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1. Introduction

Gaseous emissions arising from terrestrial and marine ecosystems play important roles in regulating tropospheric 

photochemistry, in turn influencing climate and air quality. For example, oceanic emissions of dimethyl sulfide 

(DMS) are the dominant source of sulfur into clean, marine air (Sinha et  al.,  2007; Yang et  al.,  2011). The 

resulting sulfur aerosol directly scatters solar radiation as well as acting as cloud condensation nuclei and thus 

these emissions play an important role in global climate (Andreae & Crutzen,  1997; Ayers & Gillett,  2000; 

Shaw, 1983).

Natural terrestrial biogenic emissions of volatile organic compounds (VOCs) have significant impacts on atmos-

pheric oxidants (Trainer et al., 1987). Isoprene (C5H8) forms the largest of these emissions (500 Tg yr −1 (Guenther 

et al., 2006; Guenther et al., 2012)), and has been the focus of a large body of research in terms of both the rate 

and controlling factors of its emission and its subsequent atmospheric degradation chemistry. Isoprene emissions 

come from plants and are dependent on temperature, rainfall, leaf area, and other factors, exhibiting large varia-

bility both geographically and seasonally (Fuentes & Wang, 1999; Guenther et al., 2006; Schnitzler et al., 1997). 

Tropical broadleaf trees contribute approximately half of all global isoprene emissions (Guenther et al., 2006), 

thus the largest isoprene emissions come from areas with the greatest concentration of this plant type, in particu-

lar the Amazon rainforest.

The oxidation chemistry of isoprene has been extensively studied in the field (Biesenthal & Shepson,  1997; 

Roberts et  al.,  1998; Starn et  al.,  1998; Wiedinmyer et  al.,  2001) and in laboratory experiments (Atkinson 

et al., 1989; Grosjean et al., 1993; Paulson et al., 1992; Paulson & Seinfeld, 1992). Numerical models have been 

developed to incorporate known degradation chemistry (Bates & Jacob,  2019; Jenkin et  al.,  2015; Saunders 

et al., 2003; Trainer et al., 1987). Oxidation of isoprene is typically initiated by the hydroxyl radical (OH) and 

Abstract Isoprene, arguably the most studied biogenically emitted gas, is thought to have a large impact on 

tropospheric composition. Other naturally emitted species have been considered to play a less important role. 

Here the GEOS-Chem model is used to compare the impacts of isoprene and iodine emissions on present-day 

tropospheric composition. Removing isoprene emissions leads to a 3.4% decrease in tropospheric O3 burden, 

a smaller absolute change than the 5.9% increase from removing iodine emissions. Iodine has a negligible 

impact on global mean OH concentrations and methane lifetime (+0.6% and +0.05%) whereas isoprene has 

a substantial impact on both (−4.3% and −4.2%). Isoprene emissions and chemistry are seen as essential for 

tropospheric chemistry models, but iodine is often not. We suggest that iodine should receive greater attention 

in model development and experimental research to allow improved predictions of past, present, and future 

tropospheric O3.

Plain Language Summary Natural emissions from the Earth's surface play a large role in 

determining the chemistry of the atmosphere, influencing air quality, and climate change. Considerable 

attention is given to land-based emissions, notably of isoprene, which are emitted in vast quantities by trees 

and other vegetation and can impact the concentration of O3, aerosols and the hydroxyl radical. Historically, 

less emphasis has been on the influence of emissions of other compounds. We show that for one aspect of 

atmospheric composition (the globally averaged O3 concentrations) emissions of iodine from the ocean are 

likely at least as important as isoprene emissions and may be more so. As such, there should be an increased 

focus on better understanding the emissions and chemistry of iodine species (and other halogens) and 

embedding this information into our simulations of the Earth system.
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thus isoprene represents a large, natural, global sink for OH (Lelieveld et al., 2008). It can also react with ozone 

(O3) and other oxidants (nitrate radical (NO3), chlorine radical (Cl)) (Wennberg et al., 2018). The subsequent 

photo-chemistry is complex, involving a large number of long and short lived species (Wennberg et al., 2018). 

If isoprene oxidation occurs in the presence of suitable NOx concentrations, the production of peroxy radicals 

(RO2) can lead to net O3 production. At lower NOx concentrations the primary reaction between O3 and isoprene, 

together with its ability to produce NOy reservoir species and so reduce NOx concentrations, can lead to local O3 

reductions (Horowitz et al., 2007; Paulot et al., 2012). Transport of NOy species produced during isoprene oxida-

tion can increase NOx concentrations in remote downwind regions, increasing O3 production many thousands of 

kilometers from the isoprene source (Bates & Jacob, 2019). Overall, isoprene is calculated to be a net source of 

O3 into the global troposphere (Bates & Jacob, 2019; Fiore et al., 2011; Pierce et al., 1998; Squire et al., 2015).

In contrast to isoprene, iodine emissions lead to the destruction of O3. The inclusion of iodine chemistry into box 

models has been shown to improve the ability to replicate the O3 loss rate as shown in Read et al. (2008). O3 from 

the atmosphere can be transported into the ocean's surface microlayer (SML) where it can react with iodide (I −) to 

produce HOI and I2 (Carpenter et al., 2021). These emissions are estimated to supply ∼2 Tg yr −1 of iodine to  the 

global atmosphere. An additional 0.6 Tg yr −1 of iodine occurs through the emission of iodinated hydrocarbons 

(CH3I, CH2I2, CH2IBr, and CH2ICl) (Jones et al., 2010; MacDonald et al., 2014; Prados-Roman et al., 2015). This 

reaction between I − and O3 in the SML is also responsible for a significant fraction of the dry deposition of O3 to 

the ocean (Carpenter et al., 2013; Fairall et al., 2007; Luhar et al., 2017; Pound et al., 2020).

Iodide in the SML is formed from the thermodynamically more stable iodate (IO−

3
 ) via biological reduction 

processes (Amachi, 2008; Chance et al., 2007) and as such could display sensitivity to both seasonal and climate 

timescales (Carpenter et al., 2021). Ice core samples show that the atmospheric iodine abundance has increased 

since pre-industrial times and significantly accelerated through the end of the 20th century, which is mainly 

attributed to increased atmospheric O3 driving higher HOI and I2 emissions (Cuevas et  al.,  2018; Legrand 

et al., 2018). Tree rings on the Qinghai-Tibet plateau also show this increase in atmospheric iodine (I 127) through 

the 20th century, in addition to increases in I 129 coinciding with nuclear events (Zhao et al., 2019). No historic 

iodine trends are yet available for the southern hemisphere.

Tropospheric lifetimes of the emitted gaseous iodine compounds are relatively short (on the order of minutes to 

days), photolyzing to produce atomic iodine (I). The subsequent catalytic iodine cycles are an efficient chemi-

cal loss route of O3. Iodine atoms are rapidly oxidized by O3 to form iodine oxide (IO), which can then further 

self-react to form higher oxides or cycle back to atomic I (Sommariva et al., 2012). Further reactions of IO can 

impact both HOx (OH + HO2) and NOx (NO + NO2) concentrations (Sherwen, Evans, et al., 2016; Sommariva 

et al., 2012). The inclusion of I chemistry in model simulations has been shown to reduce surface O3 concentra-

tions and lower background O3 (Sarwar et al., 2019; Sherwen, Evans, et al., 2016).

Recent work suggests that heterogeneous reactions between iodine oxide nanoparticles formed via rapid nuclea-

tion of iodic acid (HIO3) (He et al., 2021), and volatile organics can substantially accelerate particle growth in the 

marine boundary layer (Huang et al., 2022), suggesting a widespread role for iodine in the formation and growth 

rate of cloud condensation nuclei. Despite the efficient role iodine compounds play in particle formation, new 

measurements suggest that the recycling of iodine from aerosol is much more efficient than its current representa-

tion in models and therefore the impact on gas phase iodine may be small (Huang et al., 2022; Tham et al., 2021). 

The new proposed roles of iodine in particle formation are not currently represented in models and their impact 

is uncertain. If increased uptake of iodine to the aerosol phase is mitigated by efficient recycling back to the gas 

phase, there may be little change to the overall impacts simulated here, although transport of iodine in the aero-

sol phase may lead to more widespread iodine chemistry and thus change the spatial distribution of its impacts. 

Future research will be necessary to better understand the impact of aerosol phase iodine on the composition of 

the atmosphere. Iodine can also be exported from the troposphere into the stratosphere where it may play a role 

in modulating the concentration of stratospheric O3 (Cuevas et al., 2022; Koenig et al., 2020), we do not consider 

this in this study.

Observations of reactive inorganic iodine compounds in the atmosphere are mostly limited to IO, which has 

been measured using a number of optical techniques (Prados-Roman et al., 2015; Volkamer et al., 2015; S. Wang 

et al., 2015; Koenig et al., 2020; Gómez Martín et al., 2013; Großmann et al., 2013; Mahajan et al., 2010, 2012). 

Although these measurements are sparse, model simulations of IO generally compare well to these observations 
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(X. Wang et al., 2021). Observations have also been made of I2 (Lawler et al., 2014) and of HOI, IBr, and ICl 

(Tham et al., 2021), however these are much more limited than those of IO.

Although the mass of isoprene (∼500 Tg yr −1 (Guenther et  al.,  2012)) and iodine (∼2.6 TgI yr −1 (Sherwen, 

Schmidt, et al., 2016)) emitted into the atmosphere differ significantly, both can have a profound impact on the 

composition of the troposphere. Assessing the relative impacts on troposphere composition based on previous 

literature is difficult as these assessments have been made in different models over different timescales and 

have focused on the impact of only one of these sources at a time. Thus, assessing the relatively importance of 

isoprene and iodine emissions on tropospheric photo-chemistry is difficult. Here we use the GEOS-Chem model 

to compare the relative impacts of iodine and isoprene on the tropospheric abundance of O3 and OH, and the 

impact of both iodine and isoprene on surface O3 mixing ratios. Thus, we compare the overall impacts of iodine 

and isoprene on atmospheric composition and present the argument that iodine should be considered, analogously 

to isoprene, as an important natural control on tropospheric composition.

2. Model Description

This work uses the GEOS-Chem model (Bey et al., 2001) version 14.0.2 (GCC14.0.2, 2022) run globally at a 

spatial resolution of 2° × 2.5° on the standard vertical grid (72 vertical levels), running with chemistry in both the 

troposphere and stratosphere. Meteorological data for these runs used MERRA-2 (Gelaro et al., 2017).

Isoprene emissions in GEOS-Chem are from MEGAN v2.1 (Guenther et al., 2012) which varies isoprene emis-

sions depending on plant functional type, leaf area index, temperature, and photosynethically active radiation. 

Oceanic isoprene emissions are not currently included in the GEOS-Chem. These emissions are three orders of 

magnitude smaller than that of the terrestrial source (Conte et al., 2020), and are thought to have a minimal impact 

on atmospheric chemistry and climate (Anttila et al., 2010; Arnold et al., 2009). The subsequent isoprene oxida-

tion chemistry in GEOS-Chem is from Bates and Jacob (2019) which has been used since model version 12.8.

The halogen (Cl, Br, I) chemistry scheme in GEOS-Chem was recently updated (version 12.9) by X. Wang 

et  al.  (2021). Organic iodine emissions are from Ordóñez et  al.  (2012). Inorganic iodine emissions follow 

Carpenter et al. (2013) as implemented by Sherwen, Evans, et al. (2016) and are given by Equations 1 and 2 

where ws is the wind speed [m/s], [O3(g)] is the O3 concentration in the atmosphere at the interface with the surface 

[ppbv], and [II−𝑎𝑎𝑎𝑎 ] is the oceanic iodide concentration [mol dm −3].

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 =
[

𝐻𝐻3(𝑔𝑔)

]

√

[

𝐻𝐻−

(𝑎𝑎𝑎𝑎)

]

(

3.56 × 105

𝑤𝑤𝑤𝑤
− 2.16 × 104

)

 (1)

𝐹𝐹𝐼𝐼2 =
[

𝑂𝑂3(𝑔𝑔)

]

[

𝐼𝐼−

(𝑎𝑎𝑎𝑎)

]1.3
(

1.74 × 109 − 6.54 × 108𝑙𝑙𝑙𝑙(𝑤𝑤𝑤𝑤)
)

 (2)

The ocean surface iodide concentration is given by the parameterization of MacDonald et al. (2014), given in 

Equation 3, where T is the sea surface temperature [K].

[

𝐼𝐼−

(𝑎𝑎𝑎𝑎)

]

= 1.46 × 106 × exp
(

−9134

𝑇𝑇

)

 (3)

Other sources of iodine, for example, coal combustion (Wu et al., 2014), are considered to be negligible and are 

not currently included in the model.

Three model runs were conducted for the period from 1 January 2016 to 1 January 2018. The first year of 

each simulation was considered the spin up to allow the composition to reach equilibrium. Analysis was thus 

performed on the period 1 January 2017 to 1 January 2018. For the first simulations no changes were made to 

the model. For the second simulation iodine emissions from the ocean were set to zero, and the concentration of 

iodine containing compounds in the model initial condition (for 2016-01-01) were set to zero. In the third simu-

lation, isoprene emissions were set to zero, and the concentration of isoprene derived in the initial condition (for 

2016-01-01) were also set to zero.

The model output daily average diagnostics with data processing performed in python using xarray (Hoyer & 

Hamman, 2017), numpy (Harris et al., 2020), cartopy (Met Office, 2010–2015) and matplotlib (Hunter, 2007).
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3. Results

3.1. Impacts on O3

Figure 1 shows the percentage change in annual mean concentrations of surface and zonal O3 concentrations 

from switching off iodine (left) and isoprene emissions (right). Equivalent analyses for CO, NOx and NOy are 

shown in Figures S1–S3 in Supporting Information  S1. Iodine emissions reduce the global tropospheric O3 

burden from 342 Tg/yr to 323 Tg/yr (5.9% reduction). The largest decreases occur within the tropical marine 

boundary layer (≥20%) above tropical waters where iodide concentrations are the greatest (Chance et al., 2014), 

resulting in the highest iodine emissions (Sherwen, Evans et al., 2016). Due to rapid atmospheric convection 

over the tropics, this region of depleted O3 extends up to around 6 km altitude. Another region of fractionally 

significant iodine-initiated O3 loss is the Southern Ocean where the large ocean surface area provides widespread 

iodine emission. However due to the comparatively low O3 concentrations over the Southern Ocean, these large 

percentage changes do not correspond to large changes in absolute concentration. A percentage decrease of ∼10% 

at 2 km here translates to ∼2 ppbv reduction in O3.

Isoprene emissions create a more complex distribution of changes. Over Amazonia and Oceania, the locations of 

the largest isoprene emission, surface O3 concentrations are reduced. This is for two reasons. First the direct reac-

tion between O3 and isoprene increases the chemical loss of O3 (10% of global isoprene emissions are oxidized 

by O3 (Bates & Jacob, 2019)). Second the concentrations of NOx in the region decrease due to reactions with 

isoprene and its products, shifting NOx to reservoir species (NOy, Peroxyacetylnitrate (PAN) and organic nitrates). 

This reduction in NOx reduces the chemical production of O3 over the region. NOx and NOy surface and zonal 

changes are shown in Figures S2 and S3 in Supporting Information S1. Outside of these regions, the isoprene 

driven shift of NOx to NOy species over emission regions contributes to the global picture of increased O3. NOy 

transported from isoprene emitting regions results in an increase of NOx concentrations over the remote oceans, 

increasing O3 production (Figure 1). This is most noticeable in the southern hemisphere. Globally the increase 

in O3 from isoprene emissions is dominated by this increase in NOx. Any increase in O3 due to an increase in 

Figure 1. Annual average percentage decrease in surface ((a) and (b)) and zonal ((c) and (d)) O3 from iodine emissions ((a) and (c)) and annual average percentage 

increase in surface and zonal O3 from isoprene emissions ((b) and (d)).
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VOC concentration is limited because only a small amount of the world is VOC limited (mostly polluted cities in 

America, Europe and Asia) with the majority of the worlds O3 production being NOx limited (Ivatt et al., 2022).

Globally iodine reduces tropospheric O3 significantly more than isoprene increases it. Isoprene increases the 

tropospheric O3 burden by 11.28 Tg (3.4%) whereas iodine decreases it by 19.1 Tg (5.9%). Close to the surface 

(0–1 km), iodine's impact on O3 (2.8 Tg, 9.7% decrease) is significantly larger than that of isoprene (1.0 Tg, 3.8% 

increase). Both are more important in the southern hemisphere than the northern, although iodine reduces the 

O3 burden by almost 50% more than isoprene increases it. The relatively larger role of both iodine and isoprene 

in southern hemispheric O3 reflects the increased importance of natural processes compared to anthropogenic 

emissions there.

3.2. Impact on OH

The similar magnitude of influence by isoprene and iodine on O3 is not seen for OH. Figure 2 shows that iodine 

emissions in the model have negligible changes to tropospheric OH concentration (+0.6%), whereas isoprene 

emissions decrease tropospheric OH by 4.3%. This difference in the response reflects different chemistry. The 

impact of iodine on OH has previously been found to be small due to compensating effects (Sherwen, Evans, 

et al., 2016). The reduction in O3 concentrations from iodine leads to lower primary OH production (from O3 

photolysis in the presence of water), this is however offset by increased conversion of HO2 to OH cycling via HOI. 

The global increase in O3 from isoprene increases the primary chemical production of OH, however globally the 

increase in the chemical sink from reactions of OH with isoprene and its degradation products, is dominant and 

OH is decreased. The largest decreases in OH coincide with the regions of greatest isoprene emissions (Amazo-

nia and Oceania). Due to efficient convection over these locations, the reduction in OH is observed throughout 

the troposphere. The change in model OH concentrations driven by isoprene and iodine emissions results in 

changes in methane lifetimes of similar importance. The reduction in OH concentrations from isoprene emissions 

increases the methane lifetime by 4.2% (9.25–10.6 years). The negligible changes in OH caused by iodine result 

in a minimal impact on methane lifetime (0.05% decrease).

Figure 2. Annual average percentage change in surface ((a) and (b)) and zonal ((c) and (d)) OH from iodine emissions ((a) and (c)) and from isoprene emissions ((b) 

and (d)).
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3.3. Importance of Iodine and Isoprene Emissions on Background O3

Figure  3 shows the ratio of change in surface O3 from isoprene and iodine emissions. Additional seasonal 

plots, both global and regional, are shown in Figures S4–S7 in Supporting Information S1. This ratio allows 

for a comparison of the relative importance of iodine or isoprene emissions to be determined on surface O3 

concentration.

Although isoprene emissions lead to O3 production in remote regions (from NOy being transported from isoprene 

source regions), O3 loss due to iodine is more important in the marine environment. Iodine is thus more important 

than isoprene in determining the background concentration of O3 at inflow regions (west coast of America and 

northern Europe). Iodine emissions are less important for Asia as transport of airmasses into this region spend no 

or negligible amounts of time over the ocean, with inflow coming from Europe.

Northern hemisphere winter O3 in both terrestrial and oceanic environments has a significantly greater depend-

ence on iodine emissions than isoprene emissions. This is largely due to minimal isoprene emissions and little O3 

production. This is not the case in the southern hemisphere where high isoprene emissions from South America 

and much of Africa maintain the dependence on isoprene. Changes to wind direction in summer and autumn 

result in iodine becoming important for O3 into central Asia as the airmass entering this region switches from 

continental to oceanic in origin.

An important driver of the seasonal variation in the relative importance of iodine and isoprene is seasonality in 

their respective emissions. Iodine emissions only have a weak seasonal dependence when compared to isoprene 

emissions. Monthly averaged iodine emissions in the northern hemisphere increase by 23% from minimum to 

maximum whereas isoprene increases by ∼270%.

4. Comparison to Previous Studies

Table 1 compares the results of this study with previously reported changes in tropospheric O3 burden, global 

average OH concentration and methane lifetime due to the inclusion of (a) iodine, (b) all halogens (iodine, 

bromine, and chlorine), and (c) isoprene. The impact of iodine on the O3 burden found in this study (−5.9%) is 

Figure 3. Average surface ratio of fractional change in O3 from isoprene to fractional change in O3 from iodine, globally (a), North America (b), Europe (c) and Asia 

(d). Red contour lines on regional plots are drawn based on the value of the ratio being 1 (iodine and isoprene emissions have equal impact on surface O3).

 1
9

4
4

8
0

0
7

, 2
0

2
3

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
2

G
L

1
0

0
9

9
7

 b
y

 T
est, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

4
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Geophysical Research Letters

POUND ET AL.

10.1029/2022GL100997

7 of 11

lower than that previously reported (−9.9% in Sherwen, Evans, et al. (2016) 

using GEOS-Chem and −10% for Iglesias-Suarez et  al.  (2020) using 

CamChem), with a similar negligible reduction in the impact on OH. The 

difference between the GEOS-Chem simulations reflects changes in the 

model's representation of halogens since 2016, including their processing on 

clouds, role in sulfur oxidation, and the pH dependence of their reactions 

(X. Wang et al., 2019, 2021; Chen et al., 2017). The global O3 lifetime has 

changed little overall between Sherwen, Evans, et al. (2016) and this study 

(27.6–28.5 days), however, the O3 chemical lifetime due to iodine has been 

lengthened substantially from 282 to 391 days. The effect of these changes 

has been to reduce the importance of iodine chemistry in GEOS-Chem. The 

chemistry used by Iglesias-Suarez et al.  (2020) is substantially different to 

that used in GEOS-Chem, notably in the representation of heterogeneous 

processes and the lack of aerosol phase iodine production. These differences 

may explain the increased sensitivity to iodine found in previous studies 

compared to the latest version of GEOS-Chem. Li et  al.  (2022) conclude 

that halogens have a large impact on the methane lifetime, however whilst 

the role of chlorine alone is considered, the individual impacts of iodine and 

bromine are not disentangled and hence a direct comparison to this work 

cannot be made.

Differences in the sensitivity of models to isoprene emissions are also large, 

with a general downward trend in the simulated sensitivity over time. The 

present work shows a similar O3 response to the GEOS-Chem simulation of 

Bates and Jacob (2019), which is unsurprising given we use the same chem-

ical mechanism for isoprene oxidation. However, Bates and Jacob  (2019) 

find a substantially larger impact of isoprene on OH. The largest contribu-

tion to this is the difference in total biogenic isoprene emissions. Bates and 

Jacob  (2019) scaled the isoprene emissions calculated by MEGANv2.1 to 

∼535 Tg/yr to match the estimates of (Guenther et al., 2012). Without this 

scaling, MEGANv2.1 as implemented in GEOS-Chem emits only ∼53% of 

this amount of isoprene (∼280 Tg/yr). In addition to this, an increase in the 

model reactivity will also further reduce the impact of isoprene on OH. Since 

Bates and Jacob (2019), a detailed treatment of aromatics (Bates et al., 2021) and ethene and ethyne chemistry 

(Kwon et  al.,  2021) has been included in GEOS-Chem. Changes in the emissions of lightning NOx between 

versions can also have a profound impact, particularly over the Amazon which reduces the production of NOy in 

this region, hence reducing the global O3 increase from isoprene.

In conclusion, this study represents a conservative estimate of the impact of both iodine and of isoprene on O3 

and OH compared to other model studies, most likely due to increased complexity in the model chemical schemes 

used here for halogens and VOCs. That iodine has a larger but opposite impact on O3 to isoprene and a very small 

global impact on OH (if other halogens are not taken into account) is nevertheless robust across the more recent 

of these studies, as shown in Table 1.

5. Conclusions

Globally, iodine has a larger magnitude of impact on tropospheric O3 than isoprene. The relative importance 

of each depends on location and season. Although iodine has the larger impact on O3, its impact on OH and 

methane lifetime are negligible compared to isoprene. The greater impact of iodine on globally-averaged surface 

O3 concentrations has specific importance when considering background O3 air quality at inflow regions where 

the air mass has been transported over the marine environment, such as the western coast of north America and 

Europe. Therefore, the emissions and subsequent chemistry of iodine should be considered with the same priority 

as isoprene.

The processes leading to inorganic iodine flux from the ocean surface are complex, much like isoprene emissions, 

however, the representation of these emissions is currently simplistic. Iodine emissions are dependent on the 

Table 1 

Comparison of the Results of This Study With Previously Reported 

Percentage Changes in the Tropospheric O3 Burden, Average OH 

Concentration and Methane Lifetime Due to the Inclusion of Iodine, Iodine 

and Bromine, All Halogens (Iodine + Bromine + Chlorine) and Isoprene 

Emissions

Study O3 OH CH4 lifetime

Iodine

 Sherwen, Evans, et al. (2016) −9.9% +1.8% –

 Iglesias-Suarez et al. (2020) a −10% – –

 This study −5.9% +0.6% −0.05%

All Halogens

 Sherwen, Evans, et al. (2016) b −14.4% +1.8% –

 Sherwen, Schmidt, et al. (2016) −18.6% −8.2% +10.8%

 Iglesias-Suarez et al. (2020) −13% – –

 Badia et al. (2021) −11% – –

 X. Wang et al. (2021) −11% −4% –

 Li et al. (2022) c – – +6.3%

Isoprene

 Houweling et al. (1998) +17% – –

 von Kuhlmann et al. (2004) +9.5% – +6%

 Pike and Young (2009) – – +23%

 Bates and Jacob (2019) +4.2% −11% +12%

 This study +3.4% −4.3% +4.2%

 aIodine's individual impact estimated based on the assumption that 80% of 

the halogen-related ozone loss is from iodine.  bStudy considers bromine and 

iodine but not chlorine.  cBased on present day values which are averaged 

between 2000–2019.

 1
9

4
4

8
0

0
7

, 2
0

2
3

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
2

G
L

1
0

0
9

9
7

 b
y

 T
est, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

4
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Geophysical Research Letters

POUND ET AL.

10.1029/2022GL100997

8 of 11

downward flux of O3 from the atmosphere into the SML, aqueous iodine chemistry, turbulence and the physical 

processes in the ocean surface as well as biological factors. Previous experimental data of the O3 + I − reaction and 

the role of organic chemistry are poorly constrained due to lack of experimental data and experimental data not 

reflecting real world SML concentrations. A more advanced representation of oceanic iodine emissions for use in 

global models should couple the chemical, physical and biological processes in the SML which drive the flux of 

iodine into the atmosphere. This will more accurately represent the production and subsequent emission of iodine 

and further improve our understanding of the role ocean atmosphere exchange plays in modulating tropospheric 

photochemistry. Additionally, recent advances in the role of iodine in aerosol formation and growth and under-

standing of efficient iodine recycling should be considered as development priorities for models.

Data Availability Statement

GEOS-Chem source code is openly available on GitHub (https://github.com/geoschem/geos-chem). This work 

used model version 14.0.2 (GCC14.0.2, 2022).

Analysis code used to produce statistics and figures in this paper are available at https://doi.org/10.5281/

zenodo.7016985 (Pound, 2022).
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