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Optimising collective accuracy among
rational individuals in sequential
decision-making with competition
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Abstract
Theoretical results underpinning the wisdom of the crowd, such as the Condorcet Jury Theorem, point to substantial
accuracy gains through aggregation of decisions or opinions, but the foundations of this theorem are routinely undermined
in circumstances where individuals are able to adapt their own choices based after observing what other agents have
chosen. In sequential decision-making, rational agents use the choices of others as a source of information about the correct
decision, creating powerful correlations between different agents’ choices that violate the assumptions of independence on
which the Condorcet Jury Theorem depends. In this paper, I show how such correlations emerge when agents are
rewarded solely based on their individual accuracy, and the impact of this on collective accuracy. I then demonstrate how a
simple competitive reward scheme, where agents’ rewards are greater if they correctly choose options that few have
already chosen, can induce rational agents to make independent choices, returning the group to optimal levels of collective
accuracy. I further show that this reward scheme is robust, offering improvements to collective accuracy across wide range
of competition strengths, suggesting that such schemes could be effectively implemented in real-world contexts to improve
collective wisdom.
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Significance statement

The wisdom of the crowd relies on the aggregated opinions of many individuals rather than that of a single expert.
This underpins the widespread use of review systems that pool the judgements of many consumers, is invoked as a
justification for democratic governance, and motivates harvesting the opinions of users of social media and other
online forums. However, the accuracy of collective judgements is undermined by social interactions, as individuals
copy what others think. I propose a way of rewarding individuals for offering accurate opinions that removes the
incentive to copy, using competition between those expressing the same opinion. If individuals maximise their
rewards, this makes collective judgements much more accurate, increasing the possibilities for extracting wisdom
from the crowd.

Corresponding author:
Richard P Mann, Department of Statistics, School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
Email: r.p.mann@leeds.ac.uk

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/

en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/26339137231176481
https://journals.sagepub.com/home/col
https://orcid.org/0000-0003-0701-1274
mailto:r.p.mann@leeds.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F26339137231176481&domain=pdf&date_stamp=2023-05-20


Introduction

It has long been recognised that aggregating the opinions,
estimates or decisions of many individuals can give superior
results compared to relying on a single individual alone (De
Condorcet, 1785; Galton, 1907; Surowiecki, 2005). Such
aggregation is a simple but potentially powerful example of
collective intelligence, and one that acts as both a justifi-
cation for democratic decision-making institutions
(Landemore, 2012; List and Goodin, 2001) and a motiva-
tion for utilising fora such as social media to harness the
potential of global collective knowledge (Klein, 2011).

The Condorcet Jury Theorem (CJT) (Boland, 1989; De
Condorcet, 1785) demonstrates that collective accuracy, in the
formof amajority vote, can far exceed individual accuracy under
an idealised assumption that agents choose independently. In-
deed, where two options are equally likely a priori, and signals in
favour of each are equally reliable, independent majority voting
is the optimal method for aggregating anonymous, dichotomous
votes (Austen-Smith and Banks, 1996). While the CJT has
motivated many appeals to the wisdom of the crowd (e.g. (King
and Cowlishaw, 2007; List and Goodin, 2001; List, 2004)), in
reality, this independence assumption is routinely violated in
collective decision-making scenarios where agents are able to
observe each other and use social information to motivate their
own choices (Surowiecki, 2005). The wisdom of the crowd
requires that a group must effectively aggregate the private in-
formation held by its members, but information cascades can
result from social learning, such that within a group a large
proportion of individuals simply follow the decisions made by
others, without reference to any private information they may
have (Bikhchandani et al., 1992). Empirical studies have
demonstrated how readily humans copy the actions of others
(Faria et al., 2010; Gallup et al., 2012; Mann et al., 2013), in
common with other animals (Sumpter and Pratt, 2009), when
those actions are readily observable. The tendency of agents to
follow the decisions of others can be rational from an individual
perspective (Anderson and Holt, 1997; Bikhchandani et al.,
1992;Mann, 2018; Tump et al., 2020), but such self-
reinforcing cascades of social information can cause very
large scale errors in collective judgement, as illustrated anec-
dotally in the historical examples given by Mackay in ‘Ex-
traordinary Popular Delusions and the Madness of Crowds’
(Mackay, 1841). Scientific study also suggests that, under
controlled conditions, allowing individuals to update their own
beliefs in the light of observing others tends to reduce the ac-
curacy of collective estimations (Lorenz et al., 2011), even as it
increases the average accuracy of individual agents (Tump et al.,
2020).

The dangers of relying on social information are highly
pertinent since sequential decision-making is common across
a wide variety of domains. On an individual level, we often
choose what to buy, where to eat, or even how to vote based
on the choices or expressed opinions of others before us.

Decisions of great importance are frequently taken after
substantial discussion between those voting, such as in a jury
trial, in company hiring boards and in the monetary policy
committees of central banks deciding on interest rate ad-
justments. In each case, those voting on the decision may be
influenced by others who express opinions before them.
Sequential decisions may be present even when a system is
designed to elicit individuals’ independent decisions. Con-
sider, for example, the case of formalised peer-review of
scientific publications or grant proposals. Here, reviewers
apparently provide their reviews independently, but this ig-
nores the effect of author status, which provides a proxy for
the decisions of past reviewers of the same author. Likewise,
characteristics such as the fame of an individual, or the
market share of a product, may serve to indicate a prepon-
derance of past choices made, even if these are not directly
observed. Advertising that points to the number of users or
consumers of a product is suggestive of the influence such
past decisions can have on future purchases.

Given the prevalence of sequential decision-making across
many areas in which we may wish to access collective
knowledge, how might we overcome its deleterious effects
upon collective wisdom? One potential solution is the intro-
duction of competition between agents who make the same
choice (Hong et al., 2012; Mann and Helbing, 2017), thus
penalising agents who follow others. Previous work on se-
quential decision-making (Arganda et al., 2012; Mann, 2018,
2020; Pérez-Escudero and De Polavieja, 2011) has assumed
that rewards are independent of which choices other agents
make, with such choices being useful only as a source of
information about the rewards available in the environment.

In this paper, I extend this framework to allow for rewards
that depend intrinsically upon the choices made by others,
such that an option may become more or less rewarding
based on how many other agents have also chosen it. Using
this model, I show how social information in the absence of
competition can reduce the collective accuracy of a group,
and how introducing competition in the form of diminishing
rewards for options already chosen by other agents can
eliminate correlations between agents’ choices, and return the
group to a maximum level of collective accuracy.

Model

I consider a binary choice scenario with potential options
labelled as A and B. In any given choice, one option is
‘correct’ and the other is ‘incorrect’. This scenario is similar
to that in (Mann, 2018), and the model described below
largely follows the framework developed in that paper.
Parameter definitions are summarised in Table 1, and R code
to reproduce the analysis is included as a supplementary file.

Agents sequentially choose either A or B, and are able to
observe all choices made before their own, such that these
constitute common knowledge (Aumann, 1976). The choice
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made by individual i can be labelled as Ci = 1 if A is chosen,
or Ci = �1 if B is chosen, and a sequence of k decisions S is
an ordered series C1, C2, … Ck. The collective decision is
defined as the majority choice when all n agents have
decided, and for simplicity I consider only cases where n is
odd so there are no tied collective decisions.

Agents choose between the two options based on reward
criteria and their own inferences about the probability that each
option is correct, so as to maximise their expected reward. The
true state of the world can be given by a variable x, which takes
the value x = 1 if option A is correct, and x =�1 if option B is
correct. All agents are assumed to share a common, symmetric
and uninformative prior about the value of x:

Pðx ¼ 1Þ ¼ Pðx ¼ �1Þ ¼ 1

2
: (1)

Agents are informed by two sources of information. The
first is a noisy private signal Δi received independently by
each agent i, with variance ϵ:

pðΔij xÞ ¼ 1

ϵ
f
�Δi � x

ϵ

�
, (2)

where f(�) is the standardised normal probability distri-
bution function. The second source of information is the
social information provided by the sequence of previous
decisions S. Agents update their knowledge of x by per-
forming Bayesian inference:

Pðxj Δi, SÞ ¼ PðxÞPðSj xÞpðΔij xÞP
x2f�1;1gPðxÞPðSj xÞpðΔij xÞ, (3)

where the equation above makes use of the assumed in-
dependence of private signals, and thus the independence of
S and Δi conditioned on x.

The structure of this model is assumed to be common
knowledge amongst all agents. That is, agents are assumed
to know that they all share a common, symmetric prior
belief about x, and to be aware of the distribution of private
signals and to know that this is the same for all agents.

Furthermore, agents know that all other agents have this
same information. The rewards for making correct choices
introduced in the next section are also assumed to be
common knowledge in the same manner. Finally, agents are
assumed to act rationally in the sense that they seek to
maximise their expected reward and this rationality is once
again common knowledge amongst all agents.

Rewards

Agents are motivated to make accurate choices by a ret-
rospective reward policy that assigns rewards once the true
correct choice is known. A simple and intuitive policy is to
reward agents if they made the correct choice, thus moti-
vating each individual to be as accurate as possible. This can
be labelled as ‘binary’ rewards, in common with previous
models on simultaneous decision-making (Hong et al.,
2012; Mann and Helbing, 2017), since agents receive a
reward of either zero or one (in some standardised reward
units) for each choice. This reward policy can be defined
mathematically via a reward function r (Ci, S, x) that de-
pends on the choice, Ci, made by individual i, the sequence
of past decisions S and the true state of the world x, with
binary rewards being defined as:

rbinaryðCi, S, xÞ ¼ δCi , x, (4)

where δl,k is the Kronecker delta function.
A binary reward function attributes rewards based solely

on the accuracy of an individual’s choice, and is inde-
pendent of the decisions made by others. More generally we
can consider a reward scheme that depends on past deci-
sions that the agent can observe. A simple way to do this is
to modulate the reward with a function that depends on the
individual choice and S:

rgeneralðCi, S, xÞ ¼ f ðCi, SÞδCi , x: (5)

This continues to reward (and thus incentivise) ac-
curacy through the δCi , x term, but can also directly reward

Table 1. Definitions of model parameters.

Parameter Definition

x Identity of the correct choice: x = 1 for A. x = �1 for B
Δi Private signal received by agent i
ϵ Scale of noise in private signals
S Social information in the form of a sequence of previous choices
Ck The decision made by the kth agent in a sequence (1 for A, �1 for B)
Δ* The threshold applied to private signals by an agent, such that the agent chooses A if Δi > Δ*
nA, nB The number of agents that have chosen A and B
q The probability that a single agent will choose the correct side: q = Φ(1/ϵ)
Q The ratio of correct to incorrect decisions by a single agent Q = q/(1 � q)
β A competition factor
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or penalise choosing the same option as others, thus
incentivising either conformity or diversity of choices. In
the case of the first agent S is by definition the empty set
˘, and I define f (Ci, ˘) = 1, meaning that for the first
agent the general reward scheme and the binary reward
scheme are identical.

Rational individual choice

Given a reward function rðCi, S, xÞ ¼ f ðCi, SÞδCi, x, an agent
can evaluate the expected reward EðrAj S,ΔiÞ from
choosing A, conditioned on the available private and social
information:

EðrAj S,ΔiÞ ¼
X

x2f�1;1g
rðCi ¼ 1, S, xÞPðxj Δi, SÞ

¼ f ðCi ¼ 1, SÞPðx ¼ 1j Δi, SÞ
(6)

and similarly for choosing B:

EðrBj S,ΔiÞ ¼ f ðCi ¼ �1, SÞPðx ¼ �1j Δi, SÞ, (7)

According to the principle of expected reward max-
imisation, a rational agent will then select A if and only if
EðrAj S,ΔiÞ>EðrBj S,ΔiÞ (since Δi is real-valued, a tied
expectation has zero probability mass). Using the general
reward function above, this condition simplifies to:

EðrAj S,ΔiÞ >EðrBj S,ΔiÞ

0
Pðx ¼ 1j Δi, SÞ
Pðx ¼ �1j Δi, SÞ >

f ðCi ¼ �1, SÞ
f ðCi ¼ 1, SÞ :

(8)

That is, for an agent to choose A, its assessment of the
difference in probability for A to be correct rather than B
must outweigh any penalty it receives for choosing A over B
based on the past decisions.

A feature of the above decision-making procedure is that
there exists some critical value of an agent’s private in-
formation, Δ*i , which would make the expected reward of
choosing A or B equal:

E
�
rAj S,Δ*i

� ¼ E
�
rBj S,Δ*i

�
(9)

This implies that agent i will choose A if and only if
Δi >Δ

*
i . Substituting the definition of the expected reward

and the conditional probability P (xjΔi, S), this gives:

PðSj x ¼ 1Þf��Δ*i � 1
��

ϵ
�
f ðCi ¼ 1, SÞ

PðSj x ¼ �1ÞfððΔ*i þ 1Þ=ϵÞf ðCi ¼ �1, SÞ
¼ 1: (10)

Simplifying the term fððΔ*i � 1Þ=ϵÞ=fððΔ*i þ 1Þ=ϵÞ ¼
expð2Δ*i =ϵ2Þ, the expression above can be rearranged to
give:

Δ*i ¼ ϵ2

2

�
log

�
PðSj x ¼ �1Þ
PðSj x ¼ 1Þ

�
þlog

�
f ðCi ¼ �1, SÞ
f ðCi ¼ 1, SÞ

��
(11)

Since subsequent agents are able to observe the sequence
S that agent i was responding to, they can calculate the
corresponding value of Δ*i . Combined with observing the
decision agent i makes, this enables them to infer whether
agent i’s private information was greater than or less than
this threshold value. The probability of a sequence S,
conditioned on x, can therefore be evaluated with reference
to each of the thresholds calculated for the previous agents:

PðSj xÞ ¼ ∏
j2choosingA

P
�
Δj >Δ

*
j

�
× ∏

j2choosingB
P
�
Δj <Δ

*
j

�
¼ ∏

j< i
Φ
�
Cj

�
x� Δ*j

�.
ϵ
�

(12)

where Φ(�) is the cumulative probability function of the
standard normal distribution. Since the thresholds depend
themselves on the past sequence of decisions, the proba-
bility of a sequence can be evaluated recursively by cal-
culating the threshold for each sub-sequence.

In the above description, I have assumed that rewards are
deterministic functions of the choice the agent makes, the
state of the world and the choices of other agents. However,
from a mathematical perspective what determines the ra-
tional choice for a focal agent is the expectation of these
rewards. Therefore a stochastic reward that preserves the
same expectation will give the same rational strategy, but
may provide less reliable feedback to the agents.

Results

Social response under binary rewards

The influence of social information on decision-making can
be characterised qby observing its effect on both individual
decisions and on the aggregate outcomes in groups. A
simple way to visualise the influence of previous choices on
an individual’s decision is via the probability that a focal
individual will choose the correct option, arbitrarily taken to
be option A, conditioned on there having previously been nA
and nB agents choosing A and B, respectively. This prob-
ability is shown in Figure 1(a), assuming that agents are
responding to binary rewards (f (Ci = 1, S) = f (Ci =�1, S) =
1). Because the decision to choose A or B depends in theory
on both the full sequence of previous choices and the agent’s
private information, the probability shown in this figure is a
weighted average over all sequences consistent with
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specified values of nA and nB, and all possible values of the
focal agent’s private information:

PðCi ¼ 1j nA, nBÞ ¼
X

S2nA , nB
P
�
Δi >Δ

*
S

�
PðSj x ¼ 1Þ, (13)

where the summation is over the set of all sequences with nA
and nB individuals choosing A and B.

This figure shows that agents respond strongly to the
decisions made by others, such that the probability to
choose A is highly dependent on the values of nA and nB. In
particular, in most cases where nB > nA the focal agent is less
likely to choose the correct option than they would be if they
chose independently; the red contour lines indicates this
independent choice probability. This implies that incorrect
decisions by agents at the beginning of the sequence can
lead to a cascade of later agents also making incorrect
choices, as has been demonstrated in previous models of
sequential decision-making (Bikhchandani et al., 1992). In
the model considered here, cascades are neither inevitable
nor irreversible, because agents always have a finite
probability to choose the less popular option. Nonetheless,
the strong probability to follow what others have chosen is
reflected in distribution of aggregate outcomes at the group
level, characterised by the probability that nA agents will
select option A in total. This is plotted in Figure 1(b) for
both the case of independent decisions (red bars) and for
agents using social information with binary rewards (blue
bars). This plot shows the dramatic difference in aggregate
outcomes that results from social information use. When
agents choose independently the aggregate outcomes are

clustered in a binomial distribution that peaks at the mean
value of nA = nΦ(1/ϵ), with a very low probability that fewer
than half the agents choose A. Under social information the
aggregate outcomes become bimodal, with a large peak at
nA = n and a secondary peak at nA = 0. The result of this is
that the mean number of correct decisions increases
(compare the blue and red dashed lines), but there is a much
greater probability that a majority of agents will choose the
incorrect option (B). As such, each individual is more likely
to choose the correct option, but the majority choice of the
group is less likely to be correct. Under social influence, the
typical choice majorities also become much larger, whether
in favour of the correct or incorrect option, whereas without
social influence unanimity is unlikely.

Condorcet-retrieving reward function

Under binary rewards, agents tend to follow past decisions
with increasing strength over the course of a sequence of
choices (Figure 1(a)). Since this breaks the assumption of
independence in the CJT, it also reduces the accuracy of
collective decisions as defined by the majority choice, as
shown in Figure 1(b). To improve collective accuracy, it is
therefore necessary to reduce the correlation between de-
cisions. If agents make choices independently, this implies
that the threshold value of Δ*S should be independent of the
value of S. Since agents begin with a symmetric prior P (x =
1) = 1/2, it further implies that this threshold must be zero –
that is, agents will choose A or B based solely on the di-
rection of their private information. One can therefore

Figure 1. Characterising the response to social information in sequential decisions under binary rewards. (a) The probability that an
agent will choose option A when that is the correct choice, conditioned on the number of previous decisions for options A and B,
averaging over all sequences consistent with those aggregate number of decisions. In this example, the environmental noise is ϵ = 2.32,
giving an individual choice accuracy of q = 2/3; the red contour line indicates this probability. (b) The probability for nA agents to select
option A when that is the correct choice, averaged over a full sequence of decisions in a group of n = 25 agents. The blue bars indicate
the probability when rational agents are subject to binary rewards, red bars indicate the probability if all agents select independently. The
dashed lines indicate the mean of each probability distribution. Agents responding rationally to binary rewards have a higher average
number of individually successful decisions, but a lower probability of a correct majority decision.
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retrieve independent choices, and thus the accuracy implied
by the CJT, by seeking a reward function rcondorcet (Ci, S, x)
such that:

EðrAj S,Δi ¼ 0Þ ¼ EðrBj S,Δi ¼ 0Þ"S: (14)

Expanding the definition for the expected reward, this
gives:

Pðx ¼ 1j Δi ¼ 0, SÞ f ðCi ¼ 1, SÞ
Pðx ¼ �1j Δi ¼ 0, SÞ f ðCi ¼ �1, SÞ ¼ 1: (15)

By substituting Bayes rule for the conditional probability
of x, we get:

pðΔi ¼ 0j x ¼ 1ÞPðSj x ¼ 1Þ
pðΔi ¼ 0j x ¼ �1ÞPðSj x ¼ �1Þ ¼

f ðCi ¼ �1, SÞ
f ðCi ¼ 1, SÞ (16)

By construction, under this Condorcet reward scheme,
all thresholds for private information are zero. The prob-
ability P(Sjx) thus simplifies to a product of independent
choices:

PðSj xÞ ¼ Φ
�x
ϵ

�nA
Φ
��x

ϵ

�nB
, (17)

where nA is the number of agents who have previously
chosen A and nB the number who have chosen
B. Substituting this expression and recognising that p (Δi =
0jx = 1) = p (Δi = 0jx = �1), we therefore get:

Φð1=ϵÞnAΦð�1=ϵÞnB
Φð�1=ϵÞnAΦð1=ϵÞnB ¼

f ðCi ¼ �1, SÞ
f ðCi ¼ 1, S

(18)

This expression can be simplified by defining q = Φ(1/ϵ)
as the probability that a single agent will independently
choose the correct option. This then reduces to:

f ðCi ¼ �1, SÞ
f ðCi ¼ 1, S

¼ qnAð1� qÞnB
ð1� qÞnAqnB
¼ QnA�nB ,

(19)

where Q = q/(1 � q) is the odds ratio for a single agent to
choose correctly. This expression can be satisfied by a
reward scheme:

rcondorcetðCi, S, xÞ ¼
	

δCi , xQ
�nA if Ci ¼ 1

δCi , xQ
�nB if Ci ¼ �1

(20)

This expression shows that rational agents can be mo-
tivated to make independent choices if the rewards for each
option are reduced geometrically with the number of agents
that have already chosen that option. This is a very con-
venient reward system for several reasons: First, it is
symmetric in the way it treats both options, so neither option
needs to be arbitrarily favoured or penalised. This is im-
portant since we assume that purpose of observing the

collective decision is to determine the correct choice, and
thus the reward-setter does not know this in advance.
Second, the form of the required penalty for each option
depends only on the number of agents that have previous
chosen it, so these penalties can be implemented locally
without reference to the number choosing the other option,
or the order in which those choice were made. Third, it
resembles a form of competition, with each agent ex-
hausting a fixed proportion of the potential reward re-
maining for the option it chooses. The geometric reduction
in rewards means that for any group size the total rewards
available from each option are bounded by:

Maximum reward ¼ 1þ 1

Q
þ 1

Q2
… ¼ Q

Q� 1ð Þ: (21)

Similarly, the expected total reward can be calculated as:

E total rewardð Þ ¼ E 1þ 1

Q
þ 1

Q2…
1

Qk

� �
, kgBin n, qð Þ

¼ Q� 2n 1� qð Þn
Q� 1

(22)

Any system that assigns rewards under this scheme can
therefore estimate and bound the total rewards it would
potentially need to allocate. It is notable that high values of
Q indicate problems that are relatively simple for individual
decision makers, and these represent the lowest expectation
and bound on total rewards; this naturally allows a reward
system to allocate the greatest reward budget to the most
difficult problems.

Robustness of collective accuracy under
varying competition

The reward scheme derived above is constructed so as to
maximise the accuracy of the majority choice by making
individual rational decisions statistically independent, and it
accomplishes this through imposing a specific form of
competitive penalty. As discussed above, this form of
competitive penalty has many agreeable features for im-
plementation in real-world decisions problems. However,
selecting the precise strength of the competitive penalty
requires knowing in advance how difficult the decision
problem is, that is, knowing the value of Q. In general, it is
unlikely that this would be precisely known in advance,
although a system designer may have some intuition about
whether a given decision is easy or difficult. As such, it is
important to assess how robust such reward system is to
misspecification of the competition strength. To do this, we
can evaluate the collective accuracy under a reward scheme
with variable competition strength β:
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rcompetitiveðCi, S, xÞ ¼
	

δCi , x β
�nA if Ci ¼ 1

δCi , x β
�nB if Ci ¼ �1,

(23)

where we know from the above argument that the optimum
value of β should be Q. Under this reward scheme, the
relation for critical thresholds given by equation (11) can be
simplified and evaluated efficiently as:

Δ*i ¼ ϵ2

2

X
j< i



logΦ

�Cj

�
1� Δ*j

�
ϵ

�

�logΦ
�Cj

�
�1� Δ*j

�
ϵ

��

þϵ2

2
ðnA � nBÞlogβ,

(24)

where nA and nB are the number of decisions for A and B,
respectively, within the sequence S, and β can be either
greater than one (competition) or less than one (rewarding
conformity).

The expected collective accuracy under this reward
scheme can be evaluated by directly calculating the ex-
pected proportion of accurate majority decisions as a
function of the adjustable competition parameter β. This is
done by calculating the probability of every possible se-
quence of decisions in a group of n agents (hence 2n possible
sequences) for x = 1 and summing the probability of that set
of sequences where the majority of decisions are for the
correct option A:

Eðcollective accuracyÞ ¼
X

S2nA > nB
PðSj x ¼ 1Þ, (25)

where P(Sjx = 1) is given by evaluating equation (12).
Figure 2(a) shows the collective accuracy as a function of

β for group sizes from n = 3 to n = 25 with an environmental
noise level set of ϵ = 2.32, implying q = 2/3 and Q = 2 (i.e.
individuals will make the correct choice twice as often as the
wrong choice when choosing alone). This demonstrates a
clear peak in accuracy in each case at the expected value of
β = 2, indicated by the dashed red line. At this optimum
point collective accuracy matches that expected from the
CJT. While a range of values of β > 1 induce greater
collective accuracy than under binary rewards (β = 1), value
of β < 1, which reward agents for copying past decisions,
dramatically reduce collective accuracy. Collective accu-
racy is more robust to values of β that are greater thanQ (the
optimum) than those that are lower, especially in larger
groups; Figure 2(b) shows the individual accuracy for the
same range of group sizes and competition strengths,
demonstrating that increases in collective accuracy induced
by competition lead to decreases in individual accuracy –

collective accuracy is maximised when individual accuracy

falls to that expected from a single agent without social
information, as this is when agents choose independently.
Average individual accuracy is maximised at values of β
slightly greater than one, since under binary rewards each
agent is motivated to maximise its own accuracy, without
regard for the value of the social information it provides to
those further along the sequence of decision makers (cf.
(Torney et al., 2015)).

Figure 2(c) shows the relationship between the collective
accuracy achieved by the Condorcet reward scheme and that
achieved without competition (binary rewards), showing
that the effect is stronger in larger groups, which suffer
relatively more from information cascades under binary
rewards. Although collective accuracy is maximised when
competition is optimised to produce independent decision-
making, there is a range of values of β which induce greater
collective accuracy than under binary rewards, as seen in
Figure 2(a). The size of this range shows how well-tuned
competition must be to generate improvements in collective
accuracy, and thus is indicative of how plausible effectively
implementing such a reward scheme might be in practice.
Figure 2(d) shows the maximum value of β that outperforms
binary rewards as a function of q, for group sizes from n =
3 to n = 25 (solid lines), as well as the optimal value of β for
comparison (dashed line). Inherently, easier decisions
permit a greater range of effective competition strengths,
and this range increases very rapidly as q approaches one
(note the log scale on the y-axis). Larger groups also permit
a wider range of effective competition strengths, even
though the optimal competition strength does not depend
on n.

Discussion

When agents are rewarded solely for their individual ac-
curacy they tend to follow previous decisions. While this
increases the expected proportion of agents that make the
correct choice, it reduces the probability that the majority of
agents is correct compared to agents who make their de-
cisions independently. Errors in early decisions can make
subsequent decision-makers less accurate than they would
have been alone. Hence, while on average individually
beneficial, social information is deleterious to anyone
seeking to use the wisdom of the crowd by relying on the
majority opinion.

Social information may potentially be restricted ex-
ogenously, by insisting that individuals make their
choices without access to the choices made by others.
Such a scenario requires tight control of the information
individuals have access to, and is unlikely to be plausible
when making use of collective wisdom in real-world
contexts such as online review systems and social me-
dia (Klein, 2011). Alternatively, agents could be moti-
vated to make independent choices by rewarding them
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when the collective vote is correct, rather than based on
their individual accuracy; when no choice is favoured a
priori this would make sincere independent voting the
Nash equilibrium strategy (Austen-Smith and Banks,
1996). However, collective rewards have several disad-
vantages. In any but the smallest groups, agents are
highly unlikely to represent the pivotal vote, and thus, the
reward they receive will most often not depend on the
choice they make. This means that agents will have to
experience many collective choices to experience any

feedback that can direct them to the optimal strategy,
reducing both learning by reinforcement and the psy-
chological motivation to invest effort in making informed
choices. Moreover, if rewards are allocated based on
collective performance, agents benefit from being in
larger groups, which magnify this problem. Where groups
are relatively small and composed of a fixed membership
over time, collective rewards could be effective. In other
scenarios, where group membership is neither fixed in
size or composition over sustained periods of time, it is

Figure 2. The effect of competition on collective accuracy. (a) With q = 2/3, across different group sizes (n) collective accuracy
increases with increasing competition (β) up to an optimal value given by β = Q (indicated by the dashed red line), where collective
accuracy matches that predicted by the Condorcet Jury Theorem. Higher levels of competition reduce collective accuracy, with
sufficiently high values of β leading to lower collective accuracy than under binary rewards (β = 1, indicated by the dashed black line).
Values of β less than one, indicating rewards for conformity, always lead to lower collective accuracy. (b) Individual accuracy is
maximised at values of β close to one, indicating weak positive competition, and increases with group size. At the optimal competition for
collective accuracy, individual accuracy is the same for all group sizes as agents choose independently. (c) The collective accuracy under
optimal competition (solid line) compared to that achieved under binary rewards (dashed line) as a function of group size. (d) The
maximum value of β for which competitive rewards outperform binary rewards, for varying group size and as a function of q
(representing the probability for a solo agent to choose correctly). The dashed line shows the optimal value of β = Q for comparison. The
range of effective competition values (those that improve on binary rewards) is greater for easier decisions and in larger group sizes.
Note the logarithmic scale on the y-axis.

8 Collective Intelligence



desirable to provide individual rewards that dependably
vary with the choices those individuals make.

Here, I have demonstrated that, among rational and
selfish agents, a simple competitive reward scheme that
reduces the rewards available from already-popular choices
can, in theory, return a group to the accuracy implied by the
Cordorcet Jury Theorem. This result depends on the as-
sumption that the environmental information received by
the agents is truly independent and is not systematically
wrong, but effectively balances the expected gains of fol-
lowing social information by choosing the more popular
option, and so prevents the information cascades that limit
the collective accuracy of sequential decision-making.
Under such a reward scheme, and within the assumptions of
the model used here, agent’s decisions become independent,
and depend only on their private information. This increases
the probability that the majority of the group will make the
correct choice, albeit at the cost of making each individual
somewhat less accurate on average. This paper has derived
the optimal form and magnitude of this competition in the
context of a model in which an agent observes the full
sequence of previous decisions, but because agents’ deci-
sions become independent under the optimal competition it
would retain the same form if agents instead observed
simplified aggregate statistics regarding how many agents
had made each choice (Mann, 2021). As such, it is appli-
cable across a wide range of domains where the nature of
social information may vary.

Introducing competition that penalises agents for fol-
lowing popular choices is an established mechanism for
motivating agents to make decisions that improve collective
accuracy by reducing the correlation between different
decision-makers (Hong et al., 2012; Mann and Helbing,
2017), and is an important feature of markets as a fore-
casting mechanism, whether explicitly prediction markets
(Wolfers and Zitzewitz, 2004), betting exchanges or fi-
nancial markets. In this paper, I have shown that compe-
tition can also fulfil this role in a sequential decision-making
context where agents can observe the choices made by all
those who decide before them and utilise that information in
their own decision-making. While the optimal level of
competition is unlikely to be known a priori for any given
decision or decision-making system, sensitivity analysis
shows that introducing a small degree of competition
typically improves upon performance from binary rewards
alone; in an adaptive system competitive pressure can thus
be gradually raised to determine optimal performance.
Except in very difficult decisions (q x 0.5), competitive
rewards are relatively forgiving to miscalibration, providing
improvements on binary rewards across a wide scale of
competition strengths.

In this paper, I have assumed that individuals make
choices strictly according to a predefined sequential or-
dering, and in a context where the group size is known by

all, and each agent knows where in the order it is. However,
under the reward scheme, I have proposed an agent need not
consider, or even be aware of, agents later in the sequence,
since these choices cannot provide any information or affect
its own reward. This is beneficial in contexts where groups
form organically rather than being fixed. It is notable that the
greatest possible rewards are available to agents who decide
early in the sequence. Although I have considered the
decision sequence to be fixed, relaxing this assumption
might incentivise those with the strongest private infor-
mation to choose first. As the maximum potential reward
diminishes later in the sequence, this could also provide a
motivation for agents to turn their attention to other
problems once enough decisions have been made to make
the eventual collective vote effectively known. A further
possibility is for agents to abstain from voting when their
private information is weak, which could be encouraged by
introducing a small cost for participation. An interesting line
of future research would be to model such a dynamic en-
vironment of agents choosing which problems to contribute
to while seeking the greatest individual net returns.

The theoretical efficacy of competitive rewards raises the
possibility that such incentives could be used to improve
collective accuracy across a range of real-world contexts.
For example, the collective judgement of the scientific
community (as reflected in majority expressed opinion) on
issues where there is significant uncertainty could poten-
tially be improved by systematically assigning greater re-
wards to those later proved correct when fewer others also
expressed that opinion; these rewards might be in the form
of promotions, research funding or simply scientific repu-
tation. To some degree, such competitive rewards already
feature in many communities, and many scientists, econ-
omists and political pundits have made their reputation by
advocating for a minority viewpoint that was later proved
correct: a notable example is the case of Barry Marshall and
Robin Warren, who won the 2005 Nobel Prize in Physi-
ology or Medicine for their discovery of the link betweenH.
pylori and stomach ulcers (Marshall et al., 1985). However,
other pressures that incentivise social and professional
conformity are also common, such as what Irving Janis
termed ‘Groupthink’ (Janis, 1983) – the tendency to ex-
cessively value consensus with other group members.
Conformity may also be imposed by systemic factors such
as needing to convince others that your ideas are plausible
before they can be explored (Gross and Bergstrom, 2021).

From an external point of view, the results of this study
suggest we should assign greater credibility to the collective
wisdom of communities where such competitive rewards
are the norm, motivating both accuracy and independence.
Conversely, the collective wisdom of communities char-
acterised by strong social norms of conformity (effectively
negative competition) should be assigned lower credibility.
Notably, although competitive, some communities such as
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political punditry rarely demand or reward specific, falsi-
fiable predictions (Tetlock and Gardner, 2016); for com-
petitive rewards to drive collective accuracy there must be
penalties (or lack of reward) for inaccurate predictions,
otherwise individuals are simply motivated to identify and
state a unique opinion without regard for its accuracy. The
optimal reward structure identified here requires that re-
wards are still contingent on accuracy.

Where the collective accuracy of group decisions (at least as
expressed via majority voting) is highly desirable, we should
seek to reduce pressures that induce conformity and introduce
competitive rewards that motivate more independent judge-
ments. However, as well as potentially causing social friction
(if norms of social conformity are violated), this also comes at
the cost of a likely reduction in individual accuracy. While the
group may be more accurate, more individuals will be wrong.
This highlights that systems of collective decision-making that
aim for collective accuracy must not only seek to be tolerant of
conflicting views, but must also tolerate a greater level of
individual decision-making failure.

To be maximally effective such competitive rewards
need to be predictable. Agents should be able to either
rationally adjust their choices in the light of known reward
schemes, or such rewards should be consistent enough to
allow adaptation by reinforcement learning – a process
which may take time to affect behavioural change (Burton-
Chellew et al., 2015; Burton-Chellew and West, 2021;
Burton-Chellew and Guérin, 2021). Rewards should also be
well-tuned to the specific context (particularly the level of
individual certainty, but also the size of the community).
This suggests that competitive reward structures should be
made more explicit, and calibrated through systematic trial
and error in a particular community. Notably, the results
presented here suggest that excessive competition is likely
to be more effective than too little. The model presented
here is theoretical and assumes that agents are either well
informed about potential rewards and respond rationally, or
reliably adapt via reinforcement based on experience. Such
assumptions, and the efficacy of innovative collective
decision-making systems, are ultimately empirical ques-
tions that must be tested experimentally.

Finally, this paper has considered problems in which
agents seek to ascertain the answer to a question of ex-
ternal empirical fact, such as whether it will rain to-
morrow, or which of two teams will win a sporting event.
It should be noted that some attempts to leverage the
predictive power of social information instead focus on
questions where the answer is endogenous to the com-
munity from which that social information is drawn. An
example is the use of social media to predict which
movies will attract large box office returns (Asur and
Huberman, 2010), since presumably the commenters on
social media represent a sample of potential movie-goers.
In these cases, there is likely to be more value in simply

measuring the aggregate opinion of individuals, since the
expression of interest in a movie is itself a predictor of
attendance, regardless of whether that interest is itself
socially driven.
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