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Abstract 

Background With the increased interest in the inclusion of non-randomised data in network meta-analyses (NMAs) 

of randomised controlled trials (RCTs), analysts need to consider the implications of the differences in study designs as 

such data can be prone to increased bias due to the lack of randomisation and unmeasured confounding. This study 

aims to explore and extend a number of NMA models that account for the differences in the study designs, assessing 

their impact on the effect estimates and uncertainty.

Methods Bayesian random-effects meta-analytic models, including naïve pooling and hierarchical models differ-

entiating between the study designs, were extended to allow for the treatment class effect and accounting for bias, 

with further extensions allowing for bias terms to vary depending on the treatment class. Models were applied to an 

illustrative example in type 2 diabetes; using data from a systematic review of RCTs and non-randomised studies of 

two classes of glucose-lowering medications: sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 

receptor agonists.

Results Across all methods, the estimated mean differences in glycated haemoglobin after 24 and 52 weeks 

remained similar with the inclusion of observational data. The uncertainty around these estimates reduced when con-

ducting naïve pooling, compared to NMA of RCT data alone, and remained similar when applying hierarchical model 

allowing for class effect. However, the uncertainty around these effect estimates increased when fitting hierarchical 

models allowing for the differences in study design. The impact on uncertainty varied between treatments when 

applying the bias adjustment models. Hierarchical models and bias adjustment models all provided a better fit in 

comparison to the naïve-pooling method.

Conclusions Hierarchical and bias adjustment NMA models accounting for study design may be more appropri-

ate when conducting a NMA of RCTs and observational studies. The degree of uncertainty around the effectiveness 

estimates varied depending on the method but use of hierarchical models accounting for the study design resulted 

in increased uncertainty. Inclusion of non-randomised data may, however, result in inferences that are more gener-

alisable and the models accounting for the differences in the study design allow for more detailed and appropriate 

modelling of complex data, preventing overly optimistic conclusions.
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Introduction
Network meta-analysis (NMA) is a widely used tool in 

health technology assessment (HTA) for the synthe-

sis of direct and indirect evidence aiming to provide an 

overview of treatment effects [1]. Traditionally, NMAs 

have been carried out using data from randomised con-

trolled trials (RCTs) as these have been considered the 

“gold-standard” for assessing effectiveness of interven-

tions due to the randomisation techniques used and the 

strict criteria for inclusion/exclusion of individuals [2–4]. 

However, recently there has been an increased number 

of non-randomised observational and real-world stud-

ies conducted especially utilising large electronic health 

care databases. This has in turn highlighted an interest in 

including data from such studies in evidence synthesis, 

such as NMA, due to the epidemiological benefits they 

could provide [5]. However, such non-randomised data 

are considered to be inherently biased due to the lack of 

randomisation of individuals included and unmeasured 

confounding factors [1, 5]. If not accounted for, biased 

estimates from observational studies could in turn lead to 

biased estimates from the NMA, resulting in inappropri-

ate conclusions drawn. Therefore, there is a growing need 

for methodological development and evaluation of meth-

ods for appropriate inclusion of non-randomised data in 

NMAs of RCTs and guidelines on such synthesis of data 

from randomised and non-randomised studies also begin 

to emerge [6].

Inclusion of non-randomised studies in evidence syn-

thesis of RCT data has been considered for a number of 

reasons, typically either to allow for extension of evidence 

base when RCT data are sparse, looking to either improve 

the precision of the results or to bridge disconnected net-

works of RCT evidence, or to generalise the results to 

a broader population. A number of methods have been 

suggested to allow for inclusion of non-randomised data 

in NMAs of RCTs [5, 7–12]. Schmitz et al. [9] developed 

and compared a number of approaches, including naïve 

pooling, use of informative prior distributions and hier-

archical models, by applying them to data in rheumatoid 

arthritis [9]. Schmitz et al. found that inclusion of obser-

vational evidence in NMA increased uncertainty of the 

pooled effectiveness estimates. Jenkins et al., who applied 

naïve pooling, a hierarchical model and power prior anal-

ysis to data in relapsing remitting multiple sclerosis, also 

obtained results with increased uncertainty compared 

to the analysis of RCT data alone, due to the increased 

between-study heterogeneity when incorporating data 

from non-randomised studies.

Bias, inherent in the observational data due to the lack 

of randomisation, has received a lot of consideration in 

the literature of methods for the analysis of individual 

participant data from observational studies [13]. The 

issue of bias in the meta-analysis of aggregate level data, 

including non-randomised comparative studies, has also 

been investigated, but not explored extensively in the 

context of real world evidence. Begg and Pilote proposed 

a model for adjusting for bias when including non-ran-

domised evidence in meta-analysis; however, non-ran-

domised data considered in this method were limited 

to single-arm studies [14]. In the context of NMA, a 

bias adjustment model for meta-analysis of comparative 

data has been introduced by Dias et al. [15]; in this case 

considering the risk of bias within RCTs. Schmitz et  al. 

included bias adjustment in their hierarchical model, 

adjusting for overestimation (or underestimation) in 

the observational studies using an additive random bias 

term applied to the mean, at the basic parameter level in 

NMA, or for over precision using a multiplicative fac-

tor applied to the variance [9]. Efthimiou et  al. propose 

a design-adjusted evidence synthesis method which 

combines data from randomized and non-randomised 

studies after adjusting the treatment effect estimates 

form the non-randomised evidence [8]. The two above 

methods, by Schmitz et al. and Efthimiou et al., assume 

that only data from non-randomised sources are biased. 

Verde proposed a Bayesian mixture model for pairwise 

meta-analysis, allowing for the true treatment effects in 

the meta-analysis to be a mixture of biased and unbiased 

effects [10].

Whilst in this paper we did not intend to carry out a full 

review of the literature on combining RCT and non-RCT 

data, the aim of this study was to evaluate and extend a 

number of methods for inclusion of non-randomised 

data in a NMA of RCTs. The existing methods that we 

focussed on included naïve pooling, hierarchical models 

and bias adjustment models, discussed by Schmitz et al. 

[9]. We first explore the models which account for the 

hierarchy of the data in terms of the grouping of treat-

ments within classes as well as considering the different 

designs of included studies (i.e., randomised and non-

randomised). We then extend these hierarchical models 

to allow for the class effect in the hierarchical model of 

different study design. We also explore the hierarchical 

model with bias adjustment, introduced by Schmitz et al., 

allowing for the bias for the non-randomised studies to 

be introduced at the individual study level as a random 

effect and extend it to allow for the average bias to vary 

across treatment classes.

We applied the methods to an illustrative example in 

type 2 diabetes assessing the impact of treatments within 

two classes of glucose-lowering medications; sodium-

glucose co-transporter 2 inhibitors (SGLT-2is) and gluca-

gon-like peptide-1 receptor agonists (GLP-1RAs) [16]. 

We illustrate how the methods can be utilised to model 

data from studies of different designs in NMA in more 
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detail, and to explore the impact the modelling assump-

tions have on effect estimates and uncertainty.

Methods
Illustrative example

To illustrate the methods, we used an example in type 2 

diabetes medications. Data were obtained from a system-

atic literature review of RCTs assessing the efficacy and 

safety of treatments within two classes of glucose lower-

ing medications, SGLT-2is and GLP-1Ras, in individuals 

with type 2 diabetes undertaken by Hussein et  al. [16]. 

The literature search from the review was repeated to 

identify non-randomised comparative studies conducted 

within the time-frame of the original systematic review 

(before April 2019). The evidence base for the NMA was 

further extended by including aggregate level data from 

the analysis of data from patients with type 2 diabetes 

included in the Clinical Practice Research Datalink. Data 

on the treatment effects of the medications included the 

mean change in HbA1c (%) from baseline after 24 ( ± 

8 weeks) and 52 weeks ( ± 8 weeks).

Basic network meta‑analysis

The basic NMA random-effects model is as follows. 

The mean change in HbA1c, yik , in trial i and arm k is 

assumed to be approximately normally distributed with 

standard error seik and mean θik:

Following a generalised linear model approach, an 

identity link function was used to model the true treat-

ment effects (i.e. true mean differences from baseline), 

δi,jk , between treatments in arm k and arm j in trial i , 

which are assumed to follow a normal distribution:

where

and µij are the baseline treatment effects in each study i. 

The NMA models follow the assumption of consistency, 

which means that all studies would estimate the same 

relative effects if they had included all the treatments. 

This is modelled by expressing the mean treatment differ-

ences in terms of, so called, basic parameters (the effects 

of each treatment relative to a reference treatment in the 

network coded as treatment 1), i.e. djk = d1k − d1j. . The 

assumption implies that the direct comparisons (where 

evidence exist from head-to-head studies for a given 

contrast) are exchangeable with indirect comparisons 

obtained using the above consistency rule.

(1)yik ∼ N θik , se
2
ik

(2)θik = µij + δi,jk I{k �=j}

(3)δi,jk ∼ N (djk , σ
2)

Multi-arm adjustments were considered to account for 

the consistency between treatment comparisons within 

the same trial and correlation between treatment effects 

in comparison to the baseline treatment [10].

Following a Bayesian framework, prior distributions 

were placed on the parameters of the model in Eqs. 

(1)–(3). For example, we chose a non-informative uni-

form prior distribution for the heterogeneity parameter 

σ ∼ Uniform(0, 5) , a “vague” normal prior distribution 

for the basic parameters d1k ∼ N (0, 1000) and the base-

line effects µij ∼ N (0, 10000) . The model was initially 

applied to RCT data and data from non-randomised 

studies separately.

Shared parameter model

The data on treatment effects in our illustrative exam-

ple have been reported using different formats: as either 

change from baseline within treatment arms or difference 

in change from baseline between treatment arms. To 

allow for the synthesis of all the relevant data, reported in 

such different ways, a shared parameter model was used 

following Dias et  al. [7]. In addition to the model (1)–

(2), representing the within-study model for the effects 

reported within treatment arms, we model the rela-

tive effects from studies reporting treatment differences 

between the treatment arms k and j as

The relative effects δi,jk represent the shared param-

eter between the models for the two data formats (see 

Eq. (2)). These true effects δi,jk are assumed exchangeable 

within treatment contrasts in the network as described in 

Eq. (3) for the basic NMA.

Network meta‑analysis models for inclusion 

of non‑randomised data

Model A – naïve pooling

The above basic NMA model, described by Eqs. (1)–(4), 

was applied to both RCT and non-randomised data com-

bined, with no adjustments made for different sources of 

data or classes of treatments within the network.

Model B1 – two‑level hierarchical model (treatment vs class)

The second type of model to be fitted was a two-level 

hierarchical model with treatments nested within treat-

ment classes; i.e. treatments were nested within either 

SGLT-2i, GLP-1RA or placebo classes [17]. The model 

allows for borrowing of information across treatments 

within each class when estimating pooled treatment 

effects for individual treatments, which are of primary 

interest. It also allows for estimating an average effect 

within each treatment class, which may also be of 

(4)yi,jk ∼ N
(

δi,jk , se
2
i,jk

)
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interest. Updating Eqs. (2) and (3) leads to the random-

effects model, which reads:

where d∗

jk = d1k ,C − d1j,C . The class-specific basic param-

eters d1k ,C are assumed exchangeable:

where DC denotes the pooled treatment effect estimate 

for treatments in the class C of the interventions, rela-

tive to the reference treatment, and with between-treat-

ment class-specific standard deviation σ
2

C
 . As for the 

naïve pooling model A, this model was extended to the 

shared parameter model to account for the differences 

in the way outcomes were reported. Note that in our 

illustrative example, we assumed fixed effect for the pla-

cebo class, with a prior distribution for the basic param-

eter d1placebo ∼ N (0, 1000) , due to the fact that this class 

included only a single treatment.

Prior distributions were placed on parameters on the 

model. Similarly as in Model A – naïve pooling, we chose 

the following prior distributions for the parameters in 

Eqs. (5) and (6): σ ∼ Uniform(0, 5) , σC ∼ Uniform(0, 5) , 

DC ∼ N (0, 1000).

Model B2 – two‑level hierarchical model (treatment vs 

design)

The third model we considered was a two-level hierarchi-

cal model, modelling the between-study heterogeneity 

of treatment effects within and across each study design 

(i.e. RCT and non-randomised studies). The model allows 

for differentiating between treatment effects from stud-

ies of different designs when estimating pooled treatment 

effects for individual treatments, which are of primary 

interest, and it allows for estimation of these average 

effects for each type of study design individually, and also 

overall across all studies (whilst taking into account of the 

across-design heterogeneity). Following the methods by 

Schmitz et al. [9];

where d
design
jk  is the design specific average treatment 

effect of treatment k versus treatment j , with the mean 

d
design
jk = d

design
1k − d

design
1j  . The design specific basic 

parameters follow a common distribution

The following prior distributions were placed on 

parameters: σD ∼ Uniform(0, 5) and D1k ∼ N (0, 1000).

(5)θik = µij + δ∗
i,jk I{k �=j}, δ

∗
i,jk ∼ N

(

d∗
jk , σ

2
)

(6)d1k ,C ∼ N

(

DC , σ
2
C

)

(7)θik = µij + δi,jk I{k �=j}, δi,jk ∼ N
(

d
design
jk , σ 2

)

d
design=RCT

1k
∼ N (D1k , σ

2

D
) and d

design=OBS

1k
∼ N (D1k , σ

2

D
)

Model B3 – three‑level hierarchical model

This model was developed to extend the above two-

level models (B1 and B2), by allowing for an additional 

level in the random-effects hierarchical NMA model 

to estimate the heterogeneity within study designs as 

well as estimating the heterogeneity within treatment 

classes in the network. Therefore, adapting the above 

model (7), the three-level hierarchical NMA model is as 

follows:

to allow for the class specific mean effects, which, similar 

to Eq. (6), are assumed exchangeable within each treat-

ment class

Prior distributions were placed on the design level 

standard deviation σD , the class-specific standard devi-

ations σC and the class-specific mean DC in the same 

way as in the above two models.

Model C1 – bias adjustment assuming same bias by class

Observational studies are assumed to have additional 

risk of bias due to the absence of randomisation and 

unmeasured confounding. The bias adjustment model 

allows for this by including an additional bias param-

eter, βi for observational studies [9]. By including this 

additional term, the NMA model takes the following 

form:

where:

The true effects δi,jk follow a common distribution 

within each treatment contrast as in (3). The bias terms 

βi for each study i are assumed to follow a common 

distribution;

with mean B and standard deviation κ , which governs the 

extent to which different non-randomised studies vary in 

terms of the level of bias assumed. Non-informative prior 

distributions were placed on the following parameters: 

σ ∼ Uniform(0, 5) , d1k ∼ N (0, 1000) , B ∼ N (0, 1000) and 

κ ∼ Uniform(0, 5).

d
design=RCT

1k
∼ N (D1k ,C , σ

2

D
) and d

design=OBS

1k
∼ N (D1k ,C , σ

2

D
)

D1k ,C ∼ N

(

DC , σ
2
C

)

.

(8)θik = µij + δi,jk I{k �=j} + βiI{design}

I{design} =

{

0 if design of study i = RCT
1 if design of study i = OBS

βi ∼ N

(

B, κ2
)

,
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Model C2 – bias adjustment assuming varying bias by class

The above bias adjustment model assumes exchange-

able biases across all observational studies regardless of 

treatment class being compared; however, the level of 

bias may differ across classes. Therefore, the model in 

Eq. (8) was extended to allow for a different degree of 

bias depending on the treatment class; placebo/stand-

ard care, SGLT-2i or GLP-1RA, whilst assuming the 

variability of the biases across classes is the same:

where I{design} is defined in the same way as in model (8), 

the true effects δi,jk follow a common distribution within 

each treatment contrast as in (3) and the biases are 

exchangeable within each treatment class;

with BC denoting the pooled bias estimate for class C 

of the interventions. Prior distributions for the model 

parameters were selected as those utilised in Model C1; 

with BC ∼ N (0, 1000) . Note that the standard deviation κ 

is constant across classes and the model could be further 

extended to assume the BC parameters are exchangeable 

across treatment classes rather than independent

Model fit and assessments

All models were implemented in WinBUGS [Version 

1.4.3] [18]. The results were based on 600,000 simulations 

to ensure convergence of models. The first 100,000 simu-

lations, classified as the “burn-in”, were discarded, with 

the next 500,000 simulations saved on which all results 

(9)θik = µij + δi,jk I{k �=j} + β∗
i,C I{design}

β∗

i,C ∼ N

(

BC , κ
2
)

are based. Convergence on models was assessed through 

visual inspection of the trace and history plots. Model 

fit was compared using deviance information criterion 

(DIC). DICs can be used in Bayesian analysis as a meas-

ure of model fit, with smaller values indicating a better 

fit [19]. Total residual deviance was also compared to the 

total number of independent data points in the dataset 

being analysed. The results were reported as mean dif-

ference (95% credible intervals [CrI]) for the treatment 

effects in comparison to the reference treatment (cana-

gliflozin) and median standard deviations (SDs) with 95% 

CrIs. Note that placebo could not be selected as the ref-

erence treatment in the network as there were no non-

randomised studies with the placebo and the structure of 

some of the models require a reference treatment that is 

common to both study designs.

Results
Systematic review and network structure

In total, 74 studies were included in this NMA (study 

flow chart reported in Appendix  1 of the supplemen-

tary file); 64 papers were RCTs and 10 studies were non-

randomised. Of the 64 RCTs included in the analysis, 

53 reported outcomes at only 24 weeks, seven reported 

outcomes at only 52 weeks and four reported outcomes 

at both 24 and 52 weeks. Of the included observational 

studies, five reported outcomes at 24  weeks only, two 

reported outcomes at 52 weeks only and three reported 

outcomes at both 24 and 52  weeks (which included the 

aggregate data from the CPRD). Figure 1 displays the net-

work structures. At 24 weeks, 13 unique treatments were 

compared: placebo, four treatments within the SGLT-2i 

Fig. 1 Network plots for the network meta-analysis of HbA1c (%) at 24 weeks and 52 weeks. Nodes represent treatments with sizes of the nodes 

proportional to the number of participants and the lines represent the direct comparisons between any two treatments with the width of the line 

proportional to the number of studies per contrast
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class and eight treatments within the GLP-1RA class. The 

network was similar at 52  weeks, with the exception of 

taspoglutide being excluded due to no studies reporting 

outcomes at this time point for this treatment. The num-

ber of individuals with type 2 diabetes recruited to RCTs 

was on average 490 individuals (range: 50–2072 individu-

als) with observational studies on average studying larger 

populations (mean: 1863, range: 212–5141 individuals). 

List of references for the included studies is given in 

Additional file 1: Appendix 2 and the details of the stud-

ies, including the treatment arms, number of participants 

and the extracted data on treatment effects are reported 

in Appendix 3 of the supplementary file.

Naïve pooling

Figure  2, Table  1 (columns 2–4) and Table  2 (columns 

2–4) report the mean differences (95% CrI), compared 

to the reference treatment canagliflozin, in change in 

HbA1c (%) from baseline after 24 and 52  weeks when 

analysing RCT data and observational data separately 

along with naïve pooling (Model A) method. Compared 

to placebo, the reference treatment canagliflozin reduced 

HbA1c by -0.72% (-0.84, -0.60) after 24  weeks and by 

-0.69% (-0.94, -0.45) after 52 weeks when using the naïve 

pooling method. There was no meaningful difference 

found between canagliflozin and other SGLT-2is (dapa-

gliflozin, empagliflozin and ertugliflozin) at 24  weeks. 

However, most GLP-1RAs reduced HbA1c by a greater 

amount than canagliflozin, with the greatest reduction 

seen in semaglutide (-0.77% (-1.08, -0.47)). There were 

no other differences observed at 52 weeks. For treatment 

comparisons available from both RCTs and observa-

tional studies, the point estimates for the treatment effect 

obtained from the naïve pooling were typically between 

the mean effects obtained from the NMAs carried out 

separately for RCTs and for the non-randomised studies. 

Some of these effects obtained with reduced uncertainty 

compared to the estimates from the RCT data alone. This 

reduction in uncertainty, however, was relatively small. 

For example, at 24 weeks the effect of dapagliflozin rela-

tive to canagliflozin was 0.17 (-0.01, 0.35) from RCT data 

alone and 0.01 (-0.13, 0.16) from the naïve pooling of 

both sources of evidence, reducing the width of the 95% 

CrI by 19.4%. At 52 weeks the improvement in precision 

was much more pronounced due to the higher uncer-

tainty around the effectiveness estimate for this endpoint 

Fig. 2 Network meta-analysis forest plots for analysis of HbA1c at 24 and 52 weeks using the naive pooling method. Note that for some of the 

treatments evidence was available only from either RCTs or from the non-randomised studies (denoted by OBS)
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(smaller number of studies). At 24  weeks, the effects of 

dapagliflozin and empagliflozin appeared to be in conflict 

when comparing the results across the two study designs 

(favouring the treatments compared to canagliflozin in 

the non-randomised studies but not in the RCTs). The 

estimated between-study heterogeneity differed across 

Table 1 Mean difference from baseline ( 95% CrIs) for HbA1c (%) at 24 weeks for all models fitted vs reference treatment 

(canagliflozin) and median (95% CrIs) for the between-study standard deviation SD. Model A: naïve pooling, Model B1: two-level 

hierarchical model (treatment vs class), Model B2: two-level hierarchical model (treatment vs design), Model B3: three-level hierarchical 

model, Model C1: bias adjustment assuming the same bias by class, Model C2: bias adjustment allowing for bias to vary by class. 
aSGLT-2i therapies (the remaining treatments, apart from the placebo, are from the GLP-1RA class)

Treatment vs 
Canagliflozin

Model

RCT only OBS only Model A Model B1 Model B2 Model B3 Model C1 Model C2

Effectiveness

 Dapagli‑
flozina

0.17 (-0.01, 
0.35)

-0.22 (-0.41, 
-0.03)

0.01 (-0.13, 
0.16)

-0.00 (-0.14, 
0.14)

0.00 (-0.24, 
0.23)

-0.02 (-0.22, 
0.19)

0.04 (-0.12, 
0.22)

0.10 (-0.05, 0.25)

 Empagli‑
flozina

0.10 (-0.09, 
0.30)

-0.37 (-0.70, 
-0.04)

-0.03 (-0.21, 
0.15)

-0.03 (-0.19, 
0.13)

-0.05 (-0.34, 
0.20)

-0.05 (-0.28, 
0.16)

0.00 (-0.19, 
0.19)

0.03 (-0.13, 0.19)

 Exenatide 
BID

0.18 (0.01, 
0.35)

0.01 (-0.34, 
0.38)

0.12 (-0.04, 
0.28)

0.11 (-0.04, 
0.27)

0.13 (-0.13, 
0.39)

0.09 (-0.16, 
0.32)

0.13 (-0.02, 
0.29)

0.12 (-0.02, 0.26)

 Lixisena‑
tide

0.30 (0.13, 
0.47)

0.34 (-0.04, 
0.74)

0.27 (0.11, 
0.43)

0.26 (0.1, 0.42) 0.31 (0.06, 
0.59)

0.24 (-0.06, 
0.48)

0.27 (0.11, 
0.43)

0.25 (0.11, 0.39)

 Albiglutide -0.04 (-0.34, 
0.25)

-0.36 (-0.70, 
-0.01)

-0.17 (-0.40, 
0.06)

-0.17 (-0.39, 
0.05)

-0.16 (-0.45, 
0.13)

-0.15 (-0.41, 
0.10)

-0.14 (-0.38, 
0.10)

-0.13 (-0.34, 
0.07)

 Dulaglu‑
tide

-0.26 (-0.44, 
-0.07)

-0.48 (-0.77, 
-0.18)

-0.33 (-0.50, 
-0.17)

-0.33 (-0.49, 
-0.17)

-0.32 (-0.58, 
-0.07)

-0.3 (-0.52, 
-0.06)

-0.31 (-0.48, 
-0.15)

-0.33 (-0.47, 
-0.18)

 Exenatide 
QW

-0.11 (-0.30, 
0.08)

-0.30 (-0.57, 
0.00)

-0.19 (-0.34, 
-0.02)

-0.19 (-0.34, 
-0.03)

-0.16 (-0.41, 
0.09)

-0.16 (-0.37, 
0.06)

-0.17 (-0.33, 
0.00)

-0.18 (-0.32, 
-0.03)

 Liraglutide -0.25 (-0.42, 
-0.08)

-0.30 (-0.56, 
-0.03)

-0.27 (-0.41, 
-0.12)

-0.26 (-0.41, 
-0.12)

-0.24 (-0.48, 
0.00)

-0.23 (-0.44, 
0.01)

-0.28 (-0.43, 
-0.12)

-0.31 (-0.45, 
-0.18)

 Placebo 0.78 (0.66, 
0.91)

- 0.72 (0.60, 
0.84)

0.72 (0.61, 
0.84)

0.74 (0.44, 
1.06)

0.74 (0.47, 
1.08)

0.73 (0.61, 
0.85)

0.73 (0.63, 0.83)

 Ertugli‑
flozina

-0.06 (-0.28, 
0.16)

- -0.13 (-0.35, 
0.09)

-0.08 (-0.3, 0.1) -0.10 (-0.44, 
0.25)

-0.07 (-0.34, 
0.18)

-0.11 (-0.33, 
0.10)

-0.11 (-0.30, 
0.08)

 Semaglu‑
tide

-0.71 (-1.01, 
-0.41)

- -0.77 (-1.08, 
-0.47)

-0.67 (-0.97, 
-0.37)

-0.75 (-1.14, 
-0.35)

-0.58 (-0.95, 
-0.14)

-0.76 (-1.06, 
-0.46)

-0.76 (-1.04, 
-0.48)

 Taspoglu‑
tide

-0.09 (-0.29, 
0.11)

- -0.15 (-0.36, 
0.05)

-0.15 (-0.35, 
0.04)

-0.13 (-0.46, 
0.22)

-0.13 (-0.4, 
0.14)

-0.14 (-0.34, 
0.06)

-0.14 (-0.32, 
0.04)

Class‑level effects and bias

 D. SGLT‑2i -0.04 (-0.55, 
0.46)

-0.05 (-0.66, 
0.55)

 D. GLP‑1RA -0.17 (-0.48, 
0.12)

-0.15 (-0.45, 
0.14)

 Bias 0.06 (-0.09, 0.2)

 Bias. SGLT‑
2i

-0.24 (-0.43, 
-0.03)

 Bias. GLP‑
1RA

0.13 (0.00, 0.25)

Heterogeneity

 SD 0.1 (0.04, 0.16) 0.04 (0.00, 
0.17)

0.11 (0.07, 
0.16)

0.11 (0.07, 
0.16)

0.09 (0.03, 
0.14)

0.09 (0.02, 
0.14)

0.1 (0.05, 0.16) 0.08 (0.01, 0.13)

 SD. SGLT‑2i 0.1 (0.0, 1.78) 0.12 (0.0, 2.03)

 SD. GLP‑
1RA

0.33 (0.18, 0.7) 0.31 (0.12, 
0.69)

 SD.design 0.11 (0.02, 
0.28)

0.1 (0.02, 0.26)

 SD.bias 0.09 (0.0, 0.26) 0.04 (0.0, 0.15)
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the two sets of data (RCTs and non-randomised stud-

ies), in particular at 52 weeks where it was obtained with 

much greater uncertainty.

Hierarchical models

Estimated overall mean differences in change from base-

line in HbA1c (%), compared to the reference treatment 

of canagliflozin, when utilising the hierarchical models 

Table 2 Mean difference from baseline ( 95% CrIs) for HbA1c (%) at 52 weeks for all models fitted vs reference treatment 

(canagliflozin) and median (95% CrIs) for the between-study standard deviation SD. Model A: naïve pooling, Model B1: two-level 

hierarchical model (treatment vs class), Model B2: two-level hierarchical model (treatment vs design), Model B3: three-level hierarchical 

model, Model C1: bias adjustment assuming the same bias by class, Model C2: bias adjustment allowing for bias to vary by class. 
aSGLT-2i therapies (the remaining treatments, apart from the placebo, are from the GLP-1RA class)

Treatment vs 
Canagliflozin

Model

RCT only OBS only Model A Model B1 Model B2 Model B3 Model C1 Model C2

Effectiveness

 Dapagli‑
flozina

0.12 (-0.26, 
0.55)

-0.18 (-1.12, 
0.76)

0.06 (-0.23, 
0.37)

0.03 (-0.27, 
0.33)

0.01 (-0.72, 
0.68)

-0.02 (-0.39, 
0.34)

0.10 (-0.18, 
0.40)

0.06 (-0.22, 0.34)

 Empagli‑
flozina

-0.14 (-0.62, 
0.40)

-0.24 (-1.21, 
0.50)

-0.15 (-0.51, 
0.20)

-0.12 (-0.47, 
0.21)

-0.17 (-0.90, 
0.53)

-0.14 (-0.53, 
0.24)

-0.15 (-0.48, 
0.20)

-0.15 (-0.45, 
0.17)

 Exenatide 
BID

- 0.20 (-0.86, 
0.53)

0.32 (-0.28, 
0.90)

0.14 (-0.32, 
0.62)

0.27 (-0.84, 
1.30)

0.08 (-0.4, 0.6) 0.49 (-0.46, 
1.30)

0.14 (-0.80, 1.07)

 Lixisena‑
tide

- 0.17 (-0.66, 
0.48)

0.18 (-0.24, 
0.67)

0.1 (-0.28, 0.62) 0.14 (-0.89, 
1.14)

0.04 (-0.4, 0.5) 0.24 (-0.40, 
0.88)

-0.11 (-0.82, 
0.66)

 Dulaglu‑
tide

- -0.07 (-0.94, 
0.46)

-0.07 (-0.47, 
0.36)

-0.05 (-0.42, 
0.34)

-0.07 (-1.07, 
0.93)

-0.06 (-0.49, 
0.37)

0.05 (-0.66, 
0.66)

-0.20 (-0.91, 
0.48)

 Exenatide 
QW

-0.03 (-0.61, 
0.60)

0.18 (-0.70, 
0.46)

0.14 (-0.23, 
0.52)

0.14 (-0.42, 
0.34)

0.10 (-0.64, 
0.81)

0.08 (-0.32, 
0.47)

0.10 (-0.30, 
0.51)

-0.09 (-0.54, 
0.37)

 Liraglutide - 0.17 (-0.62, 
0.43)

0.19 (-0.16, 
0.57)

0.14 (-0.21, 
0.49)

0.18 (-0.83, 
1.15)

0.07 (-0.36, 0.5) 0.08 (-0.49, 
0.72)

-0.25 (-0.89, 
0.47)

 Placebo 0.71 (0.44, 
1.04)

- 0.69 (0.45, 
0.94)

0.71 (0.47, 
0.96)

0.70 (-0.23, 
1.66)

0.72 (0.28, 
1.17)

0.70 (0.49, 
0.94)

0.69 (0.49, 0.90)

 Ertugli‑
flozina

-0.09 (-0.61, 
0.48)

- -0.11 (-0.60, 
0.40)

-0.07 (-0.5, 
0.35)

-0.10 (-1.10, 
0.92)

-0.08 (-0.55, 
0.39)

-0.10 (-0.53, 
0.36)

-0.11 (-0.52, 
0.31)

 Albiglutide -0.10 (-0.53, 
0.34)

- -0.12 (-0.52, 
0.25)

-0.07 (-0.4, 
0.31)

-0.11 (-1.07, 
0.87)

-0.06 (-0.44, 
0.35)

-0.11 (-0.45, 
0.23)

-0.12 (-0.44, 
0.19)

 Semaglu‑
tide

-0.66 (-1.36, 
0.09)

- -0.49 (-1.01, 
0.05)

-0.29 (-0.76, 
0.26)

-0.59 (-1.69, 
0.42)

-0.25 (-0.8, 
0.28)

-0.54 (-1.03, 
0.00)

-0.72 (-1.26, 
0.18)

Class‑level effects and bias

 d. SGLT‑2i -0.05 (-0.99, 
0.85)

-0.08 (-1.05, 
0.87)

 d. GLP‑1RA 0.02 (-0.36, 
0.41)

-0.01 (-0.4, 
0.39)

 Bias 0.21 (-0.5, 0.8)

 Bias. SGLT‑
2i

-0.21 (-1.06, 
0.61)

 Bias. GLP‑
1RA

0.26 (-0.34, 0.78)

Heterogeneity

 SD 0.10 (0.01, 0.5) 0.27 (0.02, 
1.04)

0.13 (0.01, 
0.33)

0.14 (0.01, 
0.33)

0.11 (0.01, 
0.32)

0.11 (0.01, 0.3) 0.09 (0.00, 0.3) 0.08 (0.00, 0.28)

 SD. SGLT‑2i 0.23 (0.01, 2.7) 0.23 (0.01, 
2.81)

 SD. GLP‑
1RA

0.23 (0.03, 
0.64)

0.2 (0.01, 0.64)

 SD.design 0.21 (0.01, 
1.38)

0.14 (0.01, 
0.39)a

 SD.bias 0.19 (0.01, 
0.62)

0.14 (0.01, 0.57)
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are reported in Table 1 (columns 5–7) for 24 weeks follow 

up time and Table 2 (columns 5–7) for 52 weeks follow 

up time. In comparison with the naïve-pooling method, 

hierarchical models provided similar effect estimates. 

The hierarchical model accounting for treatment classes 

(Model B1) resulted in the effect estimates with credible 

intervals similar to those obtained from the naïve-pool-

ing model. However, the credible intervals were wider 

for the estimates from the hierarchical models allowing 

for differences in the study design (i.e. Model B2 and B3). 

For example, when considering the effect estimate for 

dapagliflozin in comparison to canagliflozin, the mean 

difference between the two treatments was close to 0 

in all models. However, the estimate was obtained with 

a greater level of uncertainty in the two-level hierarchi-

cal model accounting for study design (0.00% (-0.24, 

0.23)) and three-level hierarchical model (-0.02% (-0.27, 

0.21)) in comparison to the two-level hierarchical model 

accounting for treatment classes (-0.01% (-0.15, 0.14)).

In all hierarchical models at 24  weeks, semaglutide 

showed the greatest reduction in HbA1c (%) in com-

parison to canagliflozin with a reduction of -0.71% 

(-1.00, -0.42) when using a two-level hierarchical model 

accounting for treatment classes and -0.75% reduction 

(-1.14, -0.35) when using a two-level hierarchical model 

accounting for study design. However, this reduction 

was smaller when using a three-level hierarchical model 

(-0.62% (-0.98, -0.12)) with increased uncertainty. This 

is likely to be due to the fact that the three-level hierar-

chical model takes into account the differences between 

treatments within classes of SGLT-2is and GLP-1RAs as 

well as the differences between study designs, allowing 

for additional variability.

Bias‑adjustment models

When considering the bias adjustment models, Model C1 

assumes the same level of bias for all treatments in obser-

vational studies, regardless of treatment class. In this 

case, the effect estimates were similar to those obtained 

from the naïve pooling method. Further, these effect 

estimates had narrower credible intervals compared to 

those from the hierarchical models accounting for study 

design, as shown in Table 1 for the effect at 24 weeks and 

in Table 2 for the effect at 52 weeks. The bias term in this 

model was estimated to be 0.06 (-0.09, 0.20) at 24 weeks 

which suggests there was no substantial systematic 

discrepancy between RCT and observational studies 

(Table  1). However, when relaxing the assumption of 

the fully exchangeable bias and allowing the bias to vary 

across treatment classes (Model C2), the bias for SGLT-

2is is estimated as -0.24 (-0.43, -0.03) and for GLP-1RAs 

as 0.13 (0.00, 0.25) at 24  weeks (Table  1). This suggests 

observational studies overestimated the effect of SGLT-

2is by 0.24%, while GLP-1RAs were underestimated by 

0.13%. While bias estimates differed across the two mod-

els, effect estimates and 95% credible intervals were simi-

lar (Tables 1 and 2), but slightly shifted in the direction 

of the bias. As observed in all other models, semaglutide 

showed the greatest reduction in HbA1c at 24 weeks in 

both bias-adjusted models (Model C1: -0.76% (-1.06, 

-0.46), Model C2: -0.76% (-1.04, -0.48)) (Table 1). There 

were no differences found at 52 weeks (Table 2); however, 

some of the estimates were obtained with reduced uncer-

tainty compared to those from naïve pooling. For exam-

ple, the effect of empagliflozin relative to canagliflozin at 

52 weeks was -0.15 (-0.45, 0.17) from Model C2 and -0.15 

(-0.51, 0.20) from naïve pooling.

Model assessments

Table  3 reports the DIC, residual difference and the 

total number of independent data points for each NMA 

model at 24 and 52 weeks. At 24 and 52 weeks, the naïve-

pooling model had the poorest fit (24 week DIC: -161.78, 

52  week DIC: -15.15) in comparison to the hierarchical 

and bias-adjustment models fitted. At 24 weeks, the bias 

adjusted model assuming varying bias by class (Model 

Table 3 Measures of model fit for models including both RCT and non-randomised studies. Model A: naïve pooling, Model B1: two-

level hierarchical model (treatment vs class), Model B2: two-level hierarchical model (treatment vs design), Model B3: three-level 

hierarchical model, Model C1: bias adjustment assuming same bias by class, Model C2: bias adjustment allowing for bias to vary by 

class

Model DIC Residual deviance Total number of independent 
data points

24 weeks 52 weeks 24 weeks 52 weeks 24 weeks 52 weeks

Model A -161.78 -15.15 134.3 39.65 137 38

Model B1 -172.94 -29.81 135.6 39.74

Model B2 -174.26 -28.96 135.8 38.93

Model B3 -173.81 -31.31 136.3 39.92

Model C1 -171.15 -29.68 138.3 46.56

Model C2 -175.68 -30.38 149.5 45.71
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C2) provided the best fit to the data according to the DIC 

(DIC: -175.68). However, the model showed poorest fit 

according to the residual deviance of 149.5 (compared 

to 137 data points) at 24  weeks. Both bias adjustment 

models had relatively large residual deviance at 52 weeks. 

The hierarchical models accounting for study design 

provided a good fit to the data in terms of both the DIC 

and residual deviance (two-level hierarchical model DIC: 

-174.26, three-level hierarchical model DIC: -173.81). At 

52  weeks, the three-level hierarchical model account-

ing for treatment design and class provided the best fit 

to the data (DIC: -31.31), with the bias adjusted model 

varying the bias within classes also providing a good fit 

(DIC: -30.38). Hierarchical models accounting for the dif-

ferences in the study design gave slightly lower between-

study heterogeneity compared to the naïve pooling 

and the two level model with class effect, which, along 

with their good fit, suggests that these models may be 

preferred.

Discussion
The methods used in this study provide a basis for inclu-

sion of aggregate data from comparative non-randomised 

studies in a systematic review and NMA of RCTs. A 

number of methods were explored and developed fur-

ther, which included naïve pooling, hierarchical models 

accounting for the design of the studies and bias adjust-

ment for observational studies. All methods were applied 

to an illustrative example in type 2 diabetes medications.

In this systematic review and NMA of RCTs and non-

randomised studies, a total of 64 RCTs and 10 observa-

tional studies were analysed. In most cases, the direction 

of effect was similar in both RCT data and non-ran-

domised data, which is supported by current research 

[20]. However, in contrast to the RCTs, the observational 

studies favoured two SGLT-2i therapies, compared to the 

reference treatment. Naïve-pooling averaged the effect 

estimate between what was observed in RCTs and non-

randomised studies, with most effect estimates having 

similar or smaller credible intervals in comparison to the 

results of NMA of RCT data alone.

In order to account for the limitations of non-ran-

domised studies, hierarchical models and bias adjusted 

models were explored. In this study, hierarchical models 

fitted accounted for the design of the study, which was 

further extended to consider the classification of treat-

ments within the SGLT-2i and GLP-1RA class. As in 

previous studies [9, 21], effect estimates were similar to 

those from the naïve pooling method but credible inter-

vals were often wider. In particular, allowing for addi-

tional heterogeneity across studies of different designs 

increased credible intervals. By allowing for additional 

levels of heterogeneity, the impact of the over-precision 

of the estimates from the observational studies on the 

pooled effects may be reduced.

Bias adjusted models, applied to data from our example 

of type 2 diabetes, resulted in similar effect estimates, if 

slightly shifted to the direction of the bias, compared to the 

naïve pooling model. Similar to Dias et  al. [15], between 

trial heterogeneity decreased when adjusting for bias, thus 

suggesting some of this heterogeneity was explained by the 

bias in observational studies. Interestingly, allowing bias to 

vary by class, relaxing the assumption that bias could be 

in the same direction regardless of treatment, models pro-

vided a better fit to the data according to DIC. This sug-

gests that the magnitude and directionality of bias could 

differ by class and it may not be appropriate to assume the 

same bias for all observational studies.

Limitations

There are a number of limitations that need to be consid-

ered in this study. Firstly, this study has considered a single 

dataset and illustrative example. While this is a relatively 

large NMA, considering a number of treatments and stud-

ies, it included a relatively small number of non-randomised 

studies, which may have contributed excessively to the 

increased level of uncertainty. It is important to consider 

the effect of these models in alternative datasets, which may 

depend on a number of factors. Previously published stud-

ies showed similar effects as this study when utilising the 

naïve pooling model and hierarchical model accounting for 

study design [9, 21]. The results from this study are prom-

ising but would need further investigation to understand 

the implications in other datasets. Future studies should 

also consider using simulation to assess the performance 

of these methods under a range a scenarios. Secondly, the 

non-randomised studies included in the NMA on average 

contributed a larger proportion of individuals compared to 

RCTs. This could potentially lead to the increased impact 

of the non-randomised studies on the pooled effectiveness 

estimates, which is a limitation particularly in the presence 

of unmeasured confounding. Thirdly, the issue of double-

counting of individuals in NMAs including observational 

studies was not considered in this study. As the number of 

real-world and observational studies using large electronic 

health care databases increase, it is likely that individuals 

could be included multiple times in evidence synthesis due 

to the same database being used or individuals included 

in the databases also taking part in RCTs, thus artificially 

inflating precision [22]. However, allowing for further het-

erogeneity across study designs and by introducing a bias 

factor, may mitigate the impact of this issue due to the 

allowance for increased uncertainty. Fourth, bias within 

RCTs was not considered in this NMA. Risk of bias assess-

ment was completed in the original systematic review and 

NMA for RCTs. Most studies showed low risk of bias in 
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RCTs and so adjusting for bias in RCTs in this case may have 

minimal impact but further work could consider adjusting 

for bias within RCTs as well as observational studies by, for 

example, adapting a Bayesian mixture hierarchical model 

proposed by Verde [10] to an NMA and allowing for bias 

to vary according to treatment class. In fact, an extension 

of the model by Verde to NMA was recently proposed by 

Hamza et al., who also make software available to analysts 

[23]. Finally, this systematic review and NMA only consid-

ered aggregate level data for both RCTs and observational 

studies. It would be important to consider the extension 

of these methods when including IPD for both RCTs and 

observational studies, as recently proposed by Hamza et al. 

[23]. Moreover, further work could also consider the impact 

of the quality of the effectiveness estimates from the non-

randomised studies when modelling bias. For example, 

there is likely heterogeneity in the way treatment effects are 

estimated and reported. Some studies may use appropri-

ate methods of adjustment for confounding whereas others 

may not. Such information could also be used when decid-

ing how to share the bias parameters; across the studies pro-

viding better quality estimates vs those of poorer quality.

Conclusions
The inclusion of observational data in NMAs of RCTs is 

gaining considerable traction in HTA due to the many 

benefits such as increasing evidence base, potentially con-

necting disconnected networks and allowing for more gener-

alizable inferences. Methods such as hierarchical NMA and 

bias adjustment allow for more detailed modelling of the het-

erogeneity between study designs and can also be extended 

to allow for differences between treatment classes or account 

for differences in treatment doses. Both, hierarchical and bias 

adjustment models can provide a better fit to the data in com-

parison to naïve pooling and should be explored when con-

ducting evidence synthesis. While the methods developed 

may ameliorate the effects of overestimation in observational 

studies, further analysis such as simulation studies would need 

to be conducted to investigate the capabilities of these models.
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