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The relationship between the human placenta—the extraembryonic organ made by

the fetus, and the decidua—the mucosal layer of the uterus, is essential to nurture

and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived
from placental villiinfiltrate the decidua, transforming the maternal arteries into
high-conductance vessels'. Defects in trophoblastinvasion and arterial transformation
established during early pregnancy underlie common pregnancy disorders such as
pre-eclampsia’. Here we have generated a spatially resolved multiomics single-cell
atlas of the entire human maternal-fetal interface including the myometrium, which
enables us to resolve the full trajectory of trophoblast differentiation. We have used
this cellular map to infer the possible transcription factors mediating EVT invasion
and show that they are preserved inin vitro models of EVT differentiation from primary
trophoblast organoids>* and trophoblast stem cells’. We define the transcriptomes
ofthe final cell states of trophoblast invasion: placental bed giant cells (fused
multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal
arteries). We predict the cell-cell communication events contributing to trophoblast
invasion and placental bed giant cell formation, and model the dual role of interstitial
EVTs and endovascular EVTs in mediating arterial transformation during early
pregnancy. Together, our data provide acomprehensive analysis of postimplantation
trophoblast differentiation that can be used to inform the design of experimental
models of the human placentain early pregnancy.

During the nine months of human pregnancy, the successful develop-
ment of the fetus is entirely dependent on its placenta. This transient
extraembryonicorganislocated at the interface between the mother and
herfetus. Placental trophoblast cells arise from the trophectodermsur-
rounding the preimplantation embryo®. Afterimplantation, EVTsemerge
fromthe cytotrophoblast shell, infiltrate the decidua—the mucosal lining
of the pregnant uterus, and migrate towards the spiral arteries where
they destroy the smooth muscle media. Subsequently, endovascular
trophoblast cells (eEVTs) forma plug close to the cytotrophoblast shell
where the arteries terminate and then eEVTs replace the endothelium’.
In this way EVTs transform maternal arteries in the deciduabasalisinto
high-conductance vessels?’®. EVTs fuse into placental bed giant cells
(GCs) around the decidual-myometrial boundary and normally invade
onlyasfarastheinner third of the myometrium. Placentation and suc-
cessful pregnancy depend onthe correct degree of trophoblastinvasion,
and the decidua has animportant role in this process™ 2.,

Our previous single-cell transcriptomics analysis of the first tri-
mester maternal-fetal interface provided an unprecedented view of
the cell states comprising this environment®, However, trophoblast
cells presentinthe deeper layers of the decidua and myometrium are
only present in samples of pregnant hysterectomies, and the villous
syncytiotrophoblast (SCT), a multinucleated layer, is lost in classical
single-cell RNA sequencing (scRNA-seq). A further difficulty is the loss
of spatial contextinthese samples, whichis essential to systematically
resolve theinteractions between trophoblast and decidual cellsin early
pregnancy. In addition, novel in vitro models have been developed
recently, including trophoblast stem cells (TSCs) expanded in vitro®
and self-renewing primary trophoblast organoids**** (PTOs). These
models can recapitulate some aspects of placental development and
invasion, opening paths towards mechanistically dissecting tropho-
blastinvasion in humans. Single-cell studies™ show that these models
are promising but a comprehensive benchmarking has been lacking.
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Fig.1| Trophoblast cellstatesin the early maternal-fetalinterface.
a,Schematicrepresentation of the maternal-fetal interface during the first
trimester of human pregnancy. b, Histological overview (haematoxylinand eosin
(H&E) staining) of the implantation site of donor P13 (approximately 8-9 PCW)
(n=1).Blackoutlinesindicate trophoblast microenvironmentsinspace.

¢, Uniform manifold approximation and projection (UMAP) plot of snRNA-seq of
donor P13 trophoblast nucleiin the maternal-fetal interface (n=37,675 nuclei)
colouredby cellstate.d, Overview of spatial locations of invading trophoblast
cellstatesin Visium spatial transcriptomics data of asection of donor P13 tissue

Here we present a spatially resolved single-cell multiomic char-
acterization of the maternal-fetal interface. We examine the site
of placentation from historical samples of first trimester hysterec-
tomies, which include the entire uterus containing the placenta,
decidua and myometrium. Spatiotemporal ordering of trophoblast
invasion enables us to predict the potential participants regulating
placentation. We use this comprehensive detailed account of tropho-
blast differentiation to benchmark existing PTO and TSC models.
Finally, we describe the interactions between trophoblast subsets
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(the position of the capture areaisindicated withanarrow in Extended Data
Fig.1d). Spot colourindicates cell state density computed by cell2location,
whichisthenumberof cellsof agiven cell stateina Visiumspot. Invading
trophoblast cellstates are grouped on the basis of the spatial microenvironment
thattheyrepresent.e, Dot plots showing normalized, log-transformed and
variance-scaled expression of genes (y-axis) characteristic of trophoblast cell
states (x-axis) indonor P13 snRNA-seq data. f, Dot plots showing normalized,
log-transformed and variance-scaled expression of genes (x-axis) characteristic
ofvillous cytotrophoblast (y-axis) in donor P13 snRNA-seq data.

and decidual cells that are likely to affect how arterial transformation
by trophoblast occurs. Thus, we provide a description of the whole
trajectory of human trophoblast cell states in the first trimester and
their spatial niches.

A spatial map of human placental bed

We profiled three human implantation sites (between 6 and 9 post-
conceptional weeks (PCW)) using a multimodal approach (Fig. 1a,b,



Extended Data Fig. 1a,b and Supplementary Tables 1-3). Consecu-
tive sections from frozen tissue blocks of the implantation site were
used for: (1) single-nuclei RNA sequencing (snRNA-seq); (2) combined
snRNA-seq and single-nucleiassay for transposase-accessible chroma-
tinwith sequencing (snATAC-seq) (we refer to the combined analysis as
the multiome); and (3) spatial transcriptomics using Visium (Extended
DataFigs.1cand2a-d). Toaccount for the large tissue area of one donor
(P13), we targeted four consecutive sections with four spatial transcrip-
tomics capture areas (Extended Data Fig. 1d). We also profiled five
decidual and three placental samples from 5-13 PCW by scRNA-seq
and snRNA-seq andintegrated all the data with our previous scRNA-seq
dataset of the maternal-fetalinterface® (Extended Data Figs. 1cand 2e).
Our single-cell and spatial transcriptomics map is available at https://
reproductivecellatlas.org.

We examined trophoblast heterogeneity in two steps. First, we ana-
lysed the full-thickness implantation site from P13 (ataround 9 PCW),
as it contains both fetal (placenta) and maternal (decidua and myo-
metrium) tissues on the same slide, and the tissue block is perfectly
preserved and oriented (Fig. 1cand Extended Data Fig. 3a). Second, we
validated the trophoblast populations and their markers in the inte-
grated dataset (around 5-13 PCW) (Extended Data Fig. 3b,c). Tropho-
blast subsets were annotated by considering canonical markers and
their spatial location (Fig. 1d-f and Extended Data Figs. 1e and 3d,e).
To assign spatial coordinates we used cell2location”, our probabil-
istic method to deconvolve the spatial voxels using our pre-defined
snRNA-seq data. We then placed the trophoblast cells into five pre-
defined microenvironments (ME1-MES) in the tissue based on manual
histological annotation.

Inthe placental villi (ME1), villous cytotrophoblast (VCT) fuse to form
the overlying SCT layer that is in contact with maternal blood in the
intervillous space. VCT subsets express high levels of TP63and CDHI in
the P13 donor (Fig.1e) and all other donors (Extended Data Fig. 3d). VCT
and VCT-proliferative (VCT-p) upregulate known stemand progenitor
cell markers (LGRS, LITDI and TP63), Wnt signalling molecules (WLS
and TNIK), the SEMA3F-NRP2 signalling complex and the VCT marker
BCAM® (Fig. 1f, Extended DataFig. 3e). We define an additional popula-
tion of VCT inthe placental villi that we name VCT-fusing, which the con-
nectivity network PAGA” indicatesis an intermediate cell state between
VCT and SCT (Extended Data Fig. 3f). As VCT commit into VCT-fusing,
they downregulate Wnt (WLS, TNIK and LGR5) and BMP signals (BMP7
and upregulation of BMP antagonist GREM2), and upregulate the endo-
genousretroviral genes (ERVW-1, ERVFRD-1, ERVV-I) known to mediate
trophoblast fusion? (Fig. 1f and Extended Data Fig. 3e). Our strategy
for isolation of nuclei enables the capture of mature multinucleated
SCTs (expressing CYPI9A1 and MFSD2A), which were not found in
previous scRNA-seq studies™? (Fig. 1e and Extended Data Fig. 3d).

Soon afterimplantation, foci of cytotrophoblast cell columns (CCCs)
arise fromthe VCTs that break through the SCT. These expand and form
ashellaround the conceptus that becomes discontinuousin the follow-
ing weeks. EVTs begin to differentiatein cell columnsbutinvasive EVTs
emerge only when the anchoring villi attach to the maternal decidua.
In the trophoblast shell (ME2), we define an additional population of
CCCVCT (VCT-CCC) (Fig.1d and Extended DataFig.1e). VCT-CCCs are
proliferative and PAGA analysis shows they are likely to emerge from
VCT or VCT-pand giverise to EVTs (Extended Data Fig. 3f). This analysis
confirms that VCT is a common progenitor for both VCT-fusing, giv-
ing rise to SCT, and VCT-CCC where EVTs emerge. As they commit to
become VCT-CCCs, they downregulate the Wnt pathway (WLS, TNIK
and LGRS expression), upregulate NOTCHI, undergo an integrin shift
(upregulating /ITGB6 and ITGA2), and upregulate markers characteristic
of epithelial-mesenchymal transition® (LPCATI) (Fig.1fand Extended
DataFig.3e). Expression of NOTCHI and ITGA2is characteristic of puta-
tive trophoblast progenitor cells located ina small niche in the CCC*%,
Inagreement with this finding, in ME2, VCT-CCCs co-localize with EVTs
(Fig.1d and Extended Data Fig. 1e).

Trajectories of EVT defined by StOrder

Tofurtherinvestigate the EVT differentiation pathway asit arises from
the CCCsof theanchoringvillitoinfiltrate maternal tissue, we leveraged
both spatial and single-cell transcriptomics data using a three-step
statistical framework, whichwe named StOrder (Extended Data Fig. 4a
and Methods). First, StOrder builds a gene expression-based connectiv-
ity matrix (generated in our case by PAGA®) to establish putative con-
nections between clusters (Extended Data Fig. 4b). The values in this
matrix areinterpreted as pairwise similarity scores for cell statesin the
gene expression space. Second, StOrder generates aspatial covariance
matrix that reflects the pairwise proximity of trophoblast states that
co-existinspace.Todoso, StOrder takes asaninput the estimated cell
densities per spot (derived in our case with cell2location”) in Visium
spatial transcriptomics data, and fits a Gaussian process model that
derives pairwise spatial covariance scores for all the cell state pairs
(Extended DataFig. 4a). This enables inference of which cell states are
proximalin physical space and are probably gradually differentiating
asthey migrate. Third, StOrder reconstructs connections between cell
states by combining the connectivity matrix (step 1) from single-cell
transcriptomics dataand the spatial covariance matrix (step 2) fromthe
spatial datain a weighted manner (Fig.2aand Extended Data Fig. 4a-e).
In sum, StOrder reconstructs the likely cell transitions in space by
takinginto account both the single-cell transcriptomics and the mini-
bulk spatial transcriptomics data.

StOrder enabled us to resolve the most likely trajectory for the
emergence and differentiation of invasive EVTs (Fig. 2a). Consist-
ent trajectories were obtained when reconstructing pseudotime on
snRNA-seq data using Slingshot® (Extended Data Fig. 5a). We then
calculated differentially expressed genes (DEGs) along the three troph-
oblast trajectories with different end points: (1) eEVT, (2) GC and (3)
SCT (Extended Data Fig. 5b and Supplementary Table 5). VCT-CCCs
are the precursors of EVTs-1and EVTs-2 and co-localize with themin
ME2 (Fig.1d and Extended Data Fig. 1e). EVTs-1are proliferative while
EVTs-2 do not proliferate and upregulate the metalloprotease gene
ADAMTS20 and the integrin subunit gene /TGAI (Fig.1e and Extended
DataFig.3d).EVTs-2 arelocated at the distal end of the anchoring villi,
andareidentified as the bifurcation point between eEVTs and intersti-
tial EVTs (iEVTs) (Figs. 1d and 2a). Thus, EVTs-2 can transition either into
iEVTs that invade through decidual stroma, or into eEVTs that move
downinside the arteries.

eEVTsare presentinside spiral arteries (MES) (Fig.1d and Extended
DataFig.1e). Besides NCAMI***, eEVTs also upregulate GGTI, PPFIA4
and MMPI2 (Fig. 1e and Extended Data Fig. 3d). Evidence that eEVTs
emerge from the distal end of the CCC is supported by their close
proximity to EVTs-2 (Extended Data Fig. 6a).In our samples, we detect
sporadic NCAMI" cells close to the cytotrophoblast shell when it is
overlying aspiral artery, by single-molecule fluorescentin situ hybridi-
sation (smFISH) (Extended Data Fig. 6b). Immunohistochemistry
confirms our previous findings?*% that cells in the CCC do not stain
with amonoclonal antibody to NCAMI, but there are scattered posi-
tivecellsinthe plug of eEVTs beneath this column. Inamore proximal
portionofthe sameartery all the eEVTs lining the artery are NCAM1*
(Extended Data Fig. 6¢).

Highly invasive iEVTs are found in ME3, surrounded by decidual
stromal and immune cells (Fig. 1d and Extended Data Fig. 1e).iEVTs
upregulate PLACS® and plasminogen activator inhibitor genes SER-
PINEI and SERPINE2, with concomitant downregulation of the plasmi-
nogen activator gene PLAU (Fig. 1e and Extended Data Fig. 3d).iEVTs
eventually fuse to form placental bed GCs deeper in the decidua and
myometrium (ME4) (Fig.1d and Extended DataFig.1e). GCs upregulate
RACI and CDS&1, and the PRG2-PAPPA complex® (Fig. 1d,e, Extended
Data Fig. 1e and Extended Data Fig. 3c).

We next explored the regulatory programmes that might mediate
EVT invasion by analysing the multimodal RNA-seq and ATAC-seq

Nature | Vol 616 | 6 April 2023 | 145


https://reproductivecellatlas.org
https://reproductivecellatlas.org

Article

a Invading trophoblast trajectory b § -
L 5555831
\ vy Foxvi |8l
iEVT rxa 8
\/ ezrs
NFKB2 [ A
EvT-2* sactz |8 | NF-xB
JoP2 | %k B
atrs | a8l |AF"1
EVT-1 ASCL2 o o o |8
PBX4 N )|
ELK3 o Ao .
VCT-CCGC GATA3 | A o0 A
ELF4 o oA
c 3 GRHL1 o o
A £, & GLIS3 N )|
SSkzgdd Hivers Mo o |o
Gata2 . o a o
NOTCH1 1 Notch  srat1 | 4 o &
NFKBIZ{ o o o o ® o o |[NFxB grar2 o o IFN
AXIN2{ o o ®@ o o o o |Wnt HIF1A o o
IFNART{ o o 0 ® @ @ @ Hes4 o o A 8| Noteh
FNAR2Y . - . o e EN GATA6 * | TaFp
FI2Z7{ « o« o 0 O @ O HMGA2 |
PAX8 o]
JAGT{ o e - -+ o @ ||Noteh o = Bl
TGFB1{ -« - @@ @ O @ MYCN o N s
TGFBR1{ @ © 0 0 @ @ O TGF DLX3 o [To
TGFBR2{ 0 0 c 0 @ @ ® B KLF9 [o]
1GFBR31 O 0 0 @@ 0@ PBX3 A ||
Fraction of cells Mean expression [F status . Mean_expression
in group (%) in group *Eégrgggﬁd, active , (C2 SCOfe).
°© OOO :_ A\ Expressed 2-1 01 2
10 30 50 70 90 0 0.5 1.0
O Expressed and active
d § TF status
-
5 (-,;) ;- ;- o E AExpressedl
S >S LYoo Mean expression
TP63 . A A . (z—score).
rrs I A 2-10 1 2

Fig.2 | Transcriptionfactorsthatareactive during EVT invasion.

a, Representative tree of EVT differentiation trajectoryinferred by StOrder
(Methods). The treeshownisinferred witha=0.4 and = 0.5 for snRNA-seq
and spatial transcriptomics data from donors P13 (5 capture areas), P14

(2 captureareas) and Hrv43 (1 capture area). Tree edge thickness is proportional
to connectivity (joint measure inferred from snRNA-seq data and spatial
transcriptomics data) between two cell types connected by thatedge. The
asteriskindicates the bifurcation point. b, Heat map showing z-scores of
normalized, log-transformed and scaled expression of transcription factor
(TF) genes upregulated during trophoblastinvasion in donor P13 snRNA-seq
data. Thex-axisindicates cell state, the y-axis lists transcription factors.
Differential expression (upregulated genes) is tested along the invading
trophoblast trajectory (asshownina)inaretrograde manner using the limma
approach (false discovery rate (FDR) < 0.05, with Bonferroni correction for
multiple hypotheses testing). Coloured bars to the right of heat map indicate
members of selected pathways. IFN, interferon. ¢, Dot plot showing normalized,
log-transformed and variance-scaled expression of genes (x-axis) of signalling
molecules upregulatedin EVT (y-axis) indonor P13 snRNA-seqdata.d, Heat
map showing z-score of normalized, log-transformed and variance-scaled
expression of transcription factors (x-axis) downregulated during trophoblast
invasionin P13introphoblast states (y-axis). Differential expression
(downregulated genes) is tested along invading trophoblast trajectory
(asshownina)inaretrograde manner using the limmaapproach (FDR<0.05,
with Bonferronicorrection for multiple hypotheses testing).

data (Extended DataFig. 7a-c). We applied our multifactorial method
MEFISTO** to donor P13 multimodal data, which contained the full spec-
traof VCT and EVT subsets (Extended Data Fig. 7d-f). MEFISTO identi-
fied10 latent factors thatjointly explain12.5% of the variance inthe RNA
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expression dataand 3% of the chromatin accessibility data (Extended
DataFig.7g,h). Using alogistic regression approach, we define factors
2,4,6 and 10 as the main driving factors of the trophoblast trajectory
(Extended DataFig. 7i-1). Factors 2, 4 and 6 explain changes along the
maininterstitial trophoblastinvasion pathway (VCT-CCC to GC) (Sup-
plementary Table 4). Genes contributing strongly to these factors are
MKI67, CENPK (cell cycle, factor 2); CSFIR, ADAMS and LAIR2 (early
trophoblastinvasion, factor 4); CALD1 and COL21A1 (late trophoblast
invasion, factor 6). Factor 10 captured eEVTs; the main genes contrib-
uting to this factor include NCAM1,JAG1, ADORA1, EPHAI and HES4.

Transcription factorsin EVT subsets

To identify the major regulatory programmes driving EVT differen-
tiation, we extracted the transcription factors that are differentially
expressed and active along the EVT differentiation trajectory (Supple-
mentary Table 6 and Methods). Activation of the FOXMI-NOTCH]1 axis
is likely to lead to the differentiation of VCTs into VCT-CCCs (Fig. 2b,c
and Extended DataFig. 8a,b). Upregulation of NOTCHI may trigger the
downregulation of IRF6 and TP63 expressionin trophoblast®* (Fig. 2d
and Extended DataFig. 8c). VCT-CCCs upregulate NF-kB pathway genes
(NFKB2and BACH2) and modulate AP-1signalling genes (/DP2and ATF3),
which may result in epithelial-mesenchymal transition (Fig. 2b and
Extended DataFig. 8a). Activation of the NF-kB pathway is maintained
throughout EVT differentiation (Fig.2b and Extended DataFig. 8a), but
thereisupregulation of the NF-kB inhibitor (NFKBIZ) at the iEVT stage
(Fig.2c and Extended Data Fig. 8b). This could be another mechanism
toavoid inflammation as EVTs invade™*.,

Invading EVTs intermingle with stromal and immune cells in the
decidua. Decidual stromal cells secrete the Wnt inhibitor DKK1* and
EVT invasion is characterized by inhibition of Wnt, with downregula-
tionof the Wnt target AXIN2 (Fig. 2c and Extended DataFig. 8b). Asthey
invade, iEVTs upregulate the transcription factor ASCL2**, other tran-
scription factorsinvolved in cancer invasion (ELK3-GATA3 complex™®),
as well as tumour suppressor genes (GRHLI) (Fig. 2b and Extended
DataFig. 8a). This is in keeping with iEVTs being non-proliferative.
As iEVTs transition into GCs, they upregulate receptors of the type |
interferon pathway (/IFNARI and IFNAR2) and its targets (/FI27) (Fig.2c
and Extended Data Fig. 8b).

The eEVTs interact with endothelial cells, which they replace, and
constituents of maternal blood. eEVTs have a unique pattern of tran-
scription factor genes, whichinclude HMGA2, PAXS8, PLAGL1, MYCN and
PBX3(Fig.2b and Extended Data Fig. 8a).Inaddition, eEVTs upregulate
Notchsignalling (HES4 and JAGI) and the expression of TGF signalling
genes (TGFBI1, TGFBR1and TGFBR2) islower thaniniEVT (Fig.2c,d and
Extended Data Fig. 8a,b). GATA6, which is known to affect vessels by
suppressing autocrine TGFp signalling®®, is always upregulated and
activein EVT-1and maintainsits high expressionineEVTs, as opposed
toiEVTs.Insummary, eEVT identity is marked by strong upregulation
of Notch signalling and downregulation of TGFf signalling, whereas
iEVT cellfateis characterized by TGF3 upregulationand Wnt inhibition
(Extended Data Fig. 8d).

Benchmarking of trophoblasts in vitro

We next explored whether the cell-intrinsic regulatory programmes
thataretriggered upon VCT-to-EVT differentiation are also presentin
EVTs derived from both self-renewing PTOs? and TSCs®. To do so, we
performed scRNA-seqon: (1) PTOs differentiated in the presence of EVT
medium (EVTM) (PTO-EVTM). PTOs grown in trophoblast organoid
medium (TOM) (PTO-TOM) are used as controls; (2) TSCs differenti-
ated in the presence of EVTM (TSC-EVTM). Here TSCs in trophoblast
stemcell medium (TSCM) (TSC-TSCM) are used as controls (Fig. 3aand
Extended DataFig.9a).Inaddition, to capture multinucleated SCT, we
performed snRNA-seq on organoids grown in TOM and derived from
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Fig.3|Benchmark of EVTs derived from primary-derived trophoblast
organoidsand TSCs. a, Top, phase-contrastimages of PTOs platedina
Matrigel droplet and exposed to TOM or EVTM. Scale bar,1 mm. Representative
image of n = 6 experiments. Below, phase-contrast images of TSCs exposed to
TSCMorEVTM. Scale bar, 400 pm. Representative image of n =2 experiments.
b, UMAP plot of PTO (n =26,852 cells) and TSC (n = 9957 cells) scRNA-seq data
coloured by cell state. Annotation was performed asindicated in Extended
DataFig. 9b.c, Bar plot representing the proportion (%) of cell states assigned
totheinvitro cell states (defined by markers) using alogistic regression
classifier trained on theinvivo data. Red text indicates cell states that differ
between the annotations given by the logistic regression classifier and the

both (3) PTOs and (4) TSCs (Extended Data Fig. 9a). We annotated the
invitro data using canonical trophoblast markers, transferring labels
from the in vivo dataset into the in vitro dataset and integrating both
invivoandinvitro datasets on the same manifold (Fig. 3b and Extended
DataFigs. 9b-land 10a-e).

Projection of in vivo data onto in vitro trophoblasts using a logis-
tic regression classifier that we trained on the in vivo dataset showed
that VCT heterogeneity is better recapitulated in PTOs thanin TSCs

ones given by the expression of canonical markers. d, Dot plot showing
normalized, log-transformed and variance-scaled expression of genes (x-axis)
characteristic of VCT y-axis in PTOs (top) and TSCs (bottom). Red text indicates
genes thatdiffer from thein vivo observed expression pattern. e, Heat map
showing z-scores of normalized, log-transformed and variance-scaled
expression of transcription factor genes thatare known to be upregulatedin
invivotrophoblastinvasion (see Fig.2b). The y-axisindicates cell state and
the x-axis shows transcription factor genes. f, Heat map showing z-scores of
normalized, log-transformed and variance-scaled expression of transcription
factor genesthatare knowntobe downregulatedininvivo trophoblast
invasion.

(Fig. 3c and Extended Data Fig. 10b). The four VCT subsets defined
invivo are presentin PTOs and they express the same canonical mark-
ers (Fig.3d).InPTOs, VCT-CCCs are enriched inthe presence of EVTM,
which triggers upregulation of the FOXMI-NOTCH]1 axis, NF-kB (NFKB2
and BACH2) and AP-1modulators (/DP2and ATF3) (Fig. 3e and Extended
Data Fig.10d). By contrast, bonafide VCTs are not found among TSCs
(Fig. 3¢). Instead, when grown in TSCM, cells that we call ‘tropho-
blast stem cells’ (VCT-TSC) are primed to become VCT-CCCs as they

Nature | Vol 616 | 6 April2023 | 147



Article

upregulate VCT-CCC markers (VOTCHI1 and ITGA2) and downregulate
some of the canonical VCT markers (TP63, WLS, TNIK, SEMA3F, NRP2
and BCAM) (Fig. 3d). Inboth TSCs and PTOs, VCT-CCCs (CDHS, ITGB6
and LCATI) areenriched inthe presence of EVTM media, which triggers
the NOTCH-FOXM1 axis, leading to a further downregulation of IRF6
and TP63**'in EVT-1(Fig. 3e,f). VCT-fusing is present in both PTOs and
TSCs and accurately recapitulates its in vivo counterparts (Fig. 3c,d).
snRNA-seq allowed us to capture mature SCT in PTOs (Extended Data
Fig.9d),and SCTin TSCs do not express MFSD2A (Extended Data Fig. 9i).
Thus, our results highlight that the VCT subsets are accurately recapitu-
lated in PTO, whereas bona fide VCTs are not found in TSCs.

VCT-CCCsinboth PTOs and TSCs give rise to invasive EVT (EVT-1,
EVT-2 early, EVT-2 and iEVT), whereas markers characteristic of GCs
(high expression of PRG2 and AOCI) and eEVT (FLT4, NCAM1, GGT1,
PPFIA4, MMPI12 and EIF4E1B) are absentin our cultures (Extended Data
Fig.10a). Despite agood representation of almost all trophoblast sub-
sets in both in vitro models, the relative proportion and efficiency of
EVT differentiation was variable (Extended Data Fig. 9g,l). Similar to
invivo EVTs, EVTs derived from PTOs or TSCs downregulate the Wnt
signalling pathway (AXIN2), upregulate members of the TGF signalling
pathway (TGBI, TGBR1 and TGFBR2) and express EVT markers (/TGAI,
PLACS and HLA-G) (Extended Data Fig. 10a,b). Markers of deep EVT
invasion (ERBB2, SERPINE1, SERPINE2 and PAPPA) are upregulated in
iEVTsgeneratedin PTOs or in TSCs. However, some differencesin EVT
states are found betweenin vivo and the twoin vitro trophoblast mod-
els.For PTO there is an expansion of VCT-CCCs and an early EVT-2 that
upregulates markers of both VCT-CCCs (CDH5 and LPCATI) and EVTs
(CSH1, FBLNI, TIMP3, CD81 and EBI3) when compared to in vivo EVT-2
(Extended Data Fig.10d-f). By contrast, TSC captures an early iEVT
statethatisassigned as EVT-2by our logistic regression model despite
upregulating iEVT markers (Fig. 3c and Extended Data Fig. 10a,c). In
line with this, TSC-iEVT-early clusters together with in vivo iEVTs but
expresses lower levels of invasive markers (SERPINE2, PLACS, HLA-G
and RACI) thanits in vivo counterparts (Extended Data Fig. 10d-f).
Altogether, major EVT invasion programmes are conserved in both
PTOs and TSCs, yet there is an expansion of an early EVT population
(EVT-2early) inPTO and aless matureiEVT-like clusteris foundin TSCs.
Theabsence of deepinvasive GCsand eEVTsin these cultures suggests
that maternal cues presentinvivo, specifically factors from the decidual
stroma or maternal arteries and blood, respectively, are essential for
generating these EVT end points.

Maternal cells and EVT differentiation

Weintegrated single-cell and single-nuclei transcriptomics data from
18 donorsto study how decidual maternal cells affect trophoblastinva-
sion (Extended Data Figs. 1c, 2e and 11a). We used CellPhoneDB v4*
to determine the ligand-receptor interactions that are enriched in
the four decidual microenvironments (Fig. 1a and Methods). We first
focused on interactions mediating trophoblast invasion (Fig. 4a). As
previously described®, decidual natural killer (ANK) cellsinteract with
EVTs through multiple ligand-receptor pairs (PVR-TIGIT, PVR-CD96,
CCR1-CCL5and CSF1IR-CSF1). We find that the majority of these recep-
torsare upregulated in EVT-2, near the CCCs (Fig. 4a). In this location,
the CSF1-CSF1R interaction is enriched, confirming previous find-
ings">*8, and we reinforce this result using high-resolution multiplexed
smFISH, which shows the close proximity of CSFI* dNK cells and CSFIR*
EVT cells (Extended Data Fig. 11b).

We predicted multiple interactions between invading trophoblast
cellsand dM1(EREG* and /L1B*) and dM2 (FOLR2' and CD14"¢") (Fig. 4a
and Extended DataFig.11c,d). Maternal macrophages upregulate adhe-
sion receptor genes, including CADM1 (expressed in dM1 and dM2)
and SEMA4A (expressed in dM1), whose cognate receptors NECTIN3
and PLXNDI are expressed in EVTs (Fig. 4a). In addition, both dM1and
dM2 express the chemokine genes CXCL16 and CCL3, and their receptor
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genes CXCR6* and CCRI are upregulated in invading EVTs (Fig. 4a).
CXCR6'HLA-G"EVTs and CXCL16'CD14" decidual macrophages are in
close proximity intheimplantation site (Fig.4b). Similar to theirin vivo
counterparts, sSCRNA-seq confirms that TSC-EVTs express CXCR6, and
we used this model to functionally validate the effect of CXCL16 on
EVTs (Fig. 4c and Extended Data Fig. 11e-h). CXCL16 upregulates the
expression of characteristic placental genes (PHLDA2 and CGA), those
involvedinendothelialintegrity (TYMP) as well as cytokeratins (KRT7,
KRT8and KRT18), actin-binding molecules (COROI1B) and the galectin
member LGALS3, previously assigned to have arole in EVT invasion*®
(Fig.4d). Thisisin keeping with arole for CXCL16 in promoting tropho-
blast motility and function.

Thereceptors that are potentially involved in EVT invasion, includ-
ing CXCR6, CSFIR*® and PLXND1, are downregulated in GCs (Fig. 4a), in
keeping with their presence at the limit of EVT invasion*'. GCs form by
the fusion of iEVTs and upregulate adhesion genes (JAM2, EFNBI and
SEMA4C) whose cognate receptor genes are expressed by otheriEVTs
(JAM3, EPHB2, EPHB3 and PLXNB2), providing potential mechanisms for
fusion (Fig.4e). A possible explanation foriEVT migration from decidua
into myometrium is the specific expression of EPHB1 and EPHB4' by
myometrial smooth muscle cells (uUSMCs) which bind to EFNB1, which
isupregulatedintheiEVTs and GCs (Fig. 4e). We validated expression
of EFNB1 in GCs using multiplexed smFISH (Fig. 4f).

eEVT interactions with spiral arteries

Trophoblast arterial transformation during early pregnancy is cru-
cial for pregnancy success. Initially, there is destruction of the media
by iEVTs which is replaced with acellular fibrinoid material***, We
previously defined two perivascular cell states®, PV1 (MCAM-high)
and PV2 (MMPI11-high) in the arterial media. Here we combine
scRNA-seqand smFISH to identify two cell states within PV1: PV1-AOC3
(AOC3-high, MYH11-high, FNDCI-high and NTRK2-high) and PV1-STEAP4
(STEAP4-high, EPHB6-high and LZTS1-high) (Extended DataFig.12a-c).
We mapped the interactions between perivascular cell subsets and
iEVT that might lead to medial destruction. Expression of EFNBI by
iEVTs could induce their tropism towards the arteries as perivascu-
lar cells express the cognate receptor gene, EPHB6 (Figs. 4f and 5a).
We also find that iEVTs upregulate specific cell signalling molecules
(PTPRS and NTN4) whose cognate receptor genes (NTRK2and NTRK3)
areupregulatedin PV1-AOC3 (Fig. 5a). Neurotrophic tyrosine receptor
kinases (NTRKSs) canbe associated with cellular survival. Whether they
areinvolved in the ‘fibrinoid change’ in the arterial media******would
require further exploration. Using multiplexed smFISH, we validated
the close proximity between iEVTs (HLA-G*) expressing PTPRS and
perivascular cells (MCAM®) expressing NTRK2 and NTRK3 (Fig. 5b and
Extended Data Fig.12d).

eEVTs initially form plugs in the spiral arteries close to the cyto-
trophoblast shell that limit high-pressure maternal blood flow into
theintervillous space before 8-10 PCW, prior to the establishment of
the haemochorial circulation®. eEVTs eventually replace the maternal
endothelium*#?, Our unbiased analyses enable us to speculate how the
plugs are formed. Inaddition to the homotypicinteractions by NCAM1,
eEVTs express both ITGBI and ITGA2 (forming the integrin a21) and
itscognate collagenligands (COL6A1, COLI9A1, COL26A1and COL21AI)
(Fig.5c). Active Notch signalling is suggested by upregulation of ligand
(JAGI and JAG2) and receptor (NOTCH2 and NOTCH3) genes (Fig. 5¢).
Interactions of eEVTs in the vasculature (MES) could be mediated by
EPHAI, CXCLI12, FLT4 and ANGPT4, with endothelial cells expressing
their interacting partners EFNAI, EFNAS, VEGFC and TEK (Fig. 5¢c and
Extended DataFig.12e). Using spatial transcriptomics, we visualized the
expression of extracellular matrix (ECM) component (COL21AI-ITGA2)
and Notch (NVOTCH2-JAGI) interactions in the arterial plug (Fig. 5d).

Together, our high-resolution analyses of the spiral arteries in the
decidua basalis enabled us to detect several ECM components and
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macrophages and CXCR6-expressing EVTs, respectively. Images are
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differentiation experimental design, indicating time points and biological
replicatesin TSC models (n =2 donors).d, Dot plot showing normalized,

ligand-receptor pairs thatare expressed in eEVT and maternal endothe-
lialcellsaswellasiniEVT and PV subsets (Fig. 5e). These ligand-receptor
interactions that occur between maternal and fetal cells are likely to
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be pivotal in mediating the maternal arterial transformation that is
characteristic of the first trimester of pregnancy and is essential for
its success.
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Fig.5|Predictedligand-receptorinteractions modulating uterine
arterial transformation. a, Left, dot plot showing z-score of normalized,
log-transformed and variance-scaled gene expression of selected receptors
(y-axis) thatare upregulated iniEVT (x-axis). Right, dot plot showing the
presence of selected ligands (y-axis) in cells presentin ME3 (invasion front;
x-axis). Differential expression asin Extended Data Fig. 8a. b, Top, high-
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Discussion

In the postimplantation embryo, trophectoderm differentiates into
trophoblast thatinvades the uterus to transform the maternal arteries.
Defective trophoblast invasion is the primary underlying cause of the
great obstetric syndromes that include pre-eclampsia, fetal growth
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expression of selected receptors (y-axis) thatare upregulated in eEVT (y-axis).
Inthe case ofacomplex, the expression corresponds to the least expressed
subunit of the complex (/TGBI).Right, dot plot showing the presence of
selected ligands (y-axis) in cells present in MES (spiral arteries; x-axis).
Differential expressionasin Extended DataFig. 8a.d, Overview of spatial
locations ofinvading trophoblast cell states in Visium spatial transcriptomics
dataofarepresentative section of donor P13 tissue. The position of the capture
areaisindicated withanarrowin Extended DataFig.1d. Spot colour indicates
cell state densities computed by cell2location as the number of cells of agiven
cellstateinaVisiumspot. e, Schematic representation of the spiral arteriesin
thefirst trimester of human pregnancy, highlighting the novelinteractions
between PV-iEVT, endothelial-eEVT,and eEVT-eEVT.

restriction, unexplained stillbirth, placental abruption and preterm
labour®. We made use of a historical collection of first-trimester pregnant
hysterectomies to delineate the trophoblast landscape at theimplanta-
tionsite, where fetal and maternal cellsintermingle. The humanimplan-
tationsites profiled in our study were collected more than 30 years ago
and have been stored in liquid nitrogen. We report new high-quality



multiomics and spatial data, and developed a statistical framework
(StOrder) that describes the complete trophoblast invasion trajectory
duringthefirst trimester of pregnancy. This includes the unbiased tran-
scriptomics profile of eEVTs that replace the endothelium from the
maternal arteries and placental bed GCs, present deeperinthe decidua
and the inner third of the myometrium. We use the complete in vivo
trophoblast trajectory to benchmark current PTOs and TSCs in vitro
trophoblast models and demonstrate that they faithfully recapitulate
EVT differentiation. Terminal eEVTs and deep invasive GCs are absent in
ourinvitro cultures, and we reason that maternal signals from uterine
cells and maternal serum are required to generate them.

Our systems biology approach has enabled us to explore potential
interactions between EVTs and maternal decidual cells. First, we predict
theligand-receptorinteractions between the maternal macrophages
and EVT, in keeping with the importance of decidual innate immune
cells for placentation®. We further explore the poorly described
macrophage-EVT signalling axis in vitro and describe upregulation
of motility genesinthe EVT subsets. Second, we pinpoint the potential
molecular and cellular mediators of arterial transformation during
early pregnancy. Interactions between PV1-AOC3andiEVT could drive
iEVT tropism towards the arterial wall and mediate the destruction of
arterial smooth muscle media. eEVTs have a specific ECM that could
allow them to form the plug. There are also specific interactions with
endothelial cells that enable eEVTs to adhere to them. These novel
interactions add to our understanding of the communication between
endothelialand eEVT cells*. The effect of defective arterial transforma-
tioninthelater stages of pregnancy is well-described and underpins the
great obstetric syndromes’. Our study increases the understanding of
these major pregnancy disorders, all of which have their originsin the
first trimester®. Inaddition, our roadmap of trophoblast differentiation
canbeusedasablueprint todesignimproved invitro models that fully
recapitulate the early stages of implantation.
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Methods

Humansamples

Placental and decidual samples used for the in vivo and in vitro pro-
filing were obtained from elective terminations from: The MRC and
Wellcome-funded Human Developmental Biology Resource (HDBR,
https://www.hdbr.org), with appropriate maternal written consent and
approval fromthe Fulham Research Ethics Committee (REC reference
18/L0O/0822) and Newcastle and North Tyneside 1 Research Ethics Com-
mittee (REC reference 18/NE/0290). The HDBR s regulated by the UK
Human Tissue Authority (HTA; https://www.hta.gov.uk) and operates
inaccordance withthe relevant HTA Codes of Practice.Addenbooke’s
Hospital (Cambridge) under ethical approval from the Cambridge Local
Research Ethics Committee (04/Q0108/23), whichisincorporatedinto
the overarching ethics permission given to the Centre for Trophoblast
Research biobank for the Biology of the Human Uterus in Pregnancy
and Disease Tissue Bank at the University of Cambridge under ethical
approval fromthe East of England-Cambridge Central Research Ethics
Committee (17/EE/0151) and from the London-Hampstead Research
Ethics Committee (20/LO/0115).

Placental-decidual blocks (P13, P14 and P34) were collected prior
to1September 2006 and consent for research use was not obtained.
These samples are considered ‘Existing Holdings” under the Human
Tissue Actand as such were able to be used in this project. All the other
tissue samples used for this study were obtained with writteninformed
consent fromall participantsin accordance with the guidelinesin The
Declaration of Helsinki 2000.

Allsamples profiled were histologically normal.

TSClines BTS5and BTS11derived from humanblastocysts by H. Okae
and colleagues® were used in this study. Informed consent was obtained
fromall donors prior to the establishment of the cell line and the study
was approved by the Ethics Committee of Tohoku University School of
Medicine (Researchlicense 2016-1-371), associated hospitals, the Japan
Society of Obstetrics and Gynecology and the Ministry of Education,
Culture, Sports, Science and Technology (Japan). This work was inter-
nally approved by HuMFre-20-0005 at the Wellcome Sanger Institute
andthe lines were covered by a Conditions of Use agreement with the
Tohoku University School of Medicine (internal reference CG175).

Tissue cryopreservation

Fresh tissue samples of human implantation sites were embedded in
cold OCT medium and flash-frozen using a dry ice-isopentane slurry
as described*®.

Quality of archival frozen tissue samples was assessed by extraction
of RNA from cryosections using the QIAGEN RNeasy Mini Kit, accord-
ing to the manufacturer’s instructions including on-column DNase |
digestion. RNA quality was assayed using the Agilent RNA 6000 Nano
Kit. Allsamples processed for Visium and single-nuclei had RIN values
greater than 8.7.

Single-nuclei extraction

Single-nuclei suspensions were isolated from frozen tissue sections
when performing multiomic snRNA-seq, scATAC-seq and snRNA-seq,
following the manufacturer’s instructions. For each OCT-embedded
sample, 400 pm of tissue was prepared as 50 um cryosections, which
were paused in a tube on dry ice until subsequent processing. Nuclei
were released via Dounce homogenization as described®’.

Single-cellisolation from tissue

We used the previous protocol optimized for the decidual-placental
interface®. In short, decidual tissues were enzymatically digested in
15ml 0.4 mg ml™ collagenase V (Sigma, C9263) solution in RPMI11640
medium (Thermo Fisher Scientific, 21875-034)/10% FCS (Biosfera,
FB-1001) at 37 °C for 45 min. The supernatant was diluted with medium
and passed through a100-um cell sieve (Corning, 431752) and then

a40-pm cell sieve (Corning, 431750). The flow-through was centri-
fuged and resuspended in 5 ml of red blood cell lysis buffer (Invitrogen,
00-4300) for 10 min. Placental villi were scraped from the chorionic
membrane using ascalpel and the stripped membrane was discarded.
The resultant villous tissue was enzymatically digested in 70 ml 0.2%
trypsin 250 (Pan Biotech P10-025100P)/0.02% EDTA (Sigma E9884) in
PBS withstirringat 37 °C for 9 min. The disaggregated cell suspension
was diluted with medium and passed through a100-pm cell sieve (Corn-
ing, 431752). The undigested gelatinous tissue remnant was retrieved
from the gauze and further digested with 10-15 ml collagenase V at
1.0 mg mI™ (Sigma C9263) in Ham’s F12 medium/10% FBS with gentle
shaking at 37 °C for 10 min. The disaggregated cell suspension was
diluted with medium and passed through a100 pm cell sieve (Corning,
431752). Cells obtained from both enzyme digests were pooled together
and passed through a100 pm cell sieve (Corning, 431752) and washed
in Ham’s F12. The flow-through was centrifuged and resuspended in
5 mlofredblood cell lysis buffer (Invitrogen, 00-4300) for 10 min.

Trophoblastin vitro cultures

Trophoblast stem cell (TSC) lines BTS5 and BTS11 derived by Okae
and colleagues were grown as described previously®. In brief, TSC
self-renewing medium (TSCM) components were substituted with
local suppliers with the exception for 30% w/v BSA from WAKO Japan
and CHIR99021 concentration wasincreased to 6 uM which maintained
the undifferentiated morphology as well as preserving its EVT inva-
sivemorphology. TSCs were grown on 5 pg ml™ Collagen IV (Corning)
coated wells and early passaged cells between passages 24 and 26 were
used for differentiation and analysis. For 2D differentiation into EVT
identity, cells were seeded at a density of 1.3 x 10° per cm? (correspond-
ingto125,000 cells plated onawell of a 6-well plate) in EVTM1 detailed
below supplemented with ice-cold 2% Matrigel GFR (Corning) before
seeding on1pg ml™ CollagenIV (Corning) coated wells (DO). Three days
later (D3), mediumwas changed to EVTM2 supplemented withice-cold
0.5% Matrigel GFR. Three days later (D6), the mediumwas changed to
EVT medium 3 supplemented with ice-cold 0.5% Matrigel GFR. Cells
were treated with TrypLE for downstream analysis 48 h later (D8). For
CXCL16 induction experiments, a final concentration of 100 ng ml™
CXCL16 (RnD 976-CX-025 with carrier, dissolved in 0.1%BSA(WAKO)/
PBS) were supplemented to EVTM2 or EVTM3 and analysed 48 h later.
The induction was controlled by supplementing an equal volume of
0.1% BSA/PBS.

In total, six trophoblast organoids were grown and differentiated
into EVT as previously described®*8, To differentiate trophoblast orga-
noids into EVT, organoids were cultured with TOM for ~3-4 days and
transferred into EVTM1 (+NRG]1) for ~4-7 days. Once trophoblasts initi-
ate their commitmentinto EVT (spike emergence), EVTM2 (-NRG1) is
addedfor 4 days. Donors were differentiated and collected inbatches
of three that were multiplexed on the same 10x Genomics reaction.
Samplesfordonors1,2and3werecollected at3 h,24 hand 48 hafterthe
addition of EVTM2, while samples for donors 4, 5and 6 were collected
at48 hbefore, and then O h, 48 h and 96 h after, addition of EVTM2.
Organoids grownin TOM were also collected as a control at 96h.

Media compositions have been described previously***® and are
shown here. TSCM: DMEM/F12 with Glutamax (Gibco) supplemented
with 0.2% v/v FBS (Gibco), 0.3% wt/vol BSA (WAKO), 1% ITS-X (Gibco),
2.5 ug ml™ L-ascorbic acid-2-phosphate (Sigma), 50 ng mI™ EGF (Pepro-
tech AF-100-15), 6 uM CHIR99021 (Tocris 4423), 0.5 pM A83-01 (Tocris
2939),1 1M SB43154 (Tocris 1614), 0.8 mM VPA (Sigma, dissolved in
H20) and 5 pM Y-27632 (Millipore 688000). TOM: Advanced DMEM/
F12,N2 supplement (at manufacturer’srecommended concentration),
B27 supplement minus vitamin A (at manufacturer’s recommended
concentration), Primocin 100 pg ml™, N-Acetyl-L-cysteine 1.25 mM,
L-glutamine 2 mM, recombinant human EGF 50 ng ml™, CHIR99021
1.5 pM, recombinant human R-spondin-1 80 ng ml™, recombinant
human FGF-2100 ng ml™, recombinant human HGF 50 ng ml™, A83-01
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500 nM, prostaglandin E2 2.5 puM, Y-27632 5 pM. EVTM1: Advanced
DMEM/F12 (or DMEM/F12 for TSC-EVTM 2D), L-glutamine 2 mM,
2-mercaptoethanol 0.1 mM, penicillin/streptomycin solution 0.5%
(vol/vol), BSA 0.3% (wt/vol, WAKO), ITS-X supplement 1% (vol/vol),
NRGI (Cell Signaling 5218SC) 100 ng ml™, A83-017.5 pM, knockout
serum replacement 4% (vol/vol). EVTM2, Advanced DMEM/F12 (or
DMEM/F12for TSC-EVTM2D), L-glutamine 2 mM, 2-mercaptoethanol
0.1 mM, penicillin/streptomycin solution 0.5% (vol/vol), BSA 0.3%
(wt/vol, WAKO), ITS-X supplement 1% (vol/vol), A83-017.5 uM, Knockout
serum replacement 4% (vol/vol) (this is the same as EVTM1 without
NRG1). This medium can be stored at 4 °C for up to 1 week. EVTM3,
DMEM/F12 (for TSC-EVTM 2D), L-glutamine 2 mM, 2-mercaptoethanol
0.1 mM, penicillin/streptomycin solution 0.5% (vol/vol), BSA 0.3%
(wt/vol, WAKO), ITS-X supplement 1% (vol/vol), A83-017.5 uM (this is
the same as EVTM1 without NRG1 or knockout serum replacement).
This can be stored at 4 °C for up to 1 week.

H&E staining and imaging

Fresh frozen sections were removed from —80 °C storage and air dried
before being fixed in10% neutral buffered formalin for 5 min. After rins-
ing with deionised water, slides were stained in Mayer’s haematoxylin
solutionfor90 s.Slides were completely rinsed in4-5washes of deion-
ised water, which also served to blue the haematoxylin. Aqueous eosin
(1%) was manually applied onto sections with a pipette and rinsed with
deionised water after1-3 s. Slides were dehydrated through an ethanol
series (70%,70%,100%,100%) and cleared twice in100% xylene. Slides
were coverslipped and allowed to air dry before being imaged on a
Hamamatsu Nanozoomer 2.0HT digital slide scanner.

Multiplexed smFISH and high-resolution imaging

Largetissue section staining and fluorescent imaging were conducted
largely as described previously*. Sections were cut from fresh frozen
samples embedded in OCT at a thickness of 10-16 pm using a cry-
ostat, placed onto SuperFrost Plus slides (VWR) and stored at -80 °C
until stained. Tissue sections were processed using a Leica BOND RX
to automate staining with the RNAscope Multiplex Fluorescent Rea-
gentKit v2 Assay (Advanced Cell Diagnostics, Bio-Techne), according
to the manufacturers’ instructions. Probes are listed in Supplemen-
tary Table 8. Prior to staining, fresh frozen sections were post-fixed
in 4% paraformaldehyde in PBS for 6-8 h, then dehydrated through a
series of 50%, 70%,100%, and 100% ethanol, for 5 min each. Following
manual pre-treatment, automated processingincluded heat-induced
epitope retrieval at 95 °C for 15 min in buffer ER2 and digestion
with Protease Il for 15 min prior to probe hybridisation. Tyramide
signal amplification with Opal 520, Opal 570, and Opal 650 (Akoya
Biosciences) and TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) and
streptavidin-conjugated Atto 425 (Sigma Aldrich) was used to develop
RNAscope probe channels.

Stained sections were imaged with a Perkin EImer Opera Phenix Plus
High-Content Screening System, in confocal mode with 2 pm z-step
size, using a 40x (NA 1.1, 0.149 pm/pixel) water-immersion objec-
tive. Channels: DAPI (excitation 375 nm, emission 435-480 nm), Atto
425 (excitation 425 nm, emission 463-501 nm), Opal 520 (excitation
488 nm, emission 500-550 nm), Opal 570 (excitation 561 nm, emission
570-630 nm), Opal 650 (excitation 640 nm, emission 650-760 nm).

Image stitching

Confocal image stacks were stitched as two-dimensional maximum
intensity projections using proprietary Acapella scripts provided by
Perkin EImer.

10x Genomics Chromium GEX library preparation and sequencing
For the scRNA-seq experiments, cells were loaded according to the
manufacturer’s protocol for the Chromium Single Cell 3’ Kit v3.0,
v3.1and 5’ v1.0 (10X Genomics). Library preparation was carried out

according to the manufacturer’s protocol to attain between 2,000
and 10,000 cells per reaction. Libraries were sequenced, aiming at a
minimum coverage of 20,000 raw reads per cell, onthe lllumina HiSeq
4000 or Novaseq 6000 systems using the following sequencing for-
mat: (A) read 1: 26 cycles; i7 index: 8 cycles, i5 index: O cycles; read 2:
98 cycles; (B) read 1:28 cycles; i7 index: 8 cycles, i5index: O cycles; read
2:91cycles; (C) read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10 cycles;
read 2: 90 cycles (v3.1dual).

For the multimodal snRNA-seq and scATAC-seq experiments, cells
were loaded according to the manufacturer’s protocol for the Chro-
mium Single Cell Multiome ATAC + Gene Expression v1.0 to attain
between 2,000 and 10,000 cells per well. Library preparation was
carried out according to the manufacturer’s protocol. Libraries for
SscATAC-seq were sequenced on Illumina NovaSeq 6000, aiming at a
minimum coverage of 10,000 fragments per cell, with the following
sequencing format; read 1: 50 cycles; i7 index: 8 cycles, i5 index: 16
cycles; read 2: 50 cycles.

10x Genomics Visium library preparation and sequencing
Ten-micrometre cryosections were cut and placed on Visium slides,
then processed according to the manufacturer’s instructions. In brief,
sections were fixed with cold methanol, H&E stained and imaged on
aHamamatsu NanoZoomer S60 before permeabilization, reverse
transcription and cDNA synthesis using atemplate-switching protocol.
Second-strand cDNA was liberated from the slide and single-indexed
libraries were prepared using a 10x Genomics PCR-based protocol.
Libraries were sequenced (1 per lane on a HiSeq 4000), aiming for
300M raw reads per sample, with the following sequencing format;
read 1: 28 cycles, i7 index: 8 cycles, i5 index: O cycles and read 2: 91
cycles.

Alignment and quantification of scRNA-seq and snRNA-seq data

For each sequenced single-cell and single-nucleus RNA-seq library,
we performed read alignment to the 10X Genomics’ GRCh38 3.0.0
human reference genome, mRNA version for scRNA-seq samples
and pre-mRNA version for snRNA-seq samples, latter created follow-
ing instructions from 10X Genomics: https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/latest/advanced/
references#premrna. Quantification and initial quality control were
performed using the Cell Ranger Software (version 3.0.2; 10X Geno-
mics) using default parameters. Cell Ranger filtered count matrices
were used for downstream analysis.

Alignment and quantification of multiome data

For each sequenced snRNA-seq and ATAC-seq (multiome) library, we
performed read alignment to custom made genome consisting of 10X
Genomics’ GRCh38 3.0.0 pre-mRNA human reference genome and
10X Genomics Cell Ranger-Arc 1.0.1 ATAC genome, created following
instructions from 10X Genomics: https://support.10xgenomics.com/
single-cell-multiome-atac-gex/software/pipelines/latest/advanced/
references. Quantification and initial quality control were performed
using the Cell Ranger-Arc Software (version1.0.1;10X Genomics) using
default parameters. Cell Ranger-Arcfiltered count matrices were used
for downstream analysis.

Downstream scRNA-seq and snRNA-seq analysis

Detection of doublets by gene expression. We used Scrublet for cell
doublet calling on a per-library basis. We used a two-step diffusion
doublet identification followed by Bonferroni FDR correction and a
significance threshold of 0.01, as described in*°. Predicted doublets
were not excluded from theinitial analysis, but used afterwards to flag
clusters with high doublet scores.

Detection of doublets by genotype. Souporcell® was used to decon-
volute (1) maternal and fetal origin of cells and nucleiin our scRNA-seq


https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/advanced/references
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/advanced/references
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/advanced/references

Article

and snRNA-seq samples (including multiome snRNA-seq); (2) assign-
ment of cells to individuals in pooled samples (namely, samples
Pla_HDBR8768477, Pla_HDBR8715512 and Pla_HDBR8715514); and
(3) organoids from multiple individuals. In some samples deconvolu-
tion into maternal or fetal origin by genotype was not possible which
is probably owing to the highly skewed ratio of genotypes (either
extremely high (>0.95) or extremely low (<0.05) ratio of maternal to
fetal droplets). In those cases, maternal-fetal origin of the cells was
identified using known markers fromref. %,

Souporcell (version2.4.0) was installed as per instructionsin https://
github.com/wheaton5/souporcell and used in the following way:

path_to/singularity exec ./souporcell.sif souporcell_pipeline.py -i
.Jcellranger_path/possorted_genome_bam.bam -b ./cellranger_path/
filtered_feature_bc_matrix/barcodes.tsv -f ./genome_path/genome.
fa-t8-osouporcell_result -k 2 --skip_remap True --common_variants
Jfiltered_2p_lkgenomes_GRCh38.vcf

Where k =2 corresponds to the number of individuals to be decon-
voluted (in our case either mother and fetus or pooled individuals
H7 and H9 in samples Pla_HDBR8768477, Pla_HDBR8715512 and
Pla_HDBR8715514. The accuracy of deconvolution was evaluated in
downstream analysis once cluster identity was clear from either gene
expression or predictions of logistic regression. In samples where
deconvolution worked successfully, inter-individual doublets were
further excluded from downstream analysis.

Filtering genes high in ambient RNA signal. To assess which genes
inthe scRNA-seqand snRNA-seq datawere highinambient RNA (soup)
signal (further referred to as noisy genes), the following approach
was undertaken separately for all the scRNA-seq and snRNA-seq sam-
ples: (1) Read inall the raw and filtered count matrices for each sample
produced by Cell Ranger Software. (2) Discard droplets with <5 unique
moleular identifiers (UMIs) (likely to be fake droplets from sequenc-
ing errors). (3) Only keep data from samples which we further consi-
der as noisy (where ‘Fraction reads in cells’ reported by Cell Ranger is
less than 70% (guided by 10X Genomics’ recommendations: https://
assets.ctfassets.net/an68im79xiti/163qWiQBTVi2YLbskJphQX/e90
bb82151blcdab6d7e9b6c845e6130/CG000329 TechnicalNote_
InterpretingCellRangerWebSummaryFiles_RevA.pdf). (4) Take the
dropletsthatareinrawbutarenotin filtered matrices considering them
asempty droplets. (5) Concatenate all raw objects with empty droplets
into 1joint raw object and do the same for filtered. (6) For all genes
calculate soup probability as defined with the following equation:
P= E;mpty dropletS/(Ezmpty droplets + Ecgells/nuclel)’ where Eegmpty dropletsisthetotal
sum of expression (number of UMI counts) of gene ginempty droplets,
and £$°"/"!eljs the total sum of expression counts of genegin droplets
that are considered as cells/nuclei by Cell Ranger. (7) For all genes
calculate number of cells/nuclei where the gene is detected at >0
expression level (UMI counts). (8) Label genes as noisy if their soup
probability exceeds 50% quantile of soup probability distribution - done
separately for cells and for nuclei.

This approach was used to estimate noisy genes in (1) donor P13
samples and (2) all donors’ samples. Donor P13 noisy genes were
excluded during mapping onto space (Visium, see ‘Location of cell
typesin Visium data’), whereas all donors’ noisy genes (labelled using
nuclei-only derived threshold in step 8 to not over-filter genes based on
the higher quality portion of the data which in our case in scRNA-seq)
were excluded during all donors analysis of the whole atlas of all the
cell states at the maternal-fetal interface.

Quality filters, alignment of data across different batches and
clustering. We integrated thefiltered count matrices from Cell Ranger
and analysed them with scanpy (version 1.7.1), with the pipeline fol-
lowing their recommended standard practises. In brief, we excluded
genes expressed by less than three cells, excluded cells expressing
fewer than 200 genes, and cells with more than 20% mitochondrial

content. After converting the expression space to log(CPM/100 +1),
the object was transposed to gene space to identify cell cycling genes
in a data-driven manner, as described in®**2, After performing princi-
pal component analysis (PCA), neighbour identification and Louvain
clustering, the members of the gene cluster including known cycling
genes (CDK1,MKI167, CCNB2 and PCNA) were flagged as the data-derived
cell cycling genes, and discarded in each downstream analysis where
applicable.

Next, to have an estimate of the optimal number of latent variables
tobeused laterinthesingle-cell variational inference (scVI) workflow
for dimensionality reduction and batch correction, we identified highly
variable genes, scaled the data and calculated PCA to observe the vari-
ance ratio plot and decide on an elbow point which defined values of
n_latent parameter which were then used to correct for batch effect by
10Xlibrary batch (‘sample’) with scVI. Number of layersin scVImodels
was tuned manually to allow for better integration. The resulting latent
representation of the data was used for calculating neighbourhood
graph, UMAP and further Louvain clustering. For trophoblast organoid
scRNA-seq and snRNA-seq, data were integrated with Harmony by
donor using theta=0 parameter.

Analysis was done separately for (a) donor P13 trophoblast compart-
mentand (b) all donors’ data (all cell states). Inboth analyses (a) and (b)
trophoblast datawas analysed separately with consecutive rounds of
re-analysis upon exclusion of clusters of noisy nature (exhibiting gene
expression characteristic of more than1distinct population). In addi-
tion, inalldonors’ analysis fibroblast (maternal and fetal separately) and
maternal NK, T, myeloid, epithelial, endothelial and perivascular com-
partments were reanalysed separately using the approach described
inthe previous paragraph to achieve fine grain annotation.

Differential gene expression analysis

Differential gene expression analysis was performed with limma (limma
version 3.46.0, edgeR version 3.32.1) with “cell_or_nucleus” covariate
(scRNA-seq or snRNA-seq (including multiome snRNA-seq) origin of
each droplet) backwards along the trajectory that was derived using
stOrder approach, namely for the following 6 comparisons: VCT-CCC
vs VCT (VCT and VCT-p cell states together); EVT-1vs VCT-CCC; EVT-2
vs EVT-1;iEVT vs EVT-2; GC vs iEVT; eEVT vs EVT-2. Only significant
DEGs were considered for downstream analysis, namely those with
FDR (bonferroni) <0.05).

Alignment, quantification and quality control of multiome
ATACdata

We processed scATAC-seq libraries coming from multiome samples
(read filtering, alignment, barcode counting, and cell calling) with
10X Genomics Cell Ranger-Arc (version 1.0.1) using the pre-built 10X
GRCh38 genome (version corresponding to Cellranger-arc 1.0.1) as
reference. We called the peaks using an in-house implementation of
the approach described in Cusanovich et al. * (available at https://
github.com/cellgeni/cellatac, revision 21-099). In short, the genome
was broken into 5-kb windows and then each cell barcode was scored
forinsertions in each window, generating a binary matrix of windows
by cells. Matrices from all samples were concatenated into a unified
matrix, which was filtered to retain only the top 200,000 most com-
monly used windows per sample. Using Signac (https://satijalab.org/
signac/ version 0.2.5), the binary matrix was normalized with term
frequency-inverse document frequency (TF-IDF) followed by a dimen-
sionality reduction step using Singular Value Decomposition (SVD).
The first latent semantic indexing (LSI) component was ignored as it
usually correlates with sequencing depth (technical variation) rather
thanabiological variation®. The 2-30 top remaining components were
used to perform graph-based Louvain clustering. Next, peaks were
called separately on each cluster using macs2*. Finally, peaks from
all clusters were merged into a master peak set (that s, peaks overlap-
ping in at least one base pair were aggregated) and used to generate
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abinary peak-by-cell matrix, indicating any reads occurring in each
peak for each cell.

This analysis was done separately for (1) allmultiome dataat first and
(2) trophoblast-only subset of the multiome data. In the latter analysis
we used annotation labels from the RNA counterpart of the multiome
samples to perform peak calling.

Alignment, quantification and quality control of Visium data
Foreach10X Genomics Visium sample, we used Space Ranger Software
Suite (version1.1.0) toalignto the GRCh38 human reference pre-mRNA
genome (official Cell Ranger reference, version 3.0.0) and quantify gene
counts. Spots were automatically aligned to the paired H&E images by
Space Ranger software. All spots under tissue detected by Space Ranger
were included in downstream analysis.

Downstream analysis of 10X Genomics Visium data

Location of cell types in Visium data. To locate the cell states in
the Visium transcriptomics slides, we used the cell2location tool
v0.06-alpha®. As reference, we used snRNA-seq data of donor P13.
We used general cell state annotations from the joint all donors’
analysis (corresponding to donor P13 data), with the exception of the
trophoblast lineage. Trophoblast annotations were taken from donor
P13-only analysis of the trophoblast compartment. Using information
about which genes are noisy (high in ambient RNA signal) in donor
P13 snRNA-seq data (details in ‘Filtering genes high in ambient RNA
signal’), we excluded those from the reference and Visium objects
prior to cell2location model training which significantly improved
theresults of mapping (namely, eliminated off-target mapping of cell
states—that is, made results of mapping more specific to the correct
anatomical regions). Following the tutorial at https://cell2location.
readthedocs.io/en/latest/notebooks/cell2location_tutorial.html#Cell
2location:-spatial-mapping, we trained cell2location model with
default parameters using 10X library as abatch covariate in the step of
estimation of reference cell-type signatures. Results were visualized
with scanpy (version 1.7.1). Plots represent estimated abundance of
cell types (cell densities) in Visium spots.

Subsetting Visium data into anatomical regions with SpatialDE2. We
used SpatialDE2* tissue segmentation algorithm to assign Visium spots
tothreeanatomical regions: (1) placenta; (2) decidua and villi tips; and
(3) myometrium. We used mRNA abundances from the deconvolution
results obtained with cell2location” in Spatial DE2 tissue segmentation.
Assignment of obtained Visium spot clusters to regions was done upon
visualinspection. Locations of certain fibroblast cell states indicative
ofthe specific anatomical region (uterine smooth muscle cells, uSMC
and dS cell states) were also used to guide this assignment. In addition,
low-quality spots were discarded on the basis of not being under tissue
and having low count and gene coverage (visual inspection).

For more details, please refer to the following notebook: https://
github.com/ventolab/MFI/blob/main/2_inv_troph_trajectory and_TFs/
2-1 stOrder_inv_troph/S1_regions_analysis_for SpCov_model_and_later_
for_CellPhone.ipynb

Downstream snATAC-seq analysis

Quality filters. To obtain a set of high-quality peaks for downstream
analysis, we filtered out peaks that (1) were included in the ENCODE
blacklist, (2) have awidth outside the 210-1,500 bp range, and (3) were
accessible in less than 5% of cells from a cellatac cluster. Low-quality
cells were also removed by setting to 4 the minimum threshold for
loglp-transformed total counts per cell.

Alignment of data across different batches and clustering. We
adopted the cisTopic approach® for the core of our downstream
analysis. cisTopic employs latent Dirichlet allocation (LDA) to estimate
the probability of aregion belonging to aregulatory topic (region-topic

distribution) and the contribution of a topic within each cell (topic—
cell distribution). The topic-cell matrix was used for constructing the
neighbourhood graph, computing UMAP projections and clustering
with the Louvainalgorithm. After this was done for all cell states, clus-
ters corresponding to trophoblast cell states (based on the unbiased
clustering done here and annotation labels coming from the RNA coun-
terpart of this multiome data) were further subsetted and reanalysed
following the same pipeline.

Gene activity scores. Next, we generated a denoised accessibility
matrix (predictive distribution) by multiplying the topic-cell and
region-topicdistribution and used it to calculate gene activity scores.
To be able to integrate them with scRNA-seq and snRNA-seq data,
gene activity scores were rounded and multiplied by a factor of 107, as
described*.

Cell-type annotation of invading trophoblast. Final labels of invading
trophoblast in snATAC-seq data were directly transferred from RNA
counterpart of the multiome data.

Joininference of trophoblast invasion from gene expression and

spatial data

StOrder is a computational framework for joint inference of cellular

differentiation trajectories from gene expression data and informa-

tion about location of cell states in physical space (further referred
to as spatial data).
It consists of three principal steps:

1. Calculate pairwise cell state connectivity from gene expression data
(here we use snRNA-seq data).

2. Calculate pairwise cell state proximity in physical space from spatial
data (here we use Visium spatial transcriptomics data) using a new
spatial covariance model.

3. Combine connectivity matrices from steps 1and 2 in a weighted
expression to reconstruct the putative tree structure of the differ-
entiation trajectory.

First, StOrder relies on a gene expression-based connectivity matrix
(generated in our case by PAGA®) that establishes potential connec-
tions between cell state clusters defined by single-cell or single-nucleus
transcriptomics datasets. The valuesin this matrix can be interpreted
as pairwise similarity scores for cell states ingene expressionspace. In
our case we used snRNA-seq datafrom P13 as it contains all trophoblast
subsets.

Second, StOrder generates a spatial covariance matrix that reflects
pairwise proximity of cell states that co-exist in space and smoothly
transition from one state to another while physically migratingin space.
Todoso, StOrder takes as aninput the deconvolutionresults (derived
inour case with cell2location”) of Visium spatial transcriptomics data.
Here, we used all spatial transcriptomics data profiled (donors P13,
P14 and Hrv43). Then, it fits a Gaussian process model that derives
pairwise spatial covariance scores for all the cell state pairs with the

following model:
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is defined by a between-cell-state covariance matrix
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and aspatial covariance matrix defined using the squared exponential
kernel:
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X,, and x,, are spatial coordinates of spots m and n and [is the length
scale of the smooth Gaussian process function in space that is being

fit to cell densities.
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The noise term
represents sources of variation other than spatial covariance of cell
state densities.

The between-cell-state covariance matrix is constrained to be sym-
metric positive definite by defining
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The free parameters a,, a,, a;, 6,%, 6, and [ are estimated using
maximum likelihood and automatic differentiation in Tensorflow®*!
using the BFGS algorithm. To improve convergence, we initialize [ to
the distance between centres of neighboring Visium spots.

This model allows us to infer which cell states are proximal in physi-
cal space and are likely to be migrating in the process of gradual dif-
ferentiationin space.

For the spatial covariance model within StOrder workflow we only
used a subset of our Visium data that corresponded to (1) decidua_
and_villi_tips and (2) myometrium—because only these regions con-
tained invading trophoblast cell states. For more details please see
‘Subsetting Visium data into anatomical regions with SpatialDE2’ in
‘Downstream analysis of 10x Genomics Visium data’ above. This helps
to focus on the regions of the tissue that are relevant for the process
of interest and is recommended to do in general if there are parts of
the Visium datathat do not contain cell states relevant to the process
of interest.

Third, StOrder reconstructs connections between cell states by tak-
ingintoaccountboththe connectivity matrix (step 1) from single-cell
transcriptomics data and the spatial covariance matrix (step 2) from
the spatial data in the following way:

BlaP+(1-a)S)+(1-pPoS

where Pis the PAGA connectivity matrix, S is the spatial correlation
matrix, a weights the contributions of Pand S in the additive term,
weights the contributions of the additive and multiplicative terms,
and @ is the element-wise product. It then reconstructs the putative
trajectory tree using the built-in PAGA functions.

The combined connectivity matrix based on both gene expression
and spatial data with a range of weight parameters revealed the fully
resolved invasion trajectory tree of the EVT with the correct topol-
ogy (all connected cell state components, one branching point, no
cycles, start at VCT-CCC population and two end points: eEVT and
GC populations). The choice of w parameter (contribution/weight

of gene expression vs spatial part in the final matrix) in this last step
depends on the goal of using this approach. In our case, we assumed:
(1) the origin of EVT (VCT-CCC); (2) the end points of EVT (eEVT and
GC); (3) the determination of a single branching point; and (4) the
absence of cyclic trajectory. We therefore produced trajectory trees for
10,201 of (a,B) value pairs (from O to 1 with 0.0l increment step each)
representative of different tree topologies corresponding to different
ratios of gene expression vs spatial contribution. Out of the 10,201
tree structures we inspected, 3,574 trees represented the topology
with the assumptions described above. These trajectories consist-
ently assigned EVT-2 as the putative branching point. Tree structures
with mainly gene expression-based connectivity values did not yield
a branching point population we were looking for. Tree structures
with mainly spatial based connectivities hindered the link between
iEVT and GC populations, likely due to the large length scale of this
invasioninspace.

Limitations. Our approach assumes the gradual nature of gene expres-
sion changes accompanied by gradual migration of cells in space while
they differentiate. Thus, it may not yield meaningful results in scenarios
where this underlying assumptionis violated. In addition, it is recom-
mended that the user estimates the spatial scale at which the process
of interest is taking place—whether in current Visium resolution the
differentiation and migrationis happening over the course of only afew
spots or many more—this will change the initial values of | parameter
and help the model fit the data better.

Combined RNA and ATAC analysis using MEFISTO

Preprocessing of multiome data and training of the MEFISTO model.
Gene expression (snRNA-seq) counts of the multiome data for donor
P13 were normalized by total counts (scanpy.pp.normalize_per_cell(rna,
counts_per_cell_after=1e4)) and log-transformed (pp.loglp(rna)).
Highly variable gene features were then calculated (sc.pp.highly_var-
iable_genes(rna, min_mean=0.0125, max_mean=3, min_disp=0.5))
and the subsetted object’s expression was scaled (sc.pp.scale(rna,
max_value=10)).

Chromatin accessibility (scATAC-seq) counts of the multiome
data for donor P13 were preprocessed using TF-IDF normalization
(muon.atac.pp.tfidf(atac[key], scale_factor=1e4)). To select biologi-
cally meaningful highly variable peak features, ATAC counts were
aggregated into pseodubulks by cell states and averaged, then vari-
ance of accessibility was calculated across these pseudobulks, and
informative peak features were selected based on this measure (top
75th percentile (10,640) of peaks selected in total) as the peaks with
highest variance. Finally, these datawere scaled (sc.pp.scale(atac, max_
value=10)).

Using the preprocessed RNA and ATAC datawe used a pseudotime-
aware dimensionality reduction method MEFISTO® to extract major
sources of variation from the RNA and ATAC data jointly and iden-
tify coordinated patterns along the invasion trajectory. As a proxy
for the trophoblast invasion trajectory in the MEFISTO model we
used 2-dimensional pseudotime coordinates based on a UMAP
of the RNA data by calculating PCA (sc.tl.pca(rna, n_comps=8)),
neighborhood graph (sc.pp.neighbors(rna)) and UMAP embedding
(sc.tl.umap(rna)).

The MEFISTO model was trained using the following command within
MUON (version 0.1.2) package interface:

muon.tl.mofa(mdata, outfile=",

use_obs =“union”,

smooth_covariate=[“UMAP1”, “UMAP2"],

use_float32=True)

We further excluded factor 5 from downstream analysis as a tech-
nical artefact due to its significant and high correlation (Spearman
rank-order correlation coefficient 0.94 (over all cell states), P <107%,
two-sided test) with the n_peaks_by_counts (number of ATAC peaks



with at least 1 countin a nucleus) in ATAC view in all cell states (Sup-
plementary Fig. 4k) and lack of smoothness along pseudotime (Sup-
plementary Fig. 4j).

Defining groups of ATAC peak features. To further interpret ATAC
features, we annotated them based on their genomic location
using GenomicRanges package (version 1.42.0). In parallel, we used
epigenetic data from®? to mark peak features in close proximity to
trophoblast-specific enhancer features. To do so, we used peak files
corresponding to H3K4mel, H3K27ac and H3K27me3 histone modi-
fications marks for second trimester trophoblast samples (obtained
fromauthors of aforementioned study upon request) to infer regions
of the genome corresponding to active (H3K27ac + H3K27me3),
primed (only H3K4mel) or repressed (H3K4mel + H3K27me3)
enhancers. This was done using bedtools (version 2.30.0) in the fol-
lowing way:

(1) bedtools subtract -a H3K4mel file.bed -b H3K27ac file.bed >
interm_file.bed bedtools subtract -ainterm_file.bed -b H3K27me3_
file.bed >primed_enhancers.bed To produce primed enhancers file

(2) bedtools intersect -a H3K4mel file.bed -b H3K27ac file.bed >
active_enhancers.bed To produce active enhancers file

(3) bedtools intersect -a H3K4mel file.bed -b H3K27me3 file.bed >
repressed_enhancers.bed To produce repressed enhancers file

The enhancer files produced were then overlapped with peaks in
ATAC analysis (bedtools intersect -a atac_peaks_file.bed -b enhancer_
file.bed -wa) and any peaks having a >1-bp overlap with an enhancer
feature were considered to be proximal to those features (done sepa-
rately for active, primed and repressed enhancers).

Enrichment analysis of features in the MEFISTO model. Gene set
enrichment analysis for gene features was performed based on the
C5 category and the Biological Process subcategory from the MSigDB
database (https://www.gsea-msigdb.org/gsea/msigdb) using GSEA
functionality implemented in MOFA2 (run_enrichment command,
MOFA2 version1.3.5). This was done separately for negative and posi-
tive weights of each factor.

Peak group enrichment for peak features was performed using the
same run_enrichment command in MOFA2 on peak groups defined as
described above (Defining groups of ATAC peak features).

Transcription factor analysis using the MEFISTO model. To extract
information about transcription factor binding motif enrichment in
ATAC features of MEFISTO factors, we first performed enrichment
analysis of peaks using GSEA functionality implemented in MOFA2
(run_enrichment command, MOFA2 version 1.3.5) on the peak-motif
matrix produced by Signac package (version 1.5.0). Then, to identify
which MEFISTO factors contribute the most to each transition of
cell states along the invading trophoblast trajectory (inferred with
StOrder), we trained logistic regression classifiers for each transi-
tion along the trajectory (overall for 6 transitions: VCT->VCT-CCC,
VCT-CCC~>EVT-1, EVT-1>EVT-2, EVT-2~>iEVT, iEVT>GC, EVT-2>eEVT)
on the matrix of factor values. For each transition the factor with the
highest absolute coefficient separating the two cell states was selected,
accounting for the sign of contribution in the logistic regression (posi-
tive or negative). If the top factor is contributing to atransition witha
positive coefficient, transcription factor binding motifs coming from
MEFISTO enrichment analysis of this factor’s top positive values are
further considered in general transcription factor analysis as transcrip-
tion factors upregulated upon this transition, whereas transcription
factor binding motifs coming from MEFISTO enrichment analysis of
this factor’s top negative values are further considered in general tran-
scription factor analysis as transcription factors downregulated upon
this transition. All of these transcription factor motifs are marked as
having evidence from the MEFISTO factor relevant for this transition.

Reverse procedureis appliedin caseif the top factor is contributing to
atransition with a negative coefficient in the corresponding logistic
regression model.

For more details please see the following notebook: https://github.
com/ventolab/MFI/blob/main/2_inv_troph_trajectory_and_TFs/2-5_
MEFISTO_analysis_inv_troph/S3_DEG_comparison_to_MEFISTO factor_
translation.ipynb

Trophoblast trajectory inference analysis
To derive trophoblast pseudotime based on transcriptomic similar-
ity, we used Slingshot v1.8.0. With Slingshot we fitted a cluster-based
minimum spanning tree (MST) over the two-dimensional UMAP of
P13 trophoblasts, and inferred the global lineage topology to assign
cell states to lineages. Only donor P13 cells in the G1 phase of the cell
cycle were included. To balance trophoblast state contributions, we
downsampled each trophoblast state to account for up to 100 cells
per state. VCT was assigned as the initial cell state (start.clus), while
eEVT, SCT and GC were assigned as terminal states (end.clus). Slingshot
fits simultaneous principle curves to smooth the MST and assigns a
weight for each trophoblast cell in each lineage. Slingshot outputs
lineage-specific pseudotimes and weights of assignment for each cell.
We next fitted a tradeSeq (v1.4.0) gene expression model (negative
binomial generalized additive model) using the trajectory pseudotime
and the weights computed with Slingshot (with nknots = 6). Next, we
tested whether the gene expression is significantly changing along
trophoblast pseudotime. For such a purpose, we used the statistical
testimplemented in the associationTest function, which tests the null
hypothesis that all smoother coefficients are equal to each other. Genes
with a P<107°and mean logFC > 0.5 were selected as the main drivers
ofthe trophoblast trajectory.

Cell label transferring on trophoblast organoids

To transfer cell labels from donor P13 snRNA-seq in vivo trophoblast
to the scRNA-seq TSC and PTO we trained two independent logistic
regression models. The P13 dataset was downsampled to 500 cells per
trophoblast state, except for GCand eEVT, which were discarded from
thetraining due to their scarcely abundance. The common highly vari-
ablegenes (1,695 genes for PTO and 1,565 for TSC), of the 4,000 selected
per dataset, between thein vivo and each individual organoid dataset
were selected as features for model training. The in vivo dataset was
splitinto 80/20 training and test set, hyperparameters were explored
employingathreefold cross-validation and scored employing the mean
Matthews correlation coefficient of each fold. Top-ranked models were
selected and assessed on the test set, with no significant differences
found between them. Finally, the best model for each organoid dataset
was employed to transfer cell labels from donor P13.

Cell-cell communication analysis with CellPhoneDB

To retrieve interactions between invading trophoblast and other
cell populationsidentified in our samples, we used the CellPhoneDB
degs_analysis method™® (https://github.com/ventolab/CellphoneDB)
described in ref. . In short, we retrieved the interacting pairs of
ligands and receptors meeting the following requirements: (1) all
the protein members were expressed in at least 10% of the cell type
under consideration; and (2) at least one of the protein members in
theligand or the receptor was a DEG in an invading trophoblast sub-
set (according to our analysis of differential expression, for details
please see ‘Differential gene expression analysis’), with an adjusted
P-value below 0.05 and logFC > 0.1. We further selected which cell
states are spatially co-located in each microenvironment via visual
inspection of cell2location deconvolution results for our Visium data.
Theanalysis was done onanupdated version of CellPhoneDB-database
(v4.1) which includes novel intercellular interactions from refs. #+%,
Only bona fide manually curated interactions were considered in the
analysis.
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Transcription factor analysis

To prioritize the transcription factors relevant for each invading
trophoblast cell state or microenvironment, we integrate four types
of measurements: (1) expression levels of the transcription factor and
(2) the activity status of the transcription factor measured from (2a)
the expressionlevels of their targets (described in ‘Transcription factor
activities derived from scRNA-seq and snRNA-seq’) and/or (2b) the chro-
matin accessibility of their binding motifs (described in ‘Transcription
factor motifactivity analysis from scATAC-seq’) and/or (2c) evidence of
the chromatin accessibility of their binding motifsin relevant factors
from multimodal RNA-ATAC analysis (with MEFISTO). Plots in main
figures include transcription factor meeting the following criteria:
(1) transcription factor was differentially expressed, with adjusted
P-value < 0.05) and/or (2) transcription factor was differentially active,
with log, fold change greater than 0.25 and adjusted P-value < 0.05in at
least one of the transcription factor activity measurements (2a or 2b).

Transcription factor differential expression from scRNA-seq and
snRNA-seq. We compute differential expression using the procedure
described in ‘Differential gene expression analysis’ and further subset
resulting gene targets to transcription factors only based on the list of
transcription factors provided by DoRothEA.

Transcription factor activities derived from scRNA-seq and
snRNA-seq. We estimated protein-level activity for humantranscrip-
tionfactorasa proxy of the combined expression levels of their targets.
Target genes were retrieved from Dorothea®, an orthogonal collec-
tion of transcription factor targets compiled from arange of different
sources. Next, we estimated transcription factor activities for each cell
using Viper®, a GSEA-like approach, as implemented in the Dorothea
R package and tutorial®® for the genes differentially expressed along
theinvading trophoblast trajectory (see ‘Differential gene expression
analysis’).

Transcription factor motif activity analysis from scATAC-seq.
Transcription factor motif activities were computed using chrom-
Var® v. 1.12.2 with positional weight matrices from JASPAR20187°,
HOCOMOCOvV10”, SwissRegulon’>, HOMER”®. chromVar returns a
matrix with binding activity estimates of each transcription factor
in each cell, which we used to test for differential transcription factor
binding activity between trophoblast cell states with FindMarkers
function in Seurat (default parameters) in the same way as described
in ‘Differential gene expression analysis’ (backwards along invading
trophoblast trajectory).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Spatial transcriptomics of human placental bed.
a:High-resolutionimaging of asection of the placenta-deciduainterface
stained by insitu hybridization (smFISH) for HLA-G, illustrating the depth of
invasion of EVTsinto the uterus (n =1). Magnified insets (dashed squares)
highlight the HLA-G-negative placental villi, and HLA-G+EVTs emerging from
the CCCtoinvadethe deciduaand myometrium.b: Overview of experimental
design of the study. c: Cohort composition split by gestational age window
(post-conceptional weeks, PCW) representing tissues sampled from each donor
and performed assays. Highlighted inred rectangles are the three donors whose
tissues have been additionally profiled with spatial transcriptomics (Visium)
and multiome assays. d: Histological overview (H&E staining) of donors P13,
P14 and Hrv43 tissues with annotations of tissue regions. For the implantation
site of donor P13 (- 8-9 PCW, left); black squares (small) indicate trophoblast
microenvironmentsin space; faint grey squares (large) indicate positioning of

tissue on Visium spatial transcriptomics capture areas; arrow indicates
representative Visiumsection further exploredin Fig.1d. For Visium, P13 (n=5
featureareas, 4 consecutive slides with overlapping positions and 1slide from
anadditional tissue block - P13b), P14 (n = 2 feature areas, consecutive slides
withsame position), Hrv43 (n =1feature area). e: Cell state locations (derived
with cell2location) inrepresentative Visium sections of donors P14 and Hrv43
highlighting relevant spatial trophoblast microenvironments. Spot colour
indicates cell state densities computed by cell2location as the number of cells
ofagivencellstateinaVisium spot. Cytotrophoblast cell column (CCC),
extravillous trophoblast (EVT), interstitial EVT GEVT), giant cells (GC),
endovascular EVT (eEVT), single-cell RNA sequencing (scRNA-seq), single-
nuclei RNA sequencing (snRNA-seq), microenvironment (ME), Hematoxylin
and Eosin (H&E).
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Extended DataFig.3|snRNA-seqandscRNA-seq trophoblast data analysis
overview. a: UMAP (uniform manifold approximation and projection)
scatterplots of donor P13 snRNA-seq data (n = 37,675 nuclei) for all trophoblast
cellstates coloured by (from left to right) assay, cell cycle phase of the nuclei
and sample (10X library). Please note: bioinformatics analyses used cannot
distinguish between GO and G1.b: UMAP scatterplot of integrated snRNA-seq
and scRNA-seq of alldonors’ (n =75,042 nucleiand cells, m =17 donors with
trophoblast present) trophoblast cell states in the maternal-fetal interface
coloured by cell state. c: UMAP scatterplots of alldonors’ scRNA-seq and
snRNA-seq datafor alldonors’ (n=75,042 nucleiand cells, m=17 donors with
trophoblast present) trophoblast cell states coloured by assay, sample (10X
library), cellcycle phase of the cells/nuclei, donor and developmental age.

d: Dot plotshowing normalised, log-transformed and variance-scaled expression

of genes (Y-axis) characteristic of trophoblast cell states (X-axis) inall donors
(m =17 donors with trophoblast present). e: Dot plot showing normalised, log-
transformed and variance-scaled expression of genes (X-axis) characteristic of
VCT cell states (Y-axis) inalldonors (m =17 donors with trophoblast present).
f:Results of PAGA trajectory inference of all trophoblast cell states in donor P13
snRNA-seq data. (left) main manifold, center: denoised PAGA manifold, (right)
PAGA reconstruction of putative trajectory tree for all trophoblast cell states.
For the purpose of this analysis all EVTs have been united inannotation under
the‘EVT’ label. Syncytiotrophoblast (SCT), villous cytotrophoblast (VCT),
cytotrophoblast cell column (CCC), proliferative (p), extravillous trophoblast
(EVT), interstitial EVTs (iEVTs), giant cells (GC), endovascular EVT (eEVT),
single-cellRNA sequencing (scRNA-seq), single-nuclei RNA sequencing
(snRNA-seq).
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Extended DataFig. 4 | Analysis of extravillous trophoblastinvasion
trajectory usingstOrder. a: Schematic overview of StOrder approach
representing the workflow of joint cell differentiation trajectory inference
from gene expression and spatial transcriptomics data (See methods). b: (Left)
Main UMAP (uniform manifold approximation and projection) scatterplot and
(right) denoised manifold used for PAGA trajectory inference of all trophoblast
cellstatesindonor P13 single-nuclei RNA sequencing (snRNA-seq) data.
c:PAGAreconstruction of putative trajectory tree for all extravillous
trophoblast cell states. This corresponds to the trajectory treeinferred by
stOrserwitha =1, 3 =1parameters from donor P13 snRNA-seq data and spatial
transcriptomics data of donors P13 (5 capture areas), P14 (2 capture areas) and

GC o

Hrv43 (1capture area). d: Heatmap of binary success matrix of stOrder
approach for pairs of (a,3), values (along Y and X axes, respectively). Assigned
matrix valueislifatreeof correcttopology hasbeenreconstructed for that
pair of («,B) values, and O if no tree of correct topology was reconstructed.
e:Reconstruction of putative invading trophoblast trajectory tree based solely
onspatial datainferred by stOrder with a = 0, 3 =1parameters from donor P13
snRNA-seq data and spatial transcriptomics data of donors P13 (5 chips), P14

(2 chips) and Hrv43 (1 chip). Villous cytotrophoblast (VCT), cytotrophoblast
cell column (CCC), extravillous trophoblast (EVT), interstitial EVTs iEVTs),
giant cells (GC), endovascular EVT (eEVT).
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Extended DataFig. 5| Analysis of extravillous trophoblastinvasion
trajectory using Slingshot. a: Minimum spanning tree of donor P13
trophoblastsingle-nuclei RNA sequencing (snRNA-seq) data computed by
Slingshot, visualised on the UMAP (uniform manifold approximation and
projection) embedding of P13 donor trophoblast cells from Fig. 1c (n = 37,675
nuclei). Bigger black dots indicate trophoblast states. Smaller dots’ colour
indicates pseudotime. b: Heatmap showing normalised and log-transformed
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aresortedaccordingtothe predicted pseudotime. Genes are sorted according
tothetrophoblaststate where gene expression peaks. Marker genes are
highlighted. Syncytiotrophoblast (SCT), villous cytotrophoblast (VCT),
cytotrophoblast cell column (CCC), extravillous trophoblast (EVT), interstitial
EVTs (iEVTs), giant cells (GC), endovascular EVT (eEVT).
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Extended DataFig. 6 | Histological characterisation of eEVTs. a: Estimated
amount of mMRNA computed by cell2location (colour intensity) contributed

by each cell population to each spot (colour) shown over the hematoxylin

and eosin (H&E) image of donor P13 implantation site (n =1). b: (Top) High-
resolutionimaging of sections of the placenta-deciduainterface from two
donors(n=2,donorIDisindicatedin each panel), stained by multiplexed single
molecule fluorescenceinsitu hybridization (smFISH) for HLA-G and NCAMI;
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dashed squaresindicate areas shown magnified below. (Middle) magnified
insets highlight an artery containing aggregating eEVTs (left) and
cytotrophoblast cell columns;inthelatter, solid arrows indicate sporadic
nascent NCAMI+ cells shown magnified below (bottom). c: Expression of
NCAMI (marker of eEVT) withIHC in first-trimester decidual tissue. Nuclei are
counterstained with hematoxylin. Representative images from three different
donors(n=3).
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Extended DataFig. 7 | Multimodal analysis of extravillous trophoblast
invasion. a: Overview of the computational pipelineimplemented for analysis
of multimodal data. b-c: UMAP (uniform manifold approximation and
projection) scatterplot of multimodal snATAC-seq data from donors P13, P14
and Hrv43 (n = 52,798 nuclei) coloured by cell state (b), donor, sample (10X
library) or unbiased clusteringlabels (c). Datais annotated based on the
corresponding single-nuclei RNA sequencing (snRNA-seq) cell state
assignment. d: UMAP scatterplot of integrated multimodal single-nuclei ATAC
sequencing (snATAC-seq) data for trophoblast only from donors P13, P14 and
Hrv43 (n=7449 nuclei) coloured by cell state, donor and sample (10X library).
e:UMAP sscatterplot of multiome (snRNA-snATACseq) data of invading
trophoblast cells fromdonor P13 (n =1605 nuclei) coloured by cell state. The
manifoldis calculated based on dimensionality reduction performed by
MEFISTO (model with n =9 factors). f: (Left) UMAP scatterplot of multiome
(snRNA-snATACseq) data of invading trophoblast cells from donor P13
(n=1605nuclei) coloured by sample. The manifoldis calculated based on
dimensionality reduction performed by MEFISTO (model with n=9 factors).
(Right) Scatterplot of UMAP coordinates obtained from the RNA expression

datathatwereused as covariates for MEFISTO, coloured by cell state.g: Heatmap
representing percentage of variance explained by each MEFISTO factorin each
datamodality. h: Smoothness along differentiation estimated with MEFISTO.

i: UMAP scatterplot of multiome (SnRNA-snATACseq) data of invading
trophoblast cells from donor P13 (n =1605 nuclei) coloured by cell cycle phase
and MEFISTO factor values forimportant selected factors. j: Spearman’s rank
correlation coefficients of eachlatent factor learned with MEFISTO and the
number of genes per countsin snATAC-seq data (multiome). k: Gene set (RNA)
enrichmentanalysis overview of MEFISTO factor 2 using two-sided parametric
t-test, FDRisused torank genesets. I: Peak set (ATAC) enrichment analysis
overview of MEFISTO factor 10 using two-sided parametric t-test, FDRisused to
rank peak sets. Villous cytotrophoblast (VCT), cytotrophoblast cell column
(CCQ), proliferative (p), extravillous trophoblast (EVT), interstitial EVTs GEVTs),
giantcells (GC), endovascular EVT (eEVT), dendritic cells (DC), lymphatic (1),
maternal (m), fetal (f) Hofbauer cells (HOFB), innate lymphocytes (ILC),
macrophages (M), monocytes (MO), natural killer (NK), perivascular (PV),
decidual (d), epithelial (epi), stromal (S), fibroblasts (F), uterine smooth muscle
cells (uSMC).
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Extended DataFig. 8| Transcription factorsactivein extravillous
trophoblast cell states (all donors). a: Heatmap showing z-score of
normalised, log-transformed and variance-scaled expression of transcription
factors (TFs) upregulated during trophoblastinvasioninalldonors (n=17
donorswithtrophoblast present). Y-axis indicates cell state, X-axis lists TFs.
Differential expression (upregulated genes) is tested along invading
trophoblast trajectory (asshowninFig.2a) inaretrograde manner using limma
approach (FDR<0.05, with Bonferroni correction for multiple hypotheses
testing. b: Dot plot showing normalised, log-transformed and variance-scaled
expression of genes (X-axis) of signalling molecules upregulated in EVT (Y-axis)
inalldonors (n=17 donors with trophoblast present). c: Heatmap showing

z-score of normalised, log-transformed and scaled expression of TFs
downregulated during trophoblastinvasioninalldonors (n =17 donors with
trophoblast present). Y-axis indicates cell state, X-axis lists TFs. Differential
expression (downregulated genes) is tested alonginvading trophoblast
trajectory (asshowninFig.2a) inaretrograde manner using limmaapproach
(FDR<0.05, with Bonferroni correction for multiple hypotheses testing).

d: Schematic representation of signalling pathways in distinct spatial
microenvironments. Villous cytotrophoblast (VCT), cytotrophoblast cell
column (CCC), extravillous trophoblast (EVT), interstitial EVTs (iEVTs), giant
cells (GC), endovascular EVT (eEVT), microenvironment (ME), transcription
factors (TFs).
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Extended DataFig. 9|See next page for caption.
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Extended DataFig.9|scRNA-seqand snRNA-seq data quality controland
analysis overview of the trophoblast invitro models. a: Schematic
representation of the extravillous trophoblast (EVT) differentiation
experimental design, indicating time points and biological replicatesinboth
primary trophoblast organoids (PTO, n = 6 scRNA-seq and n =2 for snRNA-seq)
and trophoblast stem cell (TSC, n =2 for both scRNA-seq and snRNA-seq)
models. b: Diagram showing the annotation of the in vitro models. Firstly, we
analysed the datasets in four separate manifolds and annotated each of the cell
states based on canonical markers. Secondly, we projected the trophoblast
invivoreference dataonto the invitro trophoblast subsets by building alogistic
regression classifier that we trained on P13snRNA-seq in vivo dataset. We
excluded eEVT and GC cells as these are scarcely represented and our marker
datashow theyare not presentin the invitro cultures. Thirdly, we integrated
scRNA-seq datafrominvivo and invitro conditions using scVI, and used this
manifold to calculate differentially expressed genes (DEG) amongst subsets.

¢: UMAP (uniform manifold approximation and projection) scatterplots of
snRNA-seq (n =3928 nuclei) of PTOs coloured by cell state, donor (n=2
donors), cell cycle phase and unbiased clustering using leiden. Sample
integration was performed with Harmony. d: Dot plot showing normalised, log-
transformed and variance-scaled expression of genes (X-axis) of main
trophoblast subsets (Y-axis) in each of the clusters identified by unbiased
clustering (a) in snRNA-seq of primary trophoblast organoids (PTOs). e: UMAP
scatterplots of scRNA-seq of PTOs derived fromn = 6 donors and coloured by
donor, time-point, cell cycle phase, media cultured and unbiased clustering

usingleiden. f: Dot plot showing normalised, log-transformed and variance-
scaled expression of genes (X-axis) of main trophoblast subsets in each of the
clustersidentified by unbiased clustering (c) in scRNA-seq of PTOs (Y-axis).

g: Bar plots showing the proportion (%) of final cell states identified in data of
eachtime point (left), media (center) and donor (right) for PTOs scRNA-seq.

h: UMAP scatterplots of snRNA-seq (n =1563 nuclei) of trophoblast organoids
fromtrophoblast stem cells (TSC) coloured by cell state, donor, cell cycle phase
and unbiased clustering usingleiden. Sample integration was performed with
Harmony. i: Dot plot showing normalised, log-transformed and variance-scaled
expression of genes (X-axis) of main trophoblast subsets (Y-axis) in each of the
clustersidentified by unbiased clustering (f) in snRNA-seq of trophoblast stem
cells (TSC).j: UMAP scatterplots of scRNA-seq of EVT derived from TSC
coloured by donor, time-point, cell cycle phase and unbiased clustering using
leiden. k: Dot plot showing normalised, log-transformed and variance-scaled
expression of genes (X-axis) of main trophoblast subsets in each of the clusters
identified by unbiased clustering (j) in scRNA-seq of trophoblast stem cells
(TSC) (Y-axis). I: Bar plots showing the proportion (%) of final cell states
identified ineach donor’s data (left) and time-point (right) for TSCs scRNA-seq.
Trophoblast organoid media (TOM), syncytiotrophoblast (SCT), villous
cytotrophoblast (VCT), cytotrophoblast cell column (CCC), proliferative (p),
extravillous trophoblast (EVT), EVT media (EVTM), interstitial EVT iEVT), giant
cells (GC), endovascular EVT (eEVT), single-cell RNA sequencing (scRNA-seq),
single-nuclei RNA sequencing (snRNA-seq).
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Extended DataFig.10|Annotation and benchmark of trophoblastinvitro
models. a: Dot plots showing normalised, log-transformed and variance-
scaled expression of genes (Y-axis) characteristic of trophoblast cell states
(X-axis) in primary trophoblast organoids (PTO, left) and trophoblast stem

cell (TSC, right) models. Marked inred are genes that differ from the invivo
observed expression pattern. b: Dot plot showing normalised, log-transformed
and variance-scaled expression of genes (X-axis) of signalling molecules known
tobeupregulatedininvivo trophoblastinvasion plottedin trophoblast
organoids (Y-axis). c: UMAP (uniform manifold approximation and projection)
scatterplot of PTO single-cell RNA sequencing (scRNA-seq data,n=26,853
cells) coloured by predicted cell state (top left) and probability (top center)
accordingtoourlogistic regression model. Only in vivo datafrom donor

P13 (snRNA-seq) was considered for the training. Confusion matrix with
predictions ontest set based on common features with PTO (Top right). UMAP
scatterplot of TSC scRNA-seq data (n=9957 cells) coloured by predicted cell
state (bottom left) and probability (bottom center) according to our logistic
regression model. Only in vivo data from donor P13 (snRNA-seq) was

considered for the training. Confusion matrix with predictions on test set
based oncommon features with TSC (Bottom right). d: UMAP scatterplot of
scRNA-seq data (n=23,519 cells) from® re-annotated using markers from
Fig.1le.e: (Leftand center) Integrated manifold (in vivo and invitro) using scVI
and coloured by cell state and specific conditions. Integrationis performed
withscVI. (Topright) Table displaying organoid-independent annotation for
eachscVI-integrated cluster. Organoid annotation matching in vivo labels
displayedingreen, discordantannotationinred.f: Violin plot showing
normalised and log-transformed expression of differentially expressed genes
(DEGs, limma, FDR <0.05, with Bonferroni correction for multiple hypotheses
testing) when comparingearly EVT-2in PTO vsinvivo EVT-2. (Right) Violin plot
showing normalised and log-transformed expression of DEG when comparing
iEVTin TSCvsinvivoiEVT. Primary trophoblast organoids (PTO), trophoblast
stem cells (TSC), trophoblast organoid media (TOM), syncytiotrophoblast
(SCT), villous cytotrophoblast (VCT), cytotrophoblast cell column (CCC),
proliferative (p), extravillous trophoblast (EVT), interstitial EVT (iEVT), giant
cells (GC), endovascularEVT (eEVT).
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Extended DataFig.11|Predicted interactionsbetween trophoblastand
maternalimmune cells. a: UMAP (uniform manifold approximation and
projection) scatterplot of single-cell RNA sequencing (scRNA-seq) and single-
nuclei RNA sequencing (snRNA-seq) data of the 18 donors described in
Extended DataFig. 1c of the maternal-fetal interface (n =325,665 cellsand
nuclei) coloured by cell state. Integration was performed with scVI. b: (Left)
High-resolutionimaging of a section of the placenta-deciduainterface stained
by smFISH for HLA-G, highlighting EVTs invading the decidua from the CCC.
(Right) multiplexed co-staining with NCAMI (dNK marker), CSFI and cognate
receptor CSFIR; dashed squares indicate areas shown magnified to right.
(Bottom) solid and outlined arrows indicate neighbouring CSFIR-expressing
EVTsand CSFI-expressing dNK cells, respectively. Representative image of
samples fromthree donors. c: Dot plot showing normalised, log-transformed
and variance-scaled gene expression of macrophage markers (X-axis) in data
from (a) (Y-axis). d: High-resolution imaging of the placenta-deciduainterface
stained by multiplexed smFISH for HLA-G (EVTs), EREG (dM1), and CD14 and
FOLR2(dM2) for n=4donors (donor IDis specified in each panel). e: Dot plot

showing normalised, log-transformed and variance-scaled expression of
CXCR6 (X-axis) onthe EVT subsets presentin TSC (n =2).f: UMAP scatterplots
of scRNA-seq of TSC (CXCL16 and BSA conditions) coloured by donor, cell cycle
phase, time point, treatmentand unbiased clustering using leiden (n =2).g: Dot
plotshowing normalised, log-transformed and variance-scaled expression of
marker genes of the main trophoblast subsets (X-axis) in cell clusters defined in
(f) (Y-axis) from theintegrated manifold of CXCL16 and BSA conditionsin
trophoblast stem cell (TSC) scRNA-seq (n =2). h: UMAP scatterplot of sScRNA-
seq of TSC coloured by cell state (n = 2). Villous cytotrophoblast (VCT),
cytotrophoblast cell column (CCC), proliferative (p), extravillous trophoblast
(EVT), interstitial EVTs (iEVTs), giant cells (GC), endovascular EVT (eEVT),
dendritic cells (DC), lymphatic (I), maternal (m), fetal (f), Hofbauer cells
(HOFB), innate lymphocytes (ILC), macrophages (M), monocytes (MO), natural
killer (NK), perivascular (PV), decidual (d), epithelial (epi), stromal (S),
fibroblasts (F), uterine smooth muscle cells (uUSMC), bovine serum albumin
(BSA).
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Extended DataFig.12|Interactions betweentrophoblastand perivascular
(PV)cells. a: Dot plot showing normalised, log-transformed and variance-
scaled expression of perivascular (PV) cell state markers. b: UMAP (uniform
manifold approximation and projection) scatterplot of sScRNA-seq of PV cells
(n=2768 cells) coloured by the scaled gene expression of PV cell state markers.
c:(Top) High-resolutionimaging of adjacent sections of maternal-fetal
interface stained by multiplexed smFISH for three gene panels, from two
donors. Dashed squares indicate areas shown magnified underneath (middle
and below), highlighting PV1-AOC3, PV1-STEAP4, and PV2-MMPI1 cells
expressing each of their three respective marker genes. Solid arrows indicate

relatively sparse PV1-STEAP4 cellsinsecond and fifth columns. d: (Top) High-
resolutionimaging of asection of deciduastained by smFISH for HLA-G (EVTs)
multiplexed with MYH11, FNDCI,and NTRK2 (PV1-AOC3); dashed squares
indicate areas shown magnified below. (Middle) solid and outlined arrows
indicate neighbouring PV1-AOC3 cells expressing NTRK2and EVTs,
respectively. Representative image of samples from two donors. e: (Left) High-
resolutionimaging of asection of decidua stained by multiplexed smFISH for
HLA-G,NCAM1,and CXCL12.Dashed squares highlight arteries containing
HLA-G+ NCAMI+eEVTs expressing CXCL12,shown magnified to right.
Representative image of samples from two donors.
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Alignment, QC and barcode calling of multiomics GEX and ATAC-seq data with Cell Ranger-Arc version 1.0.1 (10X Genomics)
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Analysis of multiome GEX and ATAC-seq data with the following packages: Signac version 0.2.5 (https://satijalab.org/signac/), MUON version
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data availability: Open access datasets are available from ArrayExpress (www.ebi.ac.uk/arrayexpress), with accession numbers E-MTAB-12421 (scRNA-seq/snRNA-
seq of primary tissue), E-MTAB-12595 (multiome snRNA-snATAC-seq), E-MTAB-12698 (visium), E-MTAB-12650 (scRNAseq/snRNA-seq of primary trophoblast
organoids). Managed access datasets are available from EGA archive (https://ega-archive.org/) with accession number EGADO0001010037 (scRNA-seq/snRNA-seq
of historical placental beds), EGAD00001010038 (multiome snRNA-snATAC-seq of historical placental beds), EGAD00001010017 (scRNAseq/snRNA-seq of
trophoblast stem cell). Image datasets are available at the EMBL-EBI Biolmage Archive (www.ebi.ac.uk/biostudies) under accession number S-BIAD615. All datasets
are public access. scRNA-seq and snRNA-seq datasets to reproduce UMAPs and dot plots can be accessed and downloaded through the web portals
www.reproductivecellatlas.org. External scRNA-seq dataset of the first-trimester human decidual-placental interface is available from ArrayExpress (E-MTAB-6701).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We collected primary placental tissues from 11 individuals. This cohort is equal or larger than previous single-cell transcriptomic atlases of
placental tissues in humans (PMID: 30429548, PMID: 30402542), and should be sufficient to capture the main cell types and states in the
tissue. In addition, novel subsets defined transcriptomically in our dataset (e.g. endovascular extravillous trophoblast) have been validated
using orthogonal methods (e.g. spatial transcriptomics, immunohistochemistry)

Data exclusions  No data were excluded from the analyses

Replication For single cell and nuclei transcriptomics replicates were considered for the majority of the donors. For donor P13 (6 libraries), donor P14 (4
libraries), donor P34 (1 library), donor Hrv43 (4 libraries), donor Hrv46 (3 libraries), donor H2 (2 libraries), donors H7 + H9 (pooled, 3
libraries), donor Hrv98 (1 library), donor Hrv99 (1 library), donor Hrv100 (1 library). Analysis of technical replicates revealed the same
populations.

For single nuclei RNA and ATAC seq (snRNA-seq/snATAC-seq), duplicates were considered in the majority of cases. For donor P13 (2 libraries),
donor P14 (1 library), donor Hrv43 (3 libraries).Analysis of technical replicates revealed the same placental populations.

For spatial transcriptomics, we included five replicates (four consecutive tissue slides and one slide from another tissue block) for donor P13
and two replicates (two consecutive slides) for donor P14. For high-resolution imaging using RNAScope probes, we performed the analysis on

at least two slides from distinct individuals, and this is indicated in the figure legends.

For primary trophoblast organoids, experiments were performed on organoids derived from six distinct donors. For trophoblast stem cells,
two distinct donors were used. Differences between individuals are expanded in the text.

Randomization  Thisis not relevant for this study as we are not comparing any disease group.

Blinding This is not relevant for this study as we are not comparing any disease group.
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Antibodies used NCAM1
Company: Cell Signaling Technology
Cat. #: 3576S
lot #:9
clonality: monoclonal
clone number: 123C3
host: mouse
isotype: IgG1
dilution rate: 1:50
buffer: citrate

Validation NCAM1 . Immunohistochemistry on paraffin-embedded tissue (website).

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) BTS5 and BTS11 derived from Okae 2017 Cell Stem Cell (DOI: 10.1016/j.stem.2017.11.004)
Authentication None in-house, lines were imported into UK directly from Dr. Okae in Japan
Mycoplasma contamination Testing was done at the Gurdon Institute before the lines were transferred to Sanger using the Lonza MycoAlert™

mycoplasma detection kit. Luminescence levels were not above threshold compared to an internal negative control.

Commonly misidentified lines  None
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics All samples were between 4-13 post conceptional weeks.

Recruitment All tissue samples used for this study were obtained with written informed consent from all participants in accordance with
the guidelines in The Declaration of Helsinki 2000. An exception is Placental/decidual blocks (P13, P14 and P34) that were
collected prior to 1 September 2006 and consent for research use was not obtained. These samples are considered ‘Existing
Holdings” under the Human Tissue Act and as such were able to be used in this project.

Ethics oversight Placental and decidual samples used for the in vivo and in vitro profiling were obtained from elective terminations from:
- The MRC and Wellcome-funded Human Developmental Biology Resource (HDBR, http:// www.hdbr.org), with appropriate
maternal written consent and approval from the Fulham Research Ethics Committee (REC reference 18/L0/0822) and
Newcastle & North Tyneside 1 Research Ethics Committee (REC reference 18/NE/0290). The HDBR is regulated by the UK
Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of Practice.

- Addenbooke’s Hospital (Cambridge) under ethical approval from the Cambridge Local Research Ethics Committee (04/
Q0108/23), which is incorporated into The overarching ethics permission given to the Centre for Trophoblast Research
biobank for the “Biology of the Human Uterus in Pregnancy and Disease Tissue Bank” at the University of Cambridge under
ethical approval from the East of England-Cambridge Central Research Ethics Committee (17/EE/0151) and from the London-
Hampstead Research Ethics Committee (20/LO/0115).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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