
i 

> 0 ) denoted by n + τ and the number

f strict negative residuals ( ̂  ε −
i 

> 0 ) denoted by n −τ satisfy the in-

qualities: 
n + τ

n 
≤ 1 − τ and 

n −τ
n 

≤ τ, where n is the total number of 

bservations. 

heorem 1. For any real-valued data and non-empty set of functions 

, residuals ˆ ε + 
i 

and ˆ ε −
i 

, i = 1 , . . . , n obtained as the optimal solution

o (5) satisfy the quantile property. 

roof. See Appendix A . �

This result generalizes the previous quantile properties estab- 

ished by Wang et al. (2014) and Kuosmanen & Zhou (2021) to 

ny arbitrary shape constrained nonparametric quantile estimator 

hat can be stated as a special case of the generic formulation (5) .

he practical benefit of this generalization is that it is no longer 

ecessary to prove the quantile property every time one adds or 

eletes constraints. Note that the set F can include not only pro- 

uction axioms such as the weak or strong disposability, concav- 

ty/convexity, or alternative returns to scale assumptions, it can 

lso include weight restrictions or regularization such as Lipschitz 

ontinuity, which can be useful to alleviate overfitting and/or the 

urse of dimensionality of the quantile estimator. 

.2. Shape constrained nonparametric expectile regression 

Newey & Powell (1987) introduce linear expectile regression 

s an alternative method that relies on asymmetric least squares. 

uosmanen et al. (2015) are the first to consider asymmetric least 

quares in the present context of shape constrained nonparametric 

egression. Formally, for expectile ˜ τ ∈ (0 , 1) , the expectile function 

s defined as 

�( ̃  τ | x i ) = f ( x i ) + F −1 
ε i 

(τ ) (6) 

The shape constrained nonparametric estimator of the expectile 

unction (6) is formulated as 

ˆ �( ̃  τ | x i ) = arg min 

f ˜ τ ∈F 
˜ τ

n ∑ 

i =1 

ρ ˜ τ (y i − f ˜ τ ( x i )) 
2 (7) 

here ρ ˜ τ (t) = (τ − 1 { t < 0 } ) t 2 is the “check function” in expectile

egression ( Newey & Powell, 1987 ). Using Eq. (3) , the expectile 

stimator can be obtained as the optimal solution to the following 

ptimization problem 

min ˜ τ
n ∑ 

i =1 

(ε + 
i 
) 2 + (1 − ˜ τ ) 

n ∑ 

i =1 

(ε −
i 
) 2 (8) 
916 
s.t. y i = �( ̃  τ | x i ) + ε + 
i 

− ε −
i 

∀ i 

� ∈ F 

efinition 2 (Expectile property) . For any ˜ τ ∈ (0 , 1) , the number

f strict positive residuals ( ̂  ε + 
i 

> 0 ) and the number of strict nega-

ive residuals ( ̂  ε −
i 

> 0 ) satisfy ˜ τ = 

∑ n 
i =1 ˆ ε 

−
i 

/ ( 
∑ n 

i =1 ˆ ε 
+ 
i 

+ 

∑ n 
i =1 ˆ ε 

−
i 
) . 

heorem 2. For any real-valued data and non-empty set of functions 

, residuals ˆ ε + 
i 

and ˆ ε −
i 

, i = 1 , . . . , n obtained as the optimal solution

o (8) satisfy the expectile property. 

roof. See Appendix A . �

This result generalizes the result by Kuosmanen & Zhou 

2021) to any arbitrary shape constrained expectile estimator. Note 

hat the expectile property is similar to the quantile property, but 

ot exactly the same. This is because the expectile function is dif- 

erent from the quantile function (see, e.g., Newey & Powell, 1987; 

altrup et al., 2015 ). Beyond the discrepancy between the quan- 

iles and expectiles, both approaches can be connected by a unique 

ne-to-one mapping from quantile τ to expectile ˜ τ . There exists a 

ijective function such that � ˜ τ = Q τ , where expectile ˜ τ is defined 

s below ( De Rossi & Harvey, 2009 ) 

˜ τ = 

∫ Q τ
−∞ 

(z − Q τ ) dF (z) ∫ Q τ
−∞ 

(z − Q τ ) dF (z) − ∫ ∞ 

Q τ
(z − Q τ ) dF (z) 

, 

here 
∫ Q τ
−∞ 

(z − Q τ ) dF (z) and 

∫ ∞ 

Q τ
(z − Q τ ) dF (z) are the lower and

pper partial moments, respectively, and F (z) is the cumulative 

istribution function of z. Therefore, we can always convert the 

xpectile based quantile estimates ˆ � ˜ τ from the quantile estimates 
ˆ 
 τ , and vice versa. The estimator (7) can thus be treated as an in-

irect estimation of quantiles through expectile regression. 

In practice, a simple procedure suggested by Efron (1991) is first 

o estimate the expectile and then indirectly determine the corre- 

ponding quantile by counting the number of negative residuals 

 

−
i 

that take strictly positive values. More recently, Waltrup et al. 

2015) propose a similar but more efficient approach by using the 

inear interpolation method. Note that all alternative transforma- 

ion procedures rely on the quantile property. In another context, 

he estimated expectile function has been suggested to be more 

ensitive to outliers than the estimated quantile function ( Daouia 

t al., 2020; Waltrup et al., 2015 ), which, however, is not supported 

y our Monte Carlo simulations (see Appendix B ). 

However, the effectiveness of indirect estimation of quantiles 

hrough expectile regression has not been tested in the present 

ontext of CER. Moreover, as an alternative to the direct quantile 

egression, we really do not know about the finite sample perfor- 

ance of CER. In Section 4 , we will systematically compare the 

erformance of these two approaches through Monte Carlo simu- 

ations. 

. Estimation 

This section discusses the operational implementation of shape 

onstrained quantile regression. Section 3.1 discusses the di- 

ect quantile estimation in the canonical case of monotonic in- 

reasing and concave production functions ( Wang et al., 2014 ). 

ection 3.2 discusses the indirect estimation of quantiles based on 

ER ( Kuosmanen & Zhou, 2021 ). In Sections 3.3 and 3.4 we relax

he concavity assumption following Keshvari & Kuosmanen (2013) , 

ntroducing the isotonic versions of CQR and CER, respectively. 

.1. Direct CQR 

If the regression function f is assumed to be a family of con- 

inuous, monotonic increasing, and globally concave functions, we 
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5 The convex nonparametric least squares (CNLS) estimator ( Kuosmanen, 2008 ) is 

the special case of the CER estimator (10) when ˜ τ = 0 . 5 , that is, when the equal 

weight ˜ τ is given to both positive and negative deviations. 
an apply the direct CQR approach or the indirect CER approach to 

stimate quantile functions. Specifically, we solve problem (4) to 

btain the estimated quantile function by converting it to the fol- 

owing LP problem ( Wang et al., 2014 ) 

min 

α, β,ε + ,ε −
τ

n ∑ 

i =1 

ε + 
i 

+ (1 − τ ) 
n ∑ 

i =1 

ε −
i 

(9) 

s.t. y i = αi + β
′ 
i x i + ε + 

i 
− ε −

i 
∀ i 

αi + β
′ 
i x i ≤ αh + β

′ 
h x i ∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i 

≥ 0 , ε −
i 

≥ 0 ∀ i 

here the objective function is convex but not strictly convex on 

 

n . The first set of constraints can be interpreted as a multivariate 

egression equation. The second set of constraints, i.e., a system of 

friat inequalities, imposes concavity. The third set of constraints 

mposes monotonicity, and the last refers to the sign constraints 

n the decomposed error terms. 

Since it was proposed by Wang et al. (2014) , convex quantile 

egression (CQR), as formulated in (9) , has been applied to a num- 

er of studies because of its appealing features (e.g., Jradi & Rug- 

iero, 2019; Kuosmanen et al., 2015; Kuosmanen & Zhou, 2021 ). For 

xample, the CQR estimator aims to estimate the conditional me- 

ian or other quantiles of the response variable, and thus is more 

obust to random noise and heteroscedasticity than other central 

endency estimators such as convex nonparametric least squares 

 Kuosmanen, 2008 ) and penalized convex regression ( Dai et al., 

022 ). Furthermore, the CQR estimator is relatively computation- 

lly simple due to its LP formulation. In practice, problem (9) can 

e solved by standard algorithms for LP such as CPLEX or MOSEK. 

One notable drawback of CQR is that the optimal solution to 

roblem (9) is not necessarily unique, which also affects the esti- 

ated intercepts and slope coefficients (i.e., ˆ αi and 

ˆ βi j ). This non- 

niqueness problem of quantile regression could be assumed away 

f the inputs x are randomly drawn from a continuous distribu- 

ion. However, the data will likely contain ties if the inputs are 

andomly drawn from a discrete distribution (consider, e.g., bino- 

ial or Poisson distribution). Empirical data are always rounded 

o a limited number of decimal digits, so the data tend to be dis- 

rete even when the underlying input distribution is continuous. 

inally, firms optimize their inputs and outputs to maximize profit 

or some other objective function), so the assumption of randomly 

rawn data is also debatable. 

The coefficients α and β in problem (9) characterize the sub- 

radients of the estimated nonparametric quantiles. Having solved 

roblem (9) , the τ th quantile function can be expressed as (see, 

.g., Kuosmanen, 2008; Seijo & Bodhisattva, 2011 ) 

ˆ Q (τ | x i ) = min 

i =1 , ... ,n 

{
ˆ ατ

i + 

ˆ β
τ

i 
′ x 

}
. 

This representor function allows us to 1) built an explicit repre- 

entation for the quantile function 

ˆ Q , which helps assess marginal 

roperties, connect to the intuitive economic interpretations, and 

orecast and model ex-post economic events; 2) transform the in- 

nite dimensional regression problem (4) into a finite dimensional 

P problem (9) , which also apply to the general multiple regression 

etting. 

.2. Indirect CER 

Following Kuosmanen & Zhou (2021) , we can indirectly esti- 

ate monotonic and concave quantile functions through expec- 

ile regression by transforming problem (7) into the following 
917 
uadratic programming (QP) problem 

min 

α, β,ε + ,ε −
˜ τ

n ∑ 

i =1 

(ε + 
i 
) 2 + (1 − ˜ τ ) 

n ∑ 

i =1 

(ε −
i 
) 2 (10) 

s.t. y i = αi + β
′ 
i x i + ε + 

i 
− ε −

i 
∀ i 

αi + β
′ 
i x i ≤ αh + β

′ 
h x i ∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i 

≥ 0 , ε −
i 

≥ 0 ∀ i 

here the CER problem now minimizes the asymmetric squared 

eviations instead of the absolute deviations in (9) . 5 The quadratic 

bjective function in (10) guarantees the uniqueness of estimated 

uantile functions. Note that solving the CER problem requires QP, 

nd that standard solvers such as CPLEX or MOSEK can effectively 

andle QP problems as well. 

While the estimated quantile function is always unique in the 

ER estimation, the feasible set of problem (10) could be un- 

ounded. That is, there may exist multiple combinations of shadow 

rices ( ̂  βi j ) leading to the same optimal value of the objective 

unction ( Dai, 2023 ). The non-unique estimates in both CQR and 

ER may further cause a longstanding problem of quantile cross- 

ng in quantile estimation. Dai et al. (2022) propose to address this 

roblem by introducing additional regularization. By Theorem 2 , 

uch regularization does not violate the expectile property. 

.3. Direct isotonic CQR 

Since the current methodological toolbox does not include a 

onconvex quantile regression method, we propose to extend the 

pproach by relaxing the convexity assumption and relying on the 

onotonicity assumption only. For both CQR and CER, we propose 

sotonic CQR and isotonic CER as their nonconvex counterparts. We 

hen can resort to the direct isotonic CQR or indirect isotonic CER 

pproach to estimate the monotonic quantile function. 

Consider the production function f is isotonic with respect 

o a partial ordering: if for any pair x i and x h , x i � x h , the 

stimated production function 

ˆ f ( x i ) ∈ M , where M := { f ∈ R 

d :

f ( x i ) ≤ f ( x h ) } . When the partial ordering is defined as the dom-

nance relation (i.e., x i � x j if x i ≤ x j ), the non-decreasing produc- 

ion function satisfies monotonicity (i.e., free disposability of in- 

uts); that is, isotonicity is equivalent to monotonicity. However, 

he partial ordering could also be defined by other criteria (e.g., re- 

ealed preference information), where isotonicity is not exactly the 

ame as monotonicity. In this paper, we follow the general isotonic 

otation given above but note that monotonicity is an important 

pecial case of isotonicity. 

For a given set of data { ( x i , y i ) } n i =1 
and quantile τ , for a given

uantile τ , convex quantile regression over the class M is 

ˆ Q (τ | x i ) = arg min 

f τ ∈M 

n ∑ 

i =1 

ρτ (y i − f τ ( x i )) (11) 

here the isotonic CQR problem (11) selects the best-fit iso- 

onic quantile function from the class M . In practice, however, 

t is impossible to directly search for the optimal solution from 

his infinite problem. Following Barlow & Brunk (1972) , we can 

armlessly replace the class of isotonic quantile functions M by 

he step functions G = 

{
Q : R 

d + → R + | Q(τ | x ) = 

∑ n 
i =1 δi Z(τ | x i ) 

}
here Z(τ | x i ) is an indicator function at a given quantile τ and 
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Fig. 1. MSE results of the order- α, isotonic CQR, and isotonic CER estimators with n = 10 0 0 . 
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6 As an extension of CQR, isotonic CQR remains in the class of convex regression, 

even though the resulting step function is typically neither convex nor concave. 

Note that the estimated step function envelops a union of n convex sets. 
s formulated as 

Z(τ | x i ) = 

{
1 if x i � x , 
0 otherwise . 

nd δi > 0 is the parameter to characterize the step height. Note 

hat the step functions G are a subset of the isotonic functions M 

i.e., G ⊂ M ), which helps to transform the infinite problem (11) to 

 finite problem (see, e.g., Barlow & Brunk, 1972; Keshvari & Kuos- 

anen, 2013 ). 

The infinite problem (11) can be solved via the following finite 

imensional isotonic CQR approach 

min 

α, β,ε + ,ε −
τ

n ∑ 

i =1 

ε + 
i 

+ (1 − τ ) 
n ∑ 

i =1 

ε −
i 

(12) 

s.t. y i = αi + β
′ 
i x i + ε + 

i 
− ε −

i 
∀ i 

p ih 

(
αi + β

′ 
i x i 

)
≤ p ih 

(
αh + β

′ 
h x i 

)
∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i 

≥ 0 , ε −
i 

≥ 0 ∀ i 

here isotonic CQR requires an additional preprocessing step to 

etermine the value of p ih that represents the partial order be- 

ween observation i and h . If p ih = 0 , the concavity constraint on

he production function f is relaxed in isotonic CQR, that is, the 

friat inequality constraints are eliminated from isotonic CQR (12) ; 

therwise, the isotonic CQR estimator is reduced to the original 

QR estimator (9) . Note that all the notations but p ih in problem 

12) are the same as those in problem (9) . Therefore, the isotonic 

QR estimator provides an alternative way to model the class of 
918 
onparametric isotonic quantile regressions, which is computation- 

lly convenient and provides a clear link to CQR. 6 

To determine the value of p ih in (12) , we need to define a bi-

ary matrix P = 

[
p ih 

]
n ×n 

p ih = 

{
1 if x i � x h , 
0 otherwise . 

he matrix P converts the partial order relations between two ob- 

ervations into binary values and the value of p ih is determined by 

he standard dominance relations, which can be simply detected 

y an enumeration procedure suggested by Keshvari & Kuosmanen 

2013) . Further, the matrix P can be interpreted as a preference 

atrix if the partial ordering denotes the preference of a decision 

aker. 

.4. Indirect isotonic CER 

Similarly, the indirect approach to fitting the isotonic quantile 

unction is formulated as 

ˆ �( ̃  τ | x i ) = arg min 

f ˜ τ ∈M 

n ∑ 

i =1 

ρ ˜ τ (y i − f ˜ τ ( x i )) 
2 (13) 

We also convert the infinite dimensional problem (13) to the 

ollowing tractable QP problem to guarantee the unique expectile 

stimation and derive the isotonic CER approach 

min 

α, β,ε + ,ε −
˜ τ

n ∑ 

i =1 

(ε + 
i 
) 2 + (1 − ˜ τ ) 

n ∑ 

i =1 

(ε −
i 
) 2 (14) 

s.t. y i = αi + β
′ 
i x i + ε + 

i 
− ε −

i 
∀ i 
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Fig. 2. Bias results of the order- α, isotonic CQR, and isotonic CER estimators with n = 10 0 0 . 
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7 In the expectile case, we can replace the sum of weighted absolute residuals 

with the sum of weighted squared residuals. 
p ih 

(
αi + β

′ 
i x i 

)
≤ p ih 

(
αh + β

′ 
h x i 

)
∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i 

≥ 0 , ε −
i 

≥ 0 ∀ i 

here the parameter p ih is also predetermined by the standard 

ominance relation between the pairs of observations i and h . If 

p ih = 1 , problem (14) is reduced to problem (10) , whereas problem

14) can be more easily solved in comparison with the original CER 

stimator (10) . Furthermore, when the quadratic objective function 

s applied, we can connect the isotonic CER estimator with the 

tandard FDH approach as a special case (i.e., ˜ τ = 0 . 5 ). Note that

he shape constrained quantile and expectile regression estimators 

an be extended to handle multiple outputs by introducing the di- 

ectional distance function (see, e.g., Kuosmanen & Zhou, 2021 ). 

In the context of efficiency analysis, the estimated quantile pro- 

uction functions can also serve as a better benchmark than the 

onventional full frontier for a unit’s production structure analy- 

is. Following Lai et al. (2018) we can easily measure the quan- 

ile technical efficiency for the evaluated units and even can ex- 

end the quantile efficiency analysis to meta-frontier analysis. For 

 given quantile τ , the estimated quantile technical efficiency for a 

pecific unit could be greater than 1 (i.e., “super efficient”), equal 

o 1 (i.e., “efficient”), or less than 1 (i.e., “inefficient”), which are 

he same as the efficiency interpretation in the order- α estimator. 

urthermore, as explained by Kuosmanen & Zhou (2021) , quantile 

egression estimators are more appropriate for shadow pricing un- 

esirable outputs (e.g., pollutants, CO 2 emissions). 

Considering that CQR (9) and CER (10) are the restricted special 

ases of isotonic CQR (12) and isotonic CER (14) , we could resort 

o isotonic CQR and isotonic CER to examine concavity for their 

onvex counterparts (i.e., CQR and CER). Specifically, we can apply 

he standard F -test to test if the sum of weighted absolute resid- 

als of the CQR problem is significantly smaller than that of the 
919 
sotonic CQR problem. 7 Note that the degree of freedom for those 

hape constrained nonparametric regression estimators can be de- 

ermined by a data-driven approach (see Chen et al., 2020 ). An- 

ther possible approach to testing the shape (i.e., concavity and 

ven monotonicity) is to apply the wild bootstrap methods (see, 

.g., Yagi et al., 2020 ). While such a testing procedure is promis- 

ng and straightforward, the computational efficiency is a serious 

oncern, especially with a large sample size ( Dai, 2023 ). 

The curse of dimensionality is not a problem in the proposed 

uantile regression estimators. A recent study by Dai (2023) pro- 

oses the penalized CQR/CER approaches by introducing L 0 -norm 

egularization and showed their high effectiveness in the dimen- 

ionality reduction of variables (or inputs). The same regularization 

an directly be applied to isotonic CQR/CER to ameliorate the effect 

f the curse of dimensionality. However, the rate of convergence of 

QR/CER and isotonic CQR/CER has not been formally investigated 

n the literature, which warrants further research. 

. Monte Carlo study 

The main objective of our simulations is to investigate the finite 

ample performance of those approaches and whether the gener- 

lized quantile and expectile properties are retained in the estima- 

ion of quantile functions. 

.1. Setup 

We generate data according to the following additive Cobb- 

ouglas production function with d inputs and one output 
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Table 1 

Performance in estimating monotonic quantile function with σ 2 = 1 . 88 and τ = 0 . 9 . 

ICQR = Isotonic CQR, ICER = Isotonic CER. 

d n MSE Bias 

ICQR ICER Order- α ICQR ICER Order- α

1 50 0.368 0.406 1.470 −0.284 −0.385 −0.969 

100 0.215 0.231 1.479 −0.166 −0.252 −1.000 

200 0.132 0.135 1.419 −0.097 −0.156 −1.003 

500 0.069 0.067 1.409 −0.051 −0.086 −1.012 

1000 0.042 0.039 1.404 −0.031 −0.054 −1.018 

2 50 0.933 0.989 1.777 −0.671 −0.731 −1.076 

100 0.639 0.692 1.784 −0.522 −0.591 −1.121 

200 0.416 0.454 1.742 −0.387 −0.454 −1.131 

500 0.236 0.255 1.712 −0.261 −0.313 −1.146 

1000 0.150 0.160 1.692 −0.186 −0.231 −1.150 

3 50 1.479 1.519 1.959 −0.912 −0.944 −1.115 

100 1.152 1.197 1.901 −0.787 −0.827 −1.129 

200 0.875 0.920 1.882 −0.668 −0.714 −1.158 

500 0.572 0.602 1.849 −0.514 −0.558 −1.181 

1000 0.405 0.425 1.820 −0.415 −0.455 −1.191 
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cf. Lee et al., 2013; Yagi et al., 2020 ), 

y i = 

D ∏ 

d=1 

x 
0 . 8 
D 

d,i 
+ ε i , 

here the input variables x i ∈ R 

n ×d are randomly and indepen- 

ently drawn from U[1 , 10] and the error term ε i has three specifi-

ations: ε i = v i , ε i = −u i , and ε i = v i − u i , where v i and u i are gen-

rated independently from N(0 , σ 2 
v ) and N 

+ (0 , σ 2 
u ) , respectively. 

he variance parameters σ 2 
v and σ 2 

u are determined once we set 

ignal to noise ratio (SNR) λ and variance σ 2 , where λ = σu /σv 
nd σ 2 = σ 2 

u + σ 2 
v . Following Aigner et al. (1977) , ( σ 2 , λ) = (1.88,

.66), (1.63, 1.24), and (1.35, 0.83) are selected which allow for in- 

estigating whether those quantile-like estimators are robust to a 

ide range of SNR values. 

To assess the finite sample performance of the quantile-like es- 

imators, we utilize the standard mean squared error (MSE) and 

ias statistics to evaluate how the estimated quantile function de- 

iates from the true conditional quantile function. The MSE and 

ias statistics can be defined as 

MSE = 

1 

n 

n ∑ 

i 

(
ˆ Q (τ | x i ) − Q(τ | x i ) 

)2 
, 

bias = 

1 

n 

n ∑ 

i 

(
ˆ Q (τ | x i ) − Q(τ | x i ) 

)
, 

here ˆ Q denotes the estimated conditional quantile function and 

represents the true conditional quantile function; the latter can 

e estimated based on the known inverse cumulative distribu- 

ion function of the error term ε i , i.e., F −1 
ε i 

(τ ) . The MSE is always

reater than or equal to zero, with zero indicating perfect preci- 

ion; while the bias can be negative, positive, or zero, suggesting 

hether the estimated conditional quantile function 

ˆ Q systemat- 

cally underestimates ( bias < 0 ), overestimates ( bias > 0 ), or pro- 

ides an unbiased estimate of ( bias = 0 ) the true conditional quan- 

ile function. 

In all experiments that follow, we resort to Julia/JuMP to solve 

he CQR/CER and isotonic CQR/CER estimators with the commercial 

ff-the-shelf solver MOSEK (9.3). 8 The standard and convexified 

rder- α estimators are computed using the R packages “frontiles”

 Daouia et al., 2020 ) and “Benchmarking” ( Bogetoft & Otto, 2010 ). 

ll experiments are run on Aalto University’s high-performance 

omputing cluster Triton with Xeon @2.8 GHz processors, one CPU, 

nd 3 GB of RAM per task. 

.2. Experiment with monotonic estimators 

In the first group of experiments, we explore whether the non- 

onvex quantile estimator (i.e., isotonic CQR/CER) has better finite 

ample performance than the nonconvex order- α estimator in esti- 

ating the quantile production functions. We consider 225 scenar- 

os with different numbers of observations (50, 10 0, 20 0, 50 0, and

0 0 0), input dimensions (1, 2, and 3), SNRs (1.66, 1.24, and 0.83), 

nd quantiles (0.1, 0.3, 0.5, 0.7, and 0.9). Each scenario is replicated 

0 0 0 times to calculate the MSE and bias statistics. For the sake 

f comparison, the expectiles ˜ τ are transformed into their corre- 

ponding quantiles τ based on the empirical inverse quantile func- 

ion of the error term ε i . 
Table 1 reports the effect of sample size on the performance 

f each estimator in the case of τ = 0 . 9 , a commonly used param-

ter value in the robust frontier estimation. The results show that 

he finite sample performance of the isotonic CQR and isotonic CER 
8 Alternatively, the estimation of CQR/CER and isotonic CQR/CER can be imple- 

ented in Python using the pyStoNED package ( Dai et al., 2021 ). 

b

g

s

920 
stimators is superior to that of the order- α estimator in terms of 

oth MSE and bias statistics. Further, the performance of each es- 

imator improves with a larger sample size n , as expected. Specifi- 

ally, the MSE and bias statistics of isotonic CQR and isotonic CER 

stimators get closer to zero as n increases, which suggests that 

oth estimators are consistent. The MSE of the order- α estimator 

lso generally falls as the sample size increases, whereas the bias 

oes not diminish as the sample size increases due to losing the 
 

n -consistency ( Aragon et al., 2005 ). 

Next, consider the choice of quantiles τ . Fig. 1 depicts the MSE 

esults in estimating the quantile functions for different input di- 

ensions and SNR specifications, while keeping the sample size 

xed at n = 10 0 0 . In all scenarios considered, the isotonic CQR

nd isotonic CER estimators have far smaller MSE values than the 

rder- α estimator. However, the difference in terms of MSE be- 

ween isotonic CQR and isotonic CER is quite small. Another inter- 

sting observation is that when the quantile τ becomes smaller, 

he MSE of the order- α estimator sees a systematic increasing 

rend. 

We note that the MSE of each estimator generally increases as 

ore input variables are introduced. This is because a larger di- 

ensionality increases the data sparsity, which degrades the per- 

ormance of each estimator, ceteris paribus . For example, when 

= 0 . 9 and σ 2 = 1 . 88 , the MSE of the order- α estimator increases 

rom 1.40 in the one-input case to 1.69 in the two-input case to 

.82 in the three-input case, and isotonic CQR’s and isotonic CER’s 

SE values rise from 0.04 to 0.15 to 0.40 and from 0.04 to 0.16 to

.42, respectively. A similar curse of dimensionality also exists in 

he DEA simulation studies, where the performance of DEA dete- 

iorates when the number of inputs increases, ceteris paribus (see, 

.g., Cordero et al., 2015; Pedraja-Chaparro et al., 1999 ). 

Fig. 2 displays the bias results. The isotonic CQR and isotonic 

ER estimators yield both positive and negative biases. The bias 

ets greater (in terms of the absolute value) when τ deviates from 

.5: it becomes a larger positive value when τ decreases from 0.5 

nd, on the opposite, a smaller negative value when τ increases 

rom 0.5. By contrast, the order- α estimator yields only negative 

iases. Since the order- α frontier converges to the FDH full frontier 

n a finite sample when τ −→ 1 , the observed negative bias of the 

rder- α estimator for each quantile τ is due to the small sample 

ias, similar to FDH. Moreover, the bias of the order- α estimator 

ecomes larger as τ decreases because the effective sam ple size 

ets smaller. 

Furthermore, we obtain similar results about the MSE and bias 

tatistics and the sample size effect in additional experiments 
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Fig. 3. MSE results of the convexified order- α, CQR, and CER estimators with n = 10 0 0 . 
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here the composite error term ε i contains either inefficiency 

 ε i = −u i ) or noise ( ε i = v i ) (see Appendix B.1 ). We also investigate

he estimators’ performance in the presence of functional form 

isspecification and find that the isotonic CQR and isotonic CER 

stimator outperform the order- α estimator in terms of both MSE 

nd bias statistics (see Appendix B.2 ). To examine the robustness 

f each estimator, we consider additional scenarios with outliers. 

he results suggest that the isotonic CER estimator is superior in 

ll scenarios, and the isotonic CER and isotonic CQR estimators 

re more robust than the order- α estimator due to the fact that 

he order- α estimator does not satisfy the quantile property (see 

ppendix B.3 ). 

Another point worth noting is that the order- α estimator is 

ound to perform relatively poorly at low quantiles. Thus, we fur- 

her investigate the frequency of violations of the quantile prop- 

rty in 10 0 0 replications. Our simulations confirm that both iso- 

onic CQR and isotonic CER satisfy the quantile property with the 

iolation rates being zero. In contrast, the quantile property is sys- 

ematically violated in the order- α estimator at low quantiles, par- 

icularly at the 10% quantile (see Table 2 ). The observed violations 

re due to the fact that the order- α estimator relies on the quan- 

iles of an appropriate distribution based on a subset of the sam- 

le. However, for high quantiles (i.e., τ > 0 . 5 ), the violation rates

n the order- α estimator are also equal to zero, suggesting that the 

rder- α estimator can satisfy the quantile property for large τ . This 

s consistent with the findings from the MSE and bias comparisons. 

n conclusion, the Monte Carlo simulations presented in this sub- 

ection demonstrate that the true quantile estimators perform no- 

ably better than the order- α estimator in the nonconvex case. 

.3. Experiment with monotonic and convex estimators 

We next conduct the second group of experiments to com- 

are the performance of the convex estimators (i.e., CQR, CER, and 

onvexified order- α) using the same scenarios as in Section 4.2 . 

able 3 presents the effects of sample size and dimensionality on 

he MSE and bias statistics for τ = 0 . 9 . Figs. 3 and 4 display the
921 
SE and bias statistics of the convexified order- α, CQR, and CER 

stimators as we alternate the values of τ and SNR, while keeping 

he sample size constant at n = 10 0 0 . 

The simulation results reported in Table 3 suggest that both 

QR and CER estimators exhibit superior performance compared to 

he convexified order- α estimator both in terms of MSE and bias. 

urther, the MSE and bias of CQR and CER converge towards zero 

s the sample size n increases, while this is not the case for the 

onvexified order- α estimator when the dimensionality d = 1 , 2 . 

Comparing Figs. 1 and 3 , we notice that the MSE statistic for 

ach estimator decreases to a great extent once imposing the con- 

avity constraint, especially for the order- α estimator. For instance, 

n the one-input case with σ = 1 . 88 , the average MSE of the con-

exified order- α estimator for the five estimated quantiles de- 

reases by more than 160% compared to its original counterpart. 

his finding confirms that the power of the CQR, CER, and convexi- 

ed order- α estimators derives from their global shape constraints, 

ncluding monotonicity and convexity/concavity ( Kuosmanen et al., 

020 ). 

While the performance of the order- α estimator increases af- 

er imposing the concavity constraint, the CQR and CER estima- 

ors continue to outperform the convexified order- α estimator in 

ll cases considered. However, the relative MSE ratio between the 

onvexified order- α estimator and CQR (or CER) decreases as the 

nput dimensionality or the quantile τ increases. Regarding the ef- 

ect of different SNRs, the smaller the value of λ, the higher the 

ifference in MSE between the quantile and order- α estimators. 

owever, the difference in MSE among the three SNRs is close to 

ero when the quantile τ approaches 1. 

Recall that the biases of the order- α estimator in all considered 

cenarios are negative, indicating that the estimated order- α fron- 

iers systematically underestimate the true quantile functions. Af- 

er imposing the concavity constraint, for the three-input cases, the 

onvexified order- α estimator does not only underestimate but can 

lso overestimate the true quantile function. Moreover, the abso- 

ute bias of the convexified order- α estimator is larger than that of 
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Fig. 4. Bias results of the convexified order- α, CQR, and CER estimators with n = 10 0 0 . 

Fig. 5. Illustration of the estimated order- α, isotonic CQR, and isotonic CER functions. X -axis: ln(C), Y -axis: ln(G). 

922



S. Dai, T. Kuosmanen and X. Zhou European Journal of Operational Research 310 (2023) 914–927 

Table 2 

Frequency of quantile property violations for the order- α estimator in 10 0 0 replications. 

n d ( σ 2 , λ) τ n d ( σ 2 , λ) τ

0.1 0.3 0.5 0.1 0.3 

50 1 (1.88, 1.66) 95.8% 0.3% 100 1 (1.88, 1.66) 99.6% 

(1.63, 1.24) 90.3% 0.3% (1.63, 1.24) 97.7% 

(1.35, 0.83) 75.1% 0.4% (1.35, 0.83) 86.7% 

2 (1.88, 1.66) 89.6% 1.7% 2 (1.88, 1.66) 88.8% 

(1.63, 1.24) 83.8% 1.6% (1.63, 1.24) 76.8% 

(1.35, 0.83) 79.7% 1.9% (1.35, 0.83) 66.1% 0.1% 

3 (1.88, 1.66) 98.9% 7.6% 0.2% 3 (1.88, 1.66) 98.1% 0.5% 

(1.63, 1.24) 98.8% 8.2% 0.2% (1.63, 1.24) 97.3% 0.7% 

(1.35, 0.83) 98.7% 7.1% 0.1% (1.35, 0.83) 96.7% 0.5% 

500 1 (1.88, 1.66) 100.0% 1000 1 (1.88, 1.66) 100.0% 

(1.63, 1.24) 100.0% (1.63, 1.24) 100.0% 

(1.35, 0.83) 98.7% (1.35, 0.83) 100.0% 

2 (1.88, 1.66) 89.3% 2 (1.88, 1.66) 90.1% 

(1.63, 1.24) 32.6% (1.63, 1.24) 10.8% 

(1.35, 0.83) 10.0% (1.35, 0.83) 0.9% 

3 (1.88, 1.66) 74.5% 3 (1.88, 1.66) 37.9% 

(1.63, 1.24) 60.2% (1.63, 1.24) 17.1% 

(1.35, 0.83) 50.7% (1.35, 0.83) 11.3% 

Note: The blanks in the columns of different quantiles denote zero violations. 

Fig. 6. Illustration of the estimated convexified order- α, CQR, and CER functions. X -axis: ln(C), Y -axis: ln(G). 
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QR/CER in all scenarios. Note that CQR and CER can better fit the 

rue quantile functions with lower MSE and bias values compared 

o the monotonic estimators in Section 4.2 . 

The simulation results in Sections 4.2 and 4.3 reveal that the 

ndirect estimation of quantiles using expectiles improves the per- 

ormance in most scenarios considered, particularly for the con- 

ave quantile functions. Table 4 reports the percentage of simula- 

ion rounds where the MSE of the indirect expectile estimators is 
923 
ower than that of the direct quantile estimators. Compared to iso- 

onic CQR, isotonic CER has smaller MSE values for most quantiles 

onsidered except for those extreme quantiles (e.g., the 10% and 

0% quantiles). Further, when we impose the concavity constraint, 

he CER estimator outperforms the CQR estimator in a larger pro- 

ortion of scenarios (e.g., all scenarios at the 10% and 50% quan- 

iles). The observation from Table 4 suggests that the indirect esti- 

ation of quantiles through expectiles performs better when τ is 
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Table 3 

Performance in estimating monotonic and concave quantile function with σ 2 = 

1 . 88 and τ = 0 . 9 . COA = Convexified order- α. 

d n MSE Bias 

CQR CER COA CQR CER COA 

1 50 0.170 0.169 0.635 −0.056 −0.110 −0.497 

100 0.094 0.088 0.704 −0.023 −0.056 −0.574 

200 0.050 0.050 0.757 −0.009 −0.023 −0.636 

500 0.022 0.021 0.831 −0.005 −0.010 −0.694 

1000 0.031 0.011 0.880 −0.005 −0.005 −0.738 

2 50 0.377 0.395 0.838 −0.194 −0.308 −0.574 

100 0.231 0.239 0.854 −0.106 −0.186 −0.601 

200 0.133 0.137 0.880 −0.056 −0.102 −0.621 

500 0.067 0.069 0.934 −0.027 −0.048 −0.654 

1000 0.039 0.039 0.964 −0.013 −0.026 −0.668 

3 50 0.632 0.671 0.857 −0.406 −0.502 −0.574 

100 0.412 0.438 0.741 −0.249 −0.344 −0.485 

200 0.263 0.280 0.709 −0.152 −0.229 −0.440 

500 0.141 0.150 0.722 −0.082 −0.126 −0.427 

1000 0.087 0.091 0.732 −0.046 −0.078 −0.419 
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lose to 0.5, whereas the direct quantile estimation remains com- 

etitive when τ is very small or very large. 

. Empirical illustration 

To gain an intuition of what the quantile production functions 

ook like, we proceed to illustrate those estimators with a real 

ross-sectional dataset used in Kuosmanen & Zhou (2021) and Dai 

t al. (2022) . It covers plant-level data on 130 U.S. electric power 

lants in 2014. A very similar dataset has been repeatedly used in 

he empirical demonstration of newly developed frontier estima- 

ors (see, e.g., Gijbels et al., 1999; Martins-Filho & Yao, 2008 ). 

Following Gijbels et al. (1999) and Martins-Filho & Yao (2008) , 

e consider a univariate case where the output y = ln (G ) with 

 being the net generation of each power plant and the input 

 = ln (C) with C being the sum of fixed cost and variable cost of

lectricity production. See Kuosmanen & Zhou (2021) for a detailed 

iscussion of the data sources and descriptive statistics. 

Since there exists a one-to-one mapping between quantiles and 

xpectiles, we estimate a number of expectiles (i.e., ˜ τ = 0.001, 

.002, . . . , 0.999) and then determine the corresponding quantile τ
y counting the number of negative residuals ε i that take strictly 

ositive values ( Efron, 1991 ). Fig. 5 depicts the estimated mono- 

onic quantile and expectile functions by the order- α, isotonic CQR, 

nd isotonic CER estimators at τ = 0 . 9 , 0.7, 0.5, and 0.3, respec-

ively. 

For the sake of illustration, the order- α estimator ( Aragon et al., 

005 ), one of the most notable partial frontier estimators, is ap- 

lied and compared in all the application and simulations. Further, 

he thorough comparisons also include the convexified order- α es- 

imator, where we first utilize the order- α estimator to estimate 

he order- α production frontier and then apply the standard DEA- 
Table 4 

Percentage of scenarios where the indirect CER e

CQR estimator. 

Model specification τ ε = v −
Monotonicity all quantiles 65.8% 

0.1 22.2% 

0.5 100.0% 

0.9 13.3% 

+ Concavity all quantiles 88.0% 

0.1 100.0% 

0.5 100.0% 

0.9 40.0% 

924 
RS (variable returns to scale) estimator to the estimated output 

n the order- α production frontier ( Polemis et al., 2021 ). Note that 

he order- α estimator has been extended to the multivariate set- 

ing ( Daouia & Simar, 2007; Daouia et al., 2017 ), hyperbolic orien- 

ation ( Wheelock & Wilson, 2009 ), and directional measures ( Simar 

 Vanhems, 2012 ). Meanwhile, the standard order- α estimator and 

ts extensions have been widely applied in the context of produc- 

ivity and efficiency analysis (see, e.g., Carvalho & Marques, 2014; 

ounetas et al., 2021; Polemis et al., 2021; Wheelock & Wilson, 

013 ). 

The estimated isotonic CQR and isotonic CER functions are step 

unctions enveloping exactly 100 τ% of the observations for each 

uantile τ . In contrast, the estimated order- α frontier does not 

ecessarily envelope 100 τ% of the observations, but rather less 

han 100 τ% of the observations especially when the quantile τ gets 

maller such as τ = 0 . 3 (see Fig. 5 d). This observation suggests that

he order- α estimator cannot guarantee the quantile property, es- 

ecially for the low quantile estimation. This is because the order- 

estimator is geared towards estimating high quantiles but de- 

eriorates when τ decreases. Further, the standard order- α esti- 

ator does not even satisfy monotonicity, which is its only as- 

umed shape constraint. The violation of monotonicity occurs in 

ll cases—the estimated order- α frontier (red line) is not strictly 

ncreasing but can also decrease, as shown in Fig. 5 (see also 

igs. 2 and 3 in Daouia & Simar 2007 ). 

Fig. 6 illustrates the direct CQR and indirect CER quantile esti- 

ates when global concavity is imposed and the estimated con- 

exified order- α frontier. All three estimators yield a concave 

iecewise linear curve which can be useful in applications where 

hadow pricing of non-market inputs and/or outputs is the main 

bject of interest. In this respect, it is worth noting that the slope 

f the order- α frontier is similar to those of CQR and CER for τ =
 . 9 , but the slope decreases rapidly as τ decreases. The slope coef- 

cients of CQR and CER, which are important for estimating the 

arginal products and elasticities, are much more robust across 

ifferent values of τ in this illustrative example. 

This example also illustrates that indirect estimation of quan- 

iles using expectiles can be a good alternative to estimate mono- 

onic concave quantile functions and even monotonic step quan- 

ile functions. For each quantile τ , the indirectly estimated quan- 

ile function using expectile regression (teal line) is quite close to 

he directly estimated quantile function (orange dashed line) (see 

igs. 5 and 6 ). Of course, a single example does not allow one to

udge which approach performs better. 

. Conclusions 

In this paper we have extended the theory and methodology 

f shape constrained quantile and expectile regression in three di- 

ections. First, we have stated and proved the generalized quan- 

ile and expectile properties that apply to any shape constrained 

onparametric estimators. Examples of such estimators include the 
stimator has smaller MSE than the direct 

u ε = v ε = −u No. scenarios 

63.1% 57.3% 225 

13.3% 26.7% 45 

100.0% 100.0% 45 

13.3% 13.3% 45 

88.0% 89.8% 225 

100.0% 100.0% 45 

100.0% 100.0% 45 

40.0% 55.6% 45 
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sotonic regression that relaxes the global concavity or convexity 

ssumptions. Our result also implies that the quantile and expec- 

ile properties carry over to the constant, non-increasing, or non- 

ecreasing returns to scale technologies, the cost function and dis- 

ance function specifications, as well as additional regularizations, 

hich are increasingly used in applications to alleviate overfitting 

nd the curse of dimensionality. 

Second, we have extended the toolbox of shape constrained 

uantile and expectile estimation by introducing the isotonic con- 

ex quantile regression and isotonic convex expectile regression, 

espectively. These new variants of CQR and CER enable us to re- 

ax the concavity assumptions of CQR and CER, similar to isotonic 

egression. 

Third, we have provided new evidence of the finite sample per- 

ormance of the CQR, CER, and their isotonic counterparts in the 

ontrolled environment of Monte Carlo simulations. To compare 

QR and CER, we converted the expectiles estimated by CER to 

uantiles using a transformation suggested by Efron (1991) . Our 

imulations confirm that the indirect estimation of quantile fron- 

iers by first estimating multiple CER frontiers and subsequently 

onverting them to relevant quantile functions improves finite 

ample performance compared to the direct CQR estimation. 

Our simulations also included the widely used order- α estima- 

or to place the excellent finite sample performance of the CQR and 

ER methods into a proper perspective. Our simulations demon- 

trate that the standard order- α estimator does not necessarily 

atisfy the quantile property, particularly at low quantile. In this 

ense, the interpretation of the order- α frontier as the quantile 

unction seems debatable. Of course, improving the robustness of 

fficiency measurement and benchmarking is frequently cited as 

he primary motivation for using the order- α estimator as well as 

ther similar partial frontier approaches. 

We conclude by noting that the attractive asymptotic properties 

f the order- α estimator did not carry over as excellent finite sam- 

le performance in our Monte Carlo simulations, even when the 

lobal concavity constraints were relaxed. Still, the rigorous sta- 

istical theory remains a key advantage of the order- α approach. 

hile there has been notable progress in the statistical theory of 

onvex regression (see, e.g., Lim, 2014; Lim & Glynn, 2012; Seijo & 

odhisattva, 2011 ), which is the special case of CER when ˜ τ = 0 . 5 ,

he asymptotic theory and statistical inference for the CQR, CER 

nd their isotonic counterparts remains to be developed. We would 

ike to suggest this as an interesting avenue for future research for 

ompetent mathematical statisticians. 
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ppendix A. Proofs 

1. Proof of Theorem 1 

We can rewrite problem (5) as the equivalent problem accord- 

ng to the quantile regression definition ( Koenker & Bassett, 1978 ). 
925 
pecifically, problem (5) can be reformulated as 

min τ
n ∑ 

i =1 

ρτ (y i − Q ) (A1) 

s.t. Q ∈ F 

he quantile property for any nonparametric quantile regression 

unction subject to shape constraints can be established by using 

he proof in Wang et al. (2014) . Suppose that ( ̂  Q 1 , . . . , ˆ Q n ) is a fea-

ible solution to problem (A1) . For any α ∈ R , ( ̂  Q 1 + α, . . . , ˆ Q n + α)

s also a feasible solution to problem (A1) as the new estimated 

uantile function is merely the parallel shift of the original one 

ith level α ( Wang et al., 2014 ). Note that n + τ + n −τ ≤ n and hence

e introduce n 0 τ to denote the number of the observations with 

 

+ 
i 

= ε −
i 

= 0 . We then have the equation n = n + τ + n −τ + n 0 τ . 

The marginal effects of shifting the estimated quantile function 

n the objective function are calculated by 

∂ 
n ∑ 

i =1 

ρτ (y i − Q + α) 

∂α
= 

{
(1 − τ )(n 

−
τ + n 

0 
τ ) − τn 

+ 
τ if α ≥ 0 , 

(1 − τ ) n 

−
τ − τ (n 

+ 
τ + n 

0 
τ ) otherwise . 

iven that n 0 τ may be positive (i.e., n 0 τ > 0 ), we have {
(1 − τ )(n 

−
τ + n 

0 
τ ) − τn 

+ 
τ ≥ 0 

(1 − τ ) n 

−
τ − τ (n 

+ 
τ + n 

0 
τ ) ≤ 0 

eorganizing the above two inequalities leads to 

{
(1 − τ ) n − n 

+ 
τ ≥ 0 

n 

−
τ − τn ≤ 0 

⇒ 

⎧ ⎨ 

⎩ 

n 

+ 
τ

n 

≤ 1 − τ

n 

−
τ

n 

≤ τ

herefore, Theorem 1 is proved. That is, the quantile property can 

e applied to any nonparametric quantile function subject to shape 

onstraints. �

2. Proof of Theorem 2 

We rewrite problem (8) by the following equivalent problem 

 Newey & Powell, 1987 ) 

min ̃  τ
n ∑ 

i =1 

ρ ˜ τ (y i − �) 2 (A2) 

s.t. � ∈ F 

he expectile property for any nonparametric expectile regression 

unction subject to shape constraints can be established following 

uosmanen & Zhou (2021) . Similar to the proof of Theorem 1 , the

arginal effect of shifting the estimated expectile function on the 

bjective function is 

∂ 
n ∑ 

i =1 

ρ ˜ τ (y i − � + α) 2 

∂α
= 2(1 − ˜ τ ) 

n ∑ 

i =1 

ˆ ε −
i 

− 2 ̃  τ
n ∑ 

i =1 

ˆ ε + 
i 

y reorganizing the first-order condition, we have 

2(1 − ˜ τ ) 
n ∑ 

i =1 

ˆ ε −
i 

− 2 ̃  τ
n ∑ 

i =1 

ˆ ε + 
i 

= 0 

he expectile property in Theorem 2 is immediately proved as we 

ave ˜ τ = 

∑ n 
i =1 ˆ ε 

−
i 

/ ( 
∑ n 

i =1 ˆ ε 
+ 
i 

+ 

∑ n 
i =1 ˆ ε 

−
i 
) . 

https://doi.org/10.13039/501100008579
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ppendix B. Additional experimental results 

1. Experiment with different error specifications 

Table B1 

Performance in estimating the quantile function

respectively. ICQR = Isotonic CQR, ICER = Isotoni

ε τ ICQR 

Bias MSE 

σv 0.708 0.1 0.040 0.032 

0.3 0.016 0.021 

0.5 0.017 0.020 

0.7 −0.005 0.021 

0.9 −0.029 0.031 

0.801 0.1 0.041 0.038 

0.3 0.018 0.025 

0.5 0.017 0.023 

0.7 −0.006 0.025 

0.9 −0.030 0.037 

0.894 0.1 0.044 0.044 

0.3 0.019 0.030 

0.5 0.019 0.028 

0.7 −0.005 0.029 

0.9 −0.032 0.043 

σu 1.174 0.1 0.044 0.050 

0.3 0.009 0.028 

0.5 0.009 0.020 

0.7 −0.015 0.015 

0.9 −0.040 0.010 

0.994 0.1 0.041 0.039 

0.3 0.009 0.022 

0.5 0.007 0.016 

0.7 −0.014 0.012 

0.9 −0.037 0.008 

0.742 0.1 0.037 0.026 

0.3 0.008 0.015 

0.5 0.006 0.010 

0.7 −0.013 0.008 

0.9 −0.034 0.006 

2. Experiment with model misspecification 
Table B2 

Performance in estimating quantile function over noncovex set. 

n ( σ 2 , λ) ICQR ICER COA 

Bias MSE Bias MSE Bias MSE 

50 (1.88, 1.66) 0.075 0.401 −0.028 0.353 −4.510 31.867 

(1.63, 1.24) 0.087 0.405 −0.016 0.355 −4.485 31.640 

(1.35, 0.83) 0.096 0.411 −0.008 0.355 −4.463 31.448 

100 (1.88, 1.66) 0.067 0.270 −0.022 0.228 −4.637 32.881 

(1.63, 1.24) 0.076 0.273 −0.014 0.229 −4.614 32.639 

(1.35, 0.83) 0.082 0.277 −0.008 0.229 −4.593 32.432 

200 (1.88, 1.66) 0.056 0.180 −0.010 0.147 −4.691 33.218 

(1.63, 1.24) 0.062 0.182 −0.004 0.148 −4.668 32.975 

(1.35, 0.83) 0.069 0.185 0.000 0.148 −4.648 32.779 

500 (1.88, 1.66) 0.036 0.100 −0.009 0.079 −4.733 33.649 

(1.63, 1.24) 0.040 0.101 −0.005 0.080 −4.710 33.400 

(1.35, 0.83) 0.044 0.102 −0.002 0.080 −4.690 33.192 

1000 (1.88, 1.66) 0.024 0.064 −0.007 0.049 −4.750 33.751 

(1.63, 1.24) 0.027 0.064 −0.004 0.050 −4.728 33.507 

(1.35, 0.83) 0.029 0.065 −0.002 0.050 −4.709 33.307 

DGP: y i = x i + 0 . 1 x 2 
i 

+ v i − u i , where x i ∼ U[1 , 10] , v i 
i.i.d. ∼ N(0 , σ 2 

v ) , and u i 
i.i.d. ∼

N + (0 , σ 2 
u ) . 

926 
 ε i = v i and ε i = −u i with n = 10 0 0 and d = 1 , 

 COA = Convexified order- α. 

ICER COA 

Bias MSE Bias MSE 

0.048 0.029 −1.900 4.895 

0.017 0.016 −1.593 3.352 

0.002 0.014 −1.310 2.191 

−0.014 0.016 −1.053 1.358 

−0.047 0.029 −0.800 0.761 

0.057 0.035 −1.856 4.687 

0.017 0.020 −1.571 3.257 

0.002 0.017 −1.315 2.206 

−0.014 0.019 −1.082 1.435 

−0.049 0.035 −0.843 0.855 

0.052 0.041 −1.814 4.499 

0.017 0.023 −1.553 3.177 

0.003 0.020 −1.319 2.220 

−0.015 0.023 −1.107 1.508 

−0.051 0.041 −0.884 0.955 

0.055 0.045 −1.670 4.468 

0.012 0.019 −1.639 3.582 

−0.005 0.013 −1.427 2.551 

−0.022 0.009 −1.157 1.587 

−0.048 0.008 −0.773 0.748 

0.051 0.035 −1.818 4.810 

0.011 0.015 −1.674 3.694 

−0.006 0.010 −1.411 2.493 

−0.020 0.007 −1.104 1.450 

−0.044 0.007 −0.695 0.580 

0.045 0.023 −1.983 5.371 

0.010 0.010 −1.717 3.860 

−0.005 0.007 −1.383 2.403 

−0.019 0.005 −1.028 1.264 

−0.040 0.005 −0.598 0.414 

3. Experiment with outliers 
Table B3 

Performance in estimating the quantile function with three outliers. 

( σ 2 , λ) d ICQR ICER COA 

Bias MSE Bias MSE Bias MSE 

(1.88, 1.66) 1 0.029 0.104 −0.011 0.081 −1.844 19.823 

2 0.032 0.105 −0.007 0.082 −1.828 19.748 

3 0.034 0.105 −0.006 0.082 −1.814 19.686 

(1.63, 1.24) 1 0.035 0.232 −0.021 0.202 −1.760 19.840 

2 0.044 0.236 −0.012 0.203 −1.743 19.781 

3 0.050 0.238 −0.005 0.203 −1.727 19.732 

(1.35, 0.83) 1 0.011 0.408 −0.033 0.370 −1.618 19.691 

2 0.024 0.411 −0.018 0.371 −1.598 19.639 

3 0.035 0.414 −0.006 0.372 −1.582 19.592 

DGP: y i = 

∏ D 
d=1 X 

0 . 8 
d 

d,i 
+ v i − u i , where X = ( x 1 , x 2) 

′ 
, x 1 m ∼ U[1 , 10] 

( m = 1 , . . . , 200 ), x 2 n ∼ U[90 , 100] ( n = 1 , . . . , 3 ), v i 
i.i.d. ∼ N(0 , σ 2 

v ) , and 

u i 
i.i.d. ∼ N + (0 , σ 2 

u ) . 
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