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Structure-Aware Lower Bounds and Broadening

the Horizon of Tractability for QBF

Abstract—The QSAT problem, which asks to evaluate a
quantified Boolean formula (QBF), is of fundamental inter-
est in approximation, counting, decision, and probabilistic
complexity and is also considered the prototypical PSPACE-
complete problem. As such, it has previously been studied
under various structural restrictions (parameters), most
notably parameterizations of the primal graph representa-
tion of instances. Indeed, it is known that QSAT remains
PSPACE-complete even when restricted to instances with
constant treewidth of the primal graph, but the problem
admits a double-exponential fixed-parameter algorithm
parameterized by the vertex cover number (primal graph).

However, prior works have left a gap in our under-
standing of the complexity of QSAT when viewed from the
perspective of other natural representations of instances,
most notably via incidence graphs. In this paper, we
develop structure-aware reductions which allow us to
obtain essentially tight lower bounds for highly restricted
instances of QSAT, including instances whose incidence
graphs have bounded treedepth or feedback vertex number.
We complement these lower bounds with novel algorithms
for QSAT which establish a nearly-complete picture of
the problem’s complexity under standard graph-theoretic
parameterizations. We also show implications for other
natural graph representations, and obtain novel upper as
well as lower bounds for QSAT under more fine-grained
parameterizations of the primal graph.

I. INTRODUCTION

The evaluation problem for quantified Boolean formu-

las (QSAT) is a natural generalization of the Boolean

satisfiability problem (SAT) and among the most im-

portant problems in theoretical computer science, with

applications in symbolic reasoning [1], [2], [3], [4], [5],

[6], constraint satisfaction problems (CSP) [7], [8], [9],

databases, and logic [10]. Input formulas in QSAT consist

of a (quantifier) prefix and a matrix, which can be an

arbitrary Boolean formula but is often assumed to be in

conjunctive normal form (CNF), e.g., converted by the

classical Tseytin transformation [11]. QSAT is consid-

ered the archetypical representative of PSPACE-complete

problems and has been extensively studied from the

perspective of classical approximation [12], counting [13],

decision [14], and probabilistic complexity [15], but also

through the lens of parameterized complexity [16], [17].

The vast majority of parameterizations studied for

QSAT rely on a suitable graph representation of the

matrix; this is, in fact, similar to the situation for

BOOLEAN SATISFIABILITY (SAT) [18], [19], [20], IN-

TEGER LINEAR PROGRAMMING (ILP) [21], [22], [23],

CONSTRAINT SATISFACTION (CSP) [9], [24], [25],

and other fundamental problems. For QSAT, the most

classical parameterization considered in the literature is

the treewidth k of the primal graph representation of

the formula’s matrix in conjunctive normal form (CNF).

There, the complexity is well understood by now: The

problem remains PSPACE-complete when parameterized

by this parameter alone [16], [17], [26] even when

restricted to decompositions which are paths, but can

be solved in time tow(ℓ, k) · poly(n)1 where ℓ is the

quantifier depth of the formula’s prefix and n is the

number of variables of the formula. On a more positive

note, parameterizing by the vertex cover number of the

primal graph alone is known to yield a fixed-parameter

algorithm for QSAT [27] that is double-exponential.

The ℓ-fold exponential gap in terms of parameter

dependence between treewidth and vertex cover number

raises the following question: what is the boundary of

fixed-parameter tractability when dropping the quantifier

depth ℓ as a parameter? In parameterized complexity,

there is a whole hierarchy of structural parameters that

are more restrictive than treewidth and less restrictive than

vertex cover number, most prominently treedepth [28]

and the feedback vertex and edge numbers2. However,

there is an even larger gap: we know very little about the

complexity-theoretic landscape of QSAT in the context of

matrix representations other than the primal graph. The

most prominent example of such a graph representation is

the incidence graph, which has been extensively studied

for SAT [18], [29], [19], CSP [25], [30], and ILP [22],

[31], among others. The aforementioned hardness for

QSAT carries over from primal treewidth to the treewidth

of the incidence graph [17] and the problem is fixed-

parameter tractable using quantifier depth plus treewidth

of the incidence graph [32], but no other results for struc-

tural parameters of this graph were previously known.

A. Overview of Contributions

Inspired by the high-level approach used to obtain

QSAT lower bounds for treewidth [26], in Section III

we formalize a notion of structure-aware (SAW) reduc-

tions for QSAT. These reductions serve as a tool to

1The runtime is exponential in the treewidth k, where k is on top
of a tower of iterated exponentials of height quantifier depth ℓ.

2The vertex or edge deletion distances to acyclicity, respectively.
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Fig. 1: Nearly-complete picture for QSAT and parameters

on the incidence graph between vertex cover number and

treewidth; directed arks indicate that the source parameter

bounds the destination, see, e.g., [34], [35]. The red frame

represents intractability with lower bounds essentially

matching known upper bounds (ETH-tight for treewidth

and feedback vertex number); the green frame indicates

tractability (fpt) results. Bold-face text marks new results.

precisely demonstrate functional dependencies between

parameters of the input instance and the reduced instance.

Utilizing this notion of SAW reductions, we establish

in Section IV tight lower bounds for highly restrictive

classes of QSAT instances that have profound complexity-

theoretic implications for three distinct representations

of the matrix. These results essentially rule out efficient

algorithms for treedepth and faster algorithms than the

one for treewidth when using feedback vertex number. We

highlight them below, followed by a separate discussion

for each of the representation. Unless the Exponential

Time Hypothesis (ETH) [33] fails:

1) QSAT cannot be solved faster than in tow(ℓ′, k) ·
poly(n) for ℓ′ linear in the quantifier depth ℓ, where

k is either the feedback vertex number (ℓ′=ℓ) or the

treedepth of the incidence graph.

2) QSAT cannot be solved faster than in tow(ℓ′, k) ·
poly(n) for ℓ′ linear in the quantifier depth ℓ,
where k is either the feedback vertex number (ℓ′=ℓ)
or the treedepth of the primal graph of formulas

in combined conjunctive normal form (CNF) and

disjunctive normal form (DNF).

3) QSAT cannot be solved faster than in tow(ℓ′, k) ·
poly(n) for ℓ′ linear in the quantifier depth ℓ, where

k is either the feedback vertex number (ℓ′=ℓ) or the

treedepth of the primal graph after deleting a single

clause from the matrix.

1. Results for Incidence Graphs. Our two complexity-

theoretic lower bounds identify that, with respect to

the fundamental representation as incidence graph, the

boundaries of intractability for QSAT lie significantly

below treewidth. They also raise the question of whether

we can obtain efficient algorithms for the problem using

parameters which place stronger restrictions on the inci-

dence graph. The two by far most natural structural graph

parameters satisfying these properties are the mentioned

vertex cover number and feedback edge number.

We complement our lower bounds with fixed-parameter

algorithms for QSAT with respect to both parameters,

which are provided in Section V. Thereby we establish

a nearly-complete picture of the problem’s complexity

based on structure of the incidence graph, see Figure 1.

2. Implications for Primal Graphs of Combined Ma-

trices. Previous complexity-theoretic studies of QSAT

have typically assumed that the matrix is represented

in CNF form, which admits standard graphical rep-

resentations and may be obtained from an arbitrary

formula by using the classical Tseytin transformation [11].

However, empirical evidence has shown that normal form

transformations adversely affect the performance of QSAT

solvers [36], and solvers now typically support more

general input formats than CNF [37].

Given these developments, it is natural to consider the

complexity of QSAT from the viewpoint of more general

normal forms of the matrix which still admit suitable

graph representations. An obvious step in this direction

would be to combine CNF and DNF, i.e., consisting of a

conjunction of a CNF and a DNF formula. This combined

“CDNF” is used by backtracking search algorithms for

QBF, since it is able to emulate forms of circuit-level

reasoning while enjoying optimized data structures [38].

Since the CDNF is a strict generalization of the

CNF, the lower bounds we established for the incidence

graph of the CNF in Section IV immediately carry over.

However, unlike in the CNF case, our reductions also

directly rule out fixed-parameter tractability of QSAT

with respect to both the treedepth and the feedback vertex

number of primal graphs for matrices in CDNF.

3. Tightening the Gap on Primal Graphs. For

classical CNF matrices, our SAW reductions of Sec-

tion IV almost—but not quite—settle the aforementioned

complexity-theoretic gap between the treewidth and

vertex cover number of the primal graph. In particular,

we prove that allowing the addition of a single clause

to instances with bounded treedepth or feedback vertex

number in the primal graph leads to intractability. Given

this development, we view settling the parameterized

complexity of QSAT with respect to these two parameters

as the main open questions left in our understanding of

the problem’s complexity landscape.

As our last contribution, we obtain new fixed-parameter

algorithms for QSAT with the aim of tightening this gap.

First, we obtain a linear kernel (and hence also a fixed-

parameter algorithm) for QSAT parameterized by the

feedback edge number of the primal graph. Second, we

establish the fixed-parameter tractability for the problem

with respect to several relaxations of the vertex cover

number that may be seen as “stepping stones” towards

treedepth on primal graphs of CNFs. A more elaborated

overview of our results is provided in Figure 2 (left).

B. Approach and Techniques

For establishing fine-grained lower bounds for pa-

rameters between treewidth and vertex cover on the

graph representations above, we utilize the notion of

structure-aware (SAW) reductions as visualized in Fig-



ure 2 (right). We develop concrete SAW reductions

that are conceptually self-reductions from QSAT to

QSAT, where we trade an exponential decrease of the

parameters feedback vertex number or treedepth for

an exponential increase of runtime dependency on the

corresponding parameter. In order to obtain tight lower

bounds that ideally match existing upper bounds (and

rule out algorithms significantly better than the one for

treewidth), one has to carefully carry out this trade-

off such that the order of magnitude of the runtime

dependency increase does not exceed the parameter

decrease’s magnitude. More precisely, our transformations

reduce from QSAT using the respective parameter k and

quantifier depth ℓ, to QSAT when parameterized by log(k)
with quantifier depth ℓ+1. By iterating this construction

(see also Figure 2 (right)), we trade an i-fold exponential

parameter decrease (from k to logi(k)) for a quantifier

depth increase of i, which then, assuming ETH, results in

a QBF that is ℓ+i-fold exponential in logi(k) to solve.

As a consequence of our reductions, we also obtain

an interesting result for classical complexity: It turns

out that a single additional clause is already responsible

for intractability of QSAT on the well-known tractable

fragment of 2-CNF formulas. More specifically, QSAT

on 2-CNFs plus one clause with quantifier depth ℓ > 1
is indeed ΣP

ℓ−1-complete, see Corollary XI.2.

Notably, the construction of our reductions also allows

us to strengthen our established lower bounds to graph

representations that are purely restricted to variables of

the innermost quantifier (block). This is a consequence of

the fact that our concrete SAW reductions are carried out

such that the majority of structural dependencies reside in

the innermost quantifier block of the constructed instance.

Further, the lower bounds even hold for parameters

covering the vertex deletion distance to (almost) simple

paths, as well as for restricted variants of treedepth. Both

results are construction-specific consequences, but these

findings are in fact significantly stronger than the lower

bounds for feedback vertex set and treedepth, thereby

providing deeper insights into the hardness of QSAT.

Our lower bound results using SAW reductions allow

us to draw a rather comprehensive picture for the (fine-

grained) parameterized complexity of the incidence graph

by strengthening previous hardness results to much more

restrictive parameters such as feedback vertex set and

treedepth. We complement these negative results for the

incidence graph by giving fpt-algorithms for CQSAT, i.e.,

QSAT restricted to formulas in CNF, both for vertex cover

number and feedback edge number. Our main technical

contribution here is a kernelization algorithm for feedback

edge set for both the primal and incidence graph.

We then turn our attention towards solving CQSAT

using structural restrictions of the primal graph. While we

have to leave open whether CQSAT is fixed-parameter

tractable parameterized by either the feedback vertex

number or the treedepth of the primal graph, we are

able to make some progress towards establishing fixed-

parameter tractability for the latter. In particular, using

novel insights into winning strategies of Hintikka games,

we are able to obtain fixed-parameter algorithms for three

variants of the so-called c-deletion set parameter, which is

a parameter between vertex cover number and treedepth.

II. PRELIMINARIES

We assume basics from graph theory, cf. [41], [42].

A graph G = (V,E) is a subgraph of G′=(V ′, E′) if

V ⊆ V ′, E ⊆ E′. A (connected) component of a graph

is a largest connected subgraph. A graph is acyclic if no

subgraph forms a cycle. For a graph G = (V,E) and

a set S ⊆ V (D ⊆ E) of vertices (edges), we define

the subtraction graph obtained from G by G − S :=
(V \ S, {e | e ∈ E, e ∩ S = ∅}) (by G − D := (V \
{v | v ∈ e, e ∈ D}, E \ D)). Further, the union of

given graphs G1 = (V1, E1) and G2 = (V2, E2) is given

by G1⊔G2 := (V1∪V2, E1∪E2). Expression tow(ℓ, k)
is a tower of exponentials of 2 of height ℓ with k on top.

Computational Complexity: We give a brief back-

ground on parameterized complexity [43], [44]. Let Σ and

Σ′ be two finite non-empty alphabets. A parameterized

problem L is a subset of Σ∗×N for some finite alphabet

Σ. L is fixed-parameter tractable (fpt) if there exists

a computable function f and an algorithm deciding

whether (I, k) ∈ L in fpt-time O(f(k) poly(∥I∥)),
where ∥I∥ is the size of I. Let L ⊆ Σ∗ × N and

L′ ⊆ Σ′∗ × N be two parameterized problems. A

polynomial-time parameterized-reduction r, pp-reduction

for short, from L to L′ is a many-to-one reduction

from Σ∗ × N to Σ′∗ × N such that (I, k) ∈ L if and

only if r(I, k) = (I ′, k′) ∈ L′ with k′ ≤ p(k) for

a fixed computable function p : N → N and r is

computable in time O(poly(∥I∥)). Parameter values are

usually computed based on a structural property K of

the instance, called parameter, e.g., size of a smallest

feedback vertex set, or treewidth. Usually for algorithms

we need structural representations instead of parameter

values, i.e., a feedback vertex set or tree decomposition.

Therefore, we let Γ be a finite non-empty alphabet and

call S ∈ Γ∗ a structural representation of I. Then,

a parameterization κ for parameter K is a mapping

κ : Γ∗ → N computing k = κ(S) in polynomial time.

Quantified Boolean Formulas (QBFs): Boolean

formulas are defined in the usual way [45], [46]; literals

are variables or their negations. We let the sign of a

literal l be defined by sgn(l) := 1 if l is a variable

and sgn(l) := 0 otherwise. For a Boolean formula F ,

we denote by var(F ) the set of variables of F . Logical

operators →,∧,∨,¬ refer to implication, conjunction,

disjunction, and negation, respectively, as in the usual
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Fig. 2: (Left): Runtime bounds for QSAT on a QBF Q when parameterized by parameters listed in prefix and

matrix. The triangles ▲ refer to established precise upper bounds and ▼ to precise lower bounds. By ▽ and △ we

refer to previously known precise upper and lower bounds. The box ■ illustrates new fixed-parameter tractability

results. The parameters are as follows: “qd” refers to the quantifier depth; “fvs” indicates the feedback vertex

number; “tdp” indicates the treedepth; “fes”refers to the feedback edge number; and “dels” refers to the size+c for a

c-deletion set. Our lower bounds are actually stronger and still hold for parameters when restricted to variables

of the innermost quantifier block (see Appendix X). The runtime bounds are abbreviated by the marks where ℓ
refers to the prefix and k to the parameterization of the matrix. Detailed results: †: tow(ℓ, O(k)) · poly(|var(Q)|);
‡: tow(ℓ, o(k)) · poly(|var(Q)|); ∼‡: tow(ℓ, o(k − ℓ)) · poly(|var(Q)|) †2 : 22
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· poly(|var(Q)|), for constant m:
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· poly(|var(Q)|); ‡2 : 22
o(k)

· poly(|var(Q)|); and A: ∃ odd/∀ even. B : the lower bound already holds for 3,1-

CDNF; and C : fpt under restrictions, parameterized by |D|+c for a c-deletion set D. (Right): Structure-Aware (SAW)

reductions for compensating exponential parameter decrease by increasing the parameter’s runtime dependency.

meaning. A term or clause is a set S of literals which

is interpreted as a conjunction or disjunction of literals,

respectively.

We denote by var(S) the set of variables appearing

in S; without loss of generality we assume |S| = |var(S)|.
A Boolean formula F is in conjunctive normal form

(CNF) if F is a conjunction of clauses and F is in

disjunctive normal form (DNF) if F is a disjunction of

terms. In both cases, we identify F by its set of clauses

or terms, respectively. A Boolean formula is in d-CNF or

d-DNF if each set in F consists of at most d many literals.

Let ℓ ≥ 0 be integer. A quantified Boolean formula Q is

of the form Q.F for prefix Q = Q1V1.Q2V2. · · ·QℓVℓ,

where quantifier Qi ∈ {∀, ∃} for 1 ≤ i ≤ ℓ and

Qj ̸= Qj+1 for 1 ≤ j ≤ ℓ − 1; and where Vi

are disjoint, non-empty sets of Boolean variables with

var(Q) := var(F ) =
⋃ℓ

i=1 Vi; and F is a Boolean

formula. If F is in (c-)CNF, Q is a (c-)CQBF. We call ℓ
the quantifier depth of Q and let matr(Q) := F . Further,

we denote the variables of Q by var(Q) := var(F )
and the existential (universal) variables by var∃(Q)
(var∀(Q)), defined by var∃(Q) :=

⋃

1≤i≤ℓ,Qi=∃ Vi

(var∀(Q) :=
⋃

1≤i≤ℓ,Qi=∀ Vi), respectively.

An assignment is a mapping α : X → {0, 1} from a

set X of variables. Given a Boolean formula F and an

assignment α for var(F ). Then, for F in CNF, F [α] is

a Boolean formula obtained by removing every c ∈ F
with x ∈ c and ¬x ∈ c if α(x) = 1 and α(x) = 0,

respectively, and by removing from every remaining

clause c ∈ F literals x and ¬x with α(x) = 0 and α(x) =
1, respectively. Analogously, for F in DNF values 0 and 1
are swapped. For a given QBF Q and an assignment α,

Q[α] is a QBF obtained from Q, where variables x
mapped by α are removed from preceding quantifiers

accordingly, and matr(Q[α]) = (matr(Q))[α].

A Boolean formula F evaluates to true (or is satis-

fied) if there exists an assignment α for var(F ) such

that F [α] = ∅ if F is in CNF or F [α] = {∅} if F is in

DNF. We say that then α satisfies F or α is a satisfying

assignment of F . A QBF Q evaluates to true (or is valid)

if ℓ = 0 and matr(Q) evaluates to true under the empty

assignment. Otherwise, i.e., if ℓ ̸= 0, we distinguish

according to Q1. If Q1 = ∃, then Q evaluates to true if

and only if there exists an assignment α : V1 → {0, 1}
such that Q[α] evaluates to true. If Q1 = ∀, then Q
evaluates to true if for any assignment α : V1 → {0, 1},

we have that Q[α] evaluates to true. We say that two QBFs

are equivalent if one evaluates to true whenever the other

does. Given a (C)QBF Q, the evaluation problem QSAT

(CQSAT) of QBFs asks whether Q evaluates to true.

Then, SAT is QSAT, but restricted to one ∃ quantifier. In

general, QSAT is PSPACE-complete [46], [14], [39].



Example II.1. Consider CQBF Q = ∀a, b.∃c, d.C,

where C := {c1, c2, c3, c4} is a conjunction of clauses,

with c1 := ¬a∨¬b∨c, c2 := a∨b∨c, c3 := ¬a∨¬c∨d,

and c4 := a ∨ ¬c ∨ ¬d. Note that Q[α] is valid under

any α : {a, b} → {0, 1}, which can be shown by giving

an assignment β : {c, d} → {0, 1} for an arbitrary α.

Concretely, let β(c) := 1 whenever α(a) = α(b)
and β(c) := 0 otherwise. Further, β(d) := 1 when-

ever α(a) = α(b) = 1 and β(d) := 0 otherwise.

Indeed, for any such α, we have that C[α][β] = ∅
and D[α][β] = {∅}. Consider, e.g., α = {a 7→ 0, b 7→ 1},

satisfying c1, c2 and c3; then c4 is satisfied by β. ■

Extended Normalizations of the Matrix—Formulas

in CDNF: Our investigations also consider a natural

and more general conjunctive/disjunctive normal form

(CDNF) for QBFs. A QBF Q, whose innermost quantifier

is Qℓ, is in CDNF, whenever for a CNF C and DNF D,

we have matr(Q) = C∧D if Qℓ=∃, and matr(Q) =
D∨C if Qℓ=∀. Naturally, we say that Q is in d-CDNF

if C is in d-CNF and D is in d-DNF. Further, Q is in

d,1-CDNF if C is in d-CNF and D is in 1-DNF (i.e., D
is a long clause interpreted as a disjunction of singleton

terms). Then, the problem QSATℓ refers to QSAT when

restricted to QBFs in CDNF and quantifier depth ℓ.

Graph Representations: In order to apply graph

parameters to (Quantified) Boolean formulas, we need a

graph representation. For a Boolean formula F in CNF or

DNF we define the primal graph GF :=(var(F ), E) [18]

over the variables of F , where two variables are adjoined

by an edge, whenever they appear together in at least one

clause or term of F , i.e., E := {{x, y} | f ∈ F, {x, y} ⊆
var(f), x ̸=y}. The incidence graph IF :=(var(F ) ∪
F,E′) of F is over the variables and clauses (or terms)

of F and E′ := {{f, x} | f ∈ F, x ∈ var(f)}. For a

QBF Q in CDNF with matr(Q) = C∧D or matr(Q) =
D∨C, respectively, let the primal graph of Q be GQ :=
GC⊔GD and the incidence graph of Q be IQ := IC⊔ID.

Example II.2. Recall Q and C = matr(Q) from Exam-

ple II.1; observe primal and incidence graphs GQ, IQ in

Figure 3 (left,middle). Assume a QBF Q′ in CDNF ob-

tained from Q, where matr(Q′) := C∧D with D being a

disjunction of (singleton) terms, i.e., D := {{b}, {¬d}}.

Note that by definition the (1-)DNF formula D does not

cause an additional edge in the primal graph GQ′ , i.e., the

graph is equivalent to the primal graph GC without D.

So, GQ coincides with primal graph GQ′ ; in general, for

any QBF Q in CDNF, GQ = GQ̄, using inverse Q. ■

Treewidth and Pathwidth: Let G = (V,E) be a

graph. A tree decomposition (TD) [47], [48] of graph G
is a pair T = (T, χ) where T is a tree, and χ is a

mapping that assigns to each node t of T a set χ(t) ⊆ V ,

called a bag, such that the following conditions hold:

a d

b c

a c b

dc1 c2 c3 c4

b a c d

Fig. 3: (Left): Primal graph representation GQ of the

QBF Q of Example II.1. (Middle): Incidence graph IQ
of QBF Q. (Right): Treedepth decomposition of GQ.

Fig. 4: Disjoint paths (left); half-ladder graph (middle);

and caterpillar graph (right).

(i) V =
⋃

t of T χ(t) and E ⊆
⋃

t of T {{u, v} | u, v ∈
χ(t)}; and (ii) for each q, s, t, such that s lies on the

path from q to t, we have χ(q) ∩ χ(t) ⊆ χ(s). Then,

width(T ) := maxt of T |χ(t)| − 1. The treewidth tw(G)
of G is the minimum width(T ) over all TDs T of G.

For QSAT, we obtain the following tractability result.

Proposition II.3 (UB for Treewidth [40]). Given any

CQBF Q of quantifier depth ℓ with k = tw(GQ). Then,

QSAT on Q can be decided in time tow(ℓ,O(k)) ·
poly(|var(Q)|).

However, it is not expected that one can significantly

improve this, since already for the weaker pathwidth

there are limits. The pathwidth pw(G) of graph G is the

minimum width over all TDs of G whose trees are paths.

Proposition II.4 (LB for Pathwidth [26]). Given any

CQBF Q of quantifier depth ℓ with k = pw(GQ).
Then, under ETH, QSAT on Q cannot be decided in

time tow(ℓ, o(k)) · poly(|var(Q)|).

Treedepth: Given a graph G = (V,E). Then, a

treedepth decomposition T = (V, F ) of G is a forest

of rooted trees, where for every edge {u, v} ∈ E we

require that u is an ancestor or descendant of v in T .

The treedepth td(G) of G is the smallest height among

every treedepth decomposition of G, cf. Figure 3 (right).

Vertex Cover Number: Given a graph G = (V,E).
Then, a set S ⊆ V of vertices is a vertex cover (of G) if

for every edge e ∈ E we have that e ∩ S ̸= ∅. Further,

we define the vertex cover number of a graph G to be the

smallest size among every vertex cover of G. Interestingly,

QSAT is tractable when parameterized by this number.

Proposition II.5 (UB for Vertex Cover Number [27]).

Given any CQBF Q of QSAT with k being the vertex

cover number of GQ. Then, the validity of Q can

be decided in time 22
O(k)

· poly(|var(Q)|) (2O(k3) ·
poly(|var(Q)|) for matr(Q) in 3-CNF).

Feedback Sets and Distance Measures: Lower bound

results for QSAT parameterized by treewidth (pathwidth)

or vertex cover number motivates other parameters.

Let G = (V,E) be a graph. Then, a set S ⊆ V of

vertices is called a feedback vertex set (FVS) of G if G−S
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Fig. 5: Graph of pathwidth 2 with FV number in O(n).

is an acyclic graph, and the feedback vertex number (of G)

refers to the smallest size among all feedback vertex sets

of G. Further, S is referred to by distance set to half-

ladder if G− S is a half-ladder (graph), consisting of

(vertex) disjoint paths such that additionally each vertex

might be adjacent to one fresh vertex. If we allow more

than one such fresh vertex, we call the graph a caterpillar,

cf. Figure 4. The smallest k = |S| among these distance

sets S is the distance (to the corresponding graph class).

We say S is a c-deletion set, for some integer c, if every

component of G−S has at most c vertices. A set D ⊆ E
is a feedback edge set (FES) for G if G−D is acyclic.

We utilize these sets S,D for a QBF Q, where

G = GQ. Then, S is sparse if for every two distinct

vertices u, v of GQ − S there is at most one clause or

term f of matr(Q) with u, v ∈ var(f).

Example II.6. Recall QBF Q from Example II.1 and

observe that the feedback vertex number is 1, e.g., {a} is a

FVS of GQ as well as a distance set to half-ladder of GQ.

However, the sparse feedback vertex number of Q is 2,

since no single vertex can be removed from GQ such that

each edge corresponds to at most one clause of matr(Q).
Set {a, c} is a sparse FVS of Q since GQ−{a, c} is

disconnected. While for GQ pathwidth is identical to the

sparse FV number, the graph of Figure 5 has pathwidth

2, but admits only a large FVS, e.g., all white nodes. ■

Inspired by related and more general works on pa-

rameter hierarchies [34], [35], we obtain a hierarchy

of parameters for QBFs: Figure 6 depicts parameters,

where a directed arc from parameter p1 to parameter p2
indicates that p1 is weaker than p2, i.e., p2 is bounded

by O(p1). Consequently, lower bounds for the weaker

(linearly smaller) parameter p1 form stronger results and

automatically carry over to the stronger parameter p2.

Example II.7. Observe that already for a CQBF Q,

the feedback vertex number kG of GQ and the feedback

vertex number kI of IQ are incomparable, cf., Figure 6. It

is easy to see that kG ≪ kI by constructing an instance

with one large clause. However, there are also cases

where kI ≫ kG: One can construct pairs of variables

where each pair appears in (at least) two clauses of

size 2, i.e., each pair is involved in a cycle in GI . Then,

kG is zero, but kI amounts to the number of pairs.

III. STRUCTURE-AWARE (SAW) REDUCTIONS

Recall the gap between runtimes for QSAT using

treewidth (pathwidth, cf., Proposition II.4) and QSAT

when parameterized by vertex cover number (see Propo-

sition II.5). Interestingly, runtime bounds for QSAT and

vertex cover number on CNFs also hold on CDNFs.

Theorem III.1 (UB for QSATℓ and Vertex Cover Number,

⋆3). There is an algorithm that, given a QBF Q in CDNF

with vertex cover number k of GQ, decides whether Q is

true in time 22
O(k)

· poly(|var(Q)|). If Q is in d-CDNF,

the algorithm runs in time 2k
O(d)

· poly(|var(Q|)).

Proof (Idea). The result can be established by enhanc-

ing a DPLL-style backtracking algorithm with formula

caching [49]. The number of subformulas of the matrix

that can be obtained by assigning variables can be

bounded by a function that is linear in the number of

variables and only exponential in the size of the vertex

cover. This upper bounds the size of the search tree.

Similarly, the known runtime result for treewidth

(Proposition II.3) carries over to CDNFs.

Theorem III.2 (UB for QSATℓ and Treewidth). Given

any QBF Q in CDNF of quantifier depth ℓ with k =
tw(GQ). Then, QSATℓ on Q can be decided in

time tow(ℓ,O(k)) · poly(|var(Q)|).

We show this result by relying on the following concept

of structure-aware reductions. These reductions will be a

key component of the constructions for the new lower

bound results of this paper. They provide a constructive

way of utilizing an actual structural representation of

the instance, thereby precisely bounding the parameter

increase (decrease) in terms of the representation.

Definition III.3 (Structure-Aware (SAW) Reduction). Let

Σ, Σ′, Γ, and Γ′ be alphabets, P ⊆ Σ∗ × N and P ′ ⊆
Σ′∗ × N parameterized problems with parameterizations

κ, κ′, and f a computable function. An f -structure-aware

reduction R from problem P to P ′ is a mapping from

Σ∗ ×Γ∗ to Σ′∗ ×Γ′∗ such that for all (I, S) ∈ Σ∗ ×Γ∗

where (I ′, S′) = R(I, S), we have that (I, κ(S)) 7→
(I ′, κ′(S′)) is a pp-reduction s.t. (i) there is a polynomial-

time function g with S′ = g(S) (functional dependency)

and (ii) κ′(S′) ≤ O(f(κ(S))) (f -boundedness).

The definition of SAW reductions serves the following

purposes. First, such a reduction always provides a

structural representation of the reduced instance, whereby

(i) the functional dependency immediately gives insights

into how such a representation can be obtained. Further,

the property (ii) f -boundedness ensures that the resulting

parameter of the reduced instance fulfills precise guaran-

tees, which will be essential for the next subsection.

To demonstrate these reductions, we briefly explain the

arcs of Figure 6. Interestingly, any of the arcs of Figure 6,

except the ones from bold-face parameters to pathwidth

or treewidth can be shown by the trivial linear-SAW

3Statements marked with a star (“⋆”) are proven in the appendix.
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Fig. 6: Parameters for QBFs of the primal graph (incidence graph) between vertex cover number and treewidth. A

directed arc indicates the source being weaker than the destination, i.e., the destination is linearly bounded by the

source. Bold-face parameters mark new lower bound results between vertex cover number and treewidth for QSATℓ.

reduction that takes a QBF Q of QSATℓ and a structural

representation S of the respective parameter and returns

(Q,S). Indeed, e.g., any vertex cover S is a distance set

to half-ladder and for any path decomposition S it holds

that it is a tree decomposition. Further, any distance set S
to outerplanar can be turned into a TD S′, since each

outerplanar graph [50] has a TD T of width at most 2
and we obtain TD S′ by adding S to every bag of T .

With these SAW reductions at hand, one can easily

establish Theorem III.2. Since the treewidth parameter

is linearly bounded by both feedback vertex size and

treedepth, we instantly obtain the following results.

Corollary III.4 (UB for QSATℓ and Feedback Vertex

Number/Treedepth). Given any QBF Q in CDNF of

quantifier depth ℓ with k being the feedback vertex

number or treedepth of GQ. Then, QSATℓ on Q can

be decided in time tow(ℓ,O(k)) · poly(|var(Q)|).

IV. LOWER BOUNDS VIA SAW REDUCTIONS

In order to establish conditional lower bounds for

parameterized problems, one might reduce from SAT

on 3-CNFs and then directly apply the widely believed

exponential time hypothesis (ETH) [33]. Indeed, many

results have been shown, where the parameter of the

reduced instance depends on the number of variables of

the Boolean formula, e.g., [51], [27], [52], immediately

followed by applying ETH. Oftentimes consequences of

the ETH are sufficient, claiming that SAT on 3-CNFs

cannot be solved in time 2o(k) · poly(n), where k is a

parameter of the instance and n is the variable number.

Having established the concept of structure-aware

(SAW) reductions, we apply this type of reductions as a

precise tool for generalizing the lower bound result of

Proposition II.4. More specifically, the next subsection

focuses on defining a self-reduction from QSAT to QSAT,

where we trade an increase of quantifier depth for an

exponential decrease in the parameter of interest. This is

done in such a way that we are able to show lower bounds

matching their upper bounds when assuming ETH.

In order to find suitable candidate parameters, recall

that for the vertex cover number k, the problem QSAT

can be solved in double-exponential runtime in k, regard-

less of quantifier depth. However for the treewidth (or

pathwidth) this is not the case, since for quantifier depth ℓ,

one requires a runtime that is ℓ-fold exponential in the

pathwidth, cf. Proposition II.4. This motivates our quest to

investigate suitable parameters that are “between” vertex

cover number and pathwidth. In Section IV-A, we show

that the (sparse) feedback vertex number is insufficient as

well, i.e., we obtain ETH-tight lower bounds that match

the upper bounds of Corollary III.4 for this parameter.

Section IV-B adapts the reduction, thereby providing

deeper insights into hardness for treedepth. Further, this

section outlines an ETH-tight lower bound for treedepth,

similar to Corollary III.4, for instances of high treewidth.

A. Tight QBF Lower Bound for Feedback Vertex Number

The overall approach proceeds via SAW reductions

as follows. We assume an instance Q of QSATℓ and a

sparse feedback vertex set S such that |S| = k. Then,

we devise a log(k)-SAW reduction R, constructing an

equivalent QBF Q′ such that Q′ has a sparse feedback

vertex set S′ of size O(log(k)).
Without loss of generality, we restrict ourselves to the

case where the innermost quantifier of the QBF Q is ∃,

as one can easily adapt for the other case or solve the

inverse problem and invert the result in constant time.

Further, we assume that the first quantifier of Q is ∃ as

well. Let Q = ∃V1.∀V2. · · · ∃Vℓ.C ∧D be such a QBF

that admits a sparse feedback vertex set S with k = |S|.
For the purpose of our lower bound, we actually prove

a stronger result in the more restricted 3,1-CDNF form,

where we assume C in 3-CNF and D in 1-DNF, i.e.,

GQ = GC as discussed in Example II.2. Finally, we

assume that each ci ∈ C consists of exactly three literals;

however, the reduction works with individual smaller

clause sizes. The reduced instance Q′ and sparse feedback

vertex set S′ of Q′ that is obtained by the SAW reduction,

uses the additional quantifier block in order to “unfold”

S′ (i.e., reconstruct an assignment of S).

Auxiliary Variables: In order to construct Q′, we re-

quire the following additional (auxiliary) variables. First,

we use pointer or index variables that are used to address

precisely one element of S. In order to address 3 elements

of S for the evaluation of a 3-CNF (3-DNF) formula,

we require three of those indices. These index variables

are of the form VarIdxs := {idx1
j , . . . , idx

⌈log(|S|)⌉
j |

1 ≤ j ≤ 3} and, intuitively, for each of the three indices

these allow us to “address” each of the k many elements



of S via a specific assignment of ⌈log(k)⌉ many Boolean

variables. These 2⌈log(k)⌉ many combinations of variables

per index j are sufficient to address any of the k elements

of S. To this end, we assign each element x ∈ S and

each 1 ≤ j ≤ 3 a set consisting of an arbitrary, but

fixed and unique combination of literals over the index

variables idx1
j , . . . , idx

⌈log(|S|)⌉
j , denoted by [[x]]j .

Further, for each clause ci ∈ C with ci = {l1, l2, l3}
we assume an arbitrary ordering among the literals

of ci and write lit(ci, j) := lj for the j-th literal

of ci (1 ≤ j ≤ 3). We also require three Boolean

variables val1, val2, val3, where valj captures a truth

(index) value for the element of S that is addressed

via the variables for the j-th index. These variables are

referred to by VarVals := {val1, val2, val3}. Finally,

we use one variable to store whether D is satisfied as

well as |C| many auxiliary variables that indicate whether

a clause c ∈ C is satisfied. These variables are addressed

by the set VarSat := {sat, sat1, . . . , sat|C|} of satisfia-

bility variables, where we assume clauses C={c1, . . . ,
c|C|} are ordered according to some fixed total ordering.

The Reduction: The reduction R takes Q and S and

constructs an instance Q′ as well as a sparse feedback

vertex set S′ of Q′. The QBF Q′ is of the form Q′ :=
∃V1. ∀V2. · · · ∃Vℓ. ∀VarIdxs ,VarVals,VarSat . C

′∨D′,
where C ′ is in DNF, defined as a disjunction of terms:

x ∧
∧

b∈[[x]]j

b ∧ ¬valj for each x ∈ S, 1 ≤ j ≤ 3 (1)

¬x ∧
∧

b∈[[x]]j

b ∧ valj for each x ∈ S, 1 ≤ j ≤ 3 (2)

sati ∧ l for each ci ∈ C, 1 ≤ j ≤ 3 with
lit(ci, j) = l, var(l) ∈ var(C) \ S (3)

sati ∧ ¬b for each ci ∈ C, 1 ≤ j ≤ 3, x ∈ S,
b ∈ [[x]]j with var(lit(ci, j)) = x (4)

sati ∧ valj for each ci ∈ C, 1 ≤ j ≤ 3, x ∈ S with
lit(ci, j) = x (5)

sati ∧ ¬valj for each ci ∈ C, 1 ≤ j ≤ 3, x ∈ S with
lit(ci, j) = ¬x (6)

sat ∧ l for each {l} ∈ D (7)

Additionally, we define D′ in 1-CNF, which is a conjunc-
tion of the following singletons.
¬sati for each 1 ≤ i ≤ |C| (8)

¬sat (9)

Observe that the fresh auxiliary variables appear under

the innermost universal quantifier of Q′. So, intuitively,

Formulas (1) ensure that whenever some x ∈ S is set

to 1 and the j-th index targets x, that we then “skip”

the corresponding assignment if valj is set to 0. This is

similar to Formulas (2) for the case x ∈ S is set to false,

ensuring that for the remaining formulas of Q′ whenever

the j-th index targets some x ∈ S, the corresponding

value valj agrees with the implicit assignment of x.

Formulas (3)–(6) are used to check that the clauses ci ∈
C are satisfied. Intuitively, the variables sati serve

as switches that require clause ci to be satisfied if

set to true. Formulas (3) ensure that ci is satisfied

whenever a literal l ∈ ci, whose variable var(l) is

not in S, is assigned true. For literals l ∈ ci whose

variables var(l) are in S, Formulas (4) evaluate to true if

the corresponding j-th index (j such that l = lit(ci, j))
does not target var(l), or one of Formulas (5) and (6)

is true if the targeted literal is true. Finally, one of

Formulas (7) evaluates to true if D is true, similarly to

Formulas (3). Observe that since the VarSat variables are

universally quantified, multiple sati variables might be set

to true. Intuitively, this makes it “easier” to satisfy some

term among Formulas (3)–(7), since it is sufficient for

one of the clauses ci to be satisfied. The only problematic

assignment of VarSat variables is the one where both sat
as well as all the sati variables are set to false. This is

prevented by 1-CNF formula D′, i.e., Formulas (8),(9).

Example XI.1 (⋆) illustrates R on a specific formula.
Structure-Awareness: Besides Q′, reduction R

above further gives rise to the sparse feedback vertex

set of Q′ defined by S′ := VarIdxs ∪VarVals ∪ {sat}.

Indeed, the size of S′ compared to |S| is exponentially

smaller and therefore R is indeed a structure-aware

reduction. The reduction and the relations between Q
and Q′, as well as S and S′ are visualized in Figure 7.

Formally, we obtain the following result stating that R is

indeed a SAW reduction for sparse feedback vertex sets.

Lemma IV.1 (Decrease Feedback Vertex Number, ⋆).

Given QBF Q in 3,1-CDNF and a sparse feedback vertex

set S of Q, R constructs QBF Q′ with sparse feedback

vertex set S′ of Q′ such that |S′| is in O(log(|S|)).

Towards 3-DNF of C ′: Observe that the formula C ′

generated by the reduction R is almost in 3-DNF. The

only formulas that are not already in the required format

are Formulas (1) and (2). It is easy to observe that,

however, even those formulas can be transformed such

that only at most 3 literals per term are used. To this end,

one needs to introduce additional auxiliary variables (that

are added to the innermost ∀ quantifier). Indeed, a straight-

forward transformation recursively splits Formulas (1)

and (2) into two terms, where the first term consists of

two literals and a new auxiliary variable v that is added

(positively), and the second term consists of the remaining

literals of the term and ¬v. In turn, each term has at

most two new auxiliary variables and one only needs

to take care that the resulting term that contains x ∈ S
or ¬x ∈ S does not use two of these auxiliary variables

(preventing cycles in the resulting primal graph).
Runtime and Correctness: Next, we show runtime

and correctness of R, followed by main results.

Theorem IV.2 (Runtime, ⋆). For a QBF Q in 3,1-CDNF

with matr(Q) = C ∧D and set S ⊆ var(Q) of variables

of Q, R runs in time O(⌈log(|S|+1)⌉·(|S|+ |C|)+ |D|).
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Fig. 7: Structure-aware reduction R for some QBF Q; dashed lines show potentially dense graph parts. (Left): A
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illustration depicts three different kind of clauses of matr(Q): type (i) using only variables in S, like sat8; type (ii):

using two variables in S, like sat1, sat2, and type (iii) using only one variable in S, like sat3, sat4, sat5, sat6, sat7.

Theorem IV.3 (Correctness, ⋆). Given a QBF Q in

3,1-CDNF and a set S ⊆ var(Q) of variables of Q,

reduction R computes an instance Q′ that is equivalent

to Q. In fact, any assignment α to variables of matr(Q)
satisfies matr(Q) iff every extension α′ of α to vari-

ables VarIdxs ∪VarVals ∪VarSat satisfies matr(Q′).

QSAT is well known to be polynomial-time tractable

when restricted to 2-CNF formulas [53]. As an application

of our reduction R, we now observe that allowing a single

clause of arbitrary length already leads to intractability.

Corollary IV.4 (⋆). Problem QSAT over a QBF Q=Q1V1

· · ·QℓVℓ.C∧D of quantifier depth ℓ ≥ 2 with Qℓ = ∃, C
being in 2-CNF, and D being in 1-DNF, is ΣP

ℓ−1-complete

(if Q1 = ∃, ℓ odd) and ΠP
ℓ−1-complete (if Q1 = ∀, ℓ even).

A similar result can be obtained with long terms when

the innermost quantifier is universal.

Lower Bound Result: Having established structure-

awareness, runtime, as well as correctness of the reduc-

tion R above, we proceed with the lower bound results.

Theorem IV.5 (LB for Sparse Feedback Vertex Set, ⋆).

Given an arbitrary QBF Q in CDNF of quantifier depth ℓ
and a minimum sparse feedback vertex set S of Q
with k = |S|. Then, under ETH, QSATℓ on Q cannot be

decided in time tow(ℓ, o(k)) · poly(|var(Q)|).

As a consequence, we obtain the following result.

Corollary IV.6 (LB for Incidence Feedback Vertex Set, ⋆).

Given an arbitrary QBF Q with F = matr(Q) in CNF

(DNF) such that the innermost quantifier Qℓ of Q is

Qℓ = ∃ (Qℓ = ∀) with the feedback vertex number

of IF being k. Then, under ETH, QSATℓ on Q cannot

be decided in time tow(ℓ, o(k)) · poly(|var(Q)|).

The lower bound for the (sparse) feedback vertex

number carries over to even more restrictive parameters,

see Appendix X. Further, the lower bound holds still

holds when restricting feedback vertex sets to variables

of the innermost quantifier block, see Corollary X.3.

B. Hardness Insights & New Lower Bounds for Treedepth

So far, we discussed in Section IV-A why Corol-

lary III.4 cannot be significantly improved for feedback

vertex number. In this section, we provide a hardness

result in the form of a conditional lower bound for the

parameter treedepth. Notably, our approach for treedepth

also involves a SAW reduction, where it turns out that we

can even reuse major parts of reduction R as defined by

Formulas (1)–(9). Let Q = ∃V1.∀V2. · · · ∃Vℓ.C ∧D be a

QBF in CDNF and T be a treedepth decomposition of GQ

that consists of a path S of height h, where each element

of the path might be connected to a tree of constant height.

The result of applying R on Q and S is visualized in

Figure 8. The final normalization step (from DNF to

3-DNF) results in multiple paths of length O(log(h))
due to additional auxiliary variables when normalizing

Formulas (1) and (2). These paths do not increase the size

of a sparse feedback vertex set and could previously be

ignored. But reducing the treedepth requires compressing

each of these paths, and so we must turn the reduction

R that takes a single set S as an argument into a SAW

reduction Rtd dealing with multiple paths simultaneously.

Formal details of Rtd are given in Appendix XI-B.

Using Rtd, we obtain the following lower bound for

treedepth k, which yields an ETH-tight lower bound if

k ∈ O(ℓ) for quantifier depth ℓ, see Corollary III.4.

Theorem IV.7 (LB for Treedepth Decompositions, ⋆).

Given an arbitrary QBF Q in CDNF of quantifier depth ℓ
and a treedepth decomposition T of GQ of height k =
td(GQ). Then, under ETH, QSATℓ on Q cannot be

decided in time tow(ℓ, o(k − ℓ)) · poly(|var(Q)|).

We show that this result still implies a hierarchy of

runtimes under ETH, where the tower height depends

linearly on the quantifier depth of the QBF.

Corollary IV.8 (LB for Treedepth, ⋆). Given a QBF Q
in 3,1-CDNF of quantifier depth ℓ such that k = td(GQ).
Under ETH there exists ℓ′ ∈ Θ(ℓ) such that QSATℓ on Q
cannot be decided in time tow(ℓ′, o(k)) · poly(|var(Q)|).
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Corollary IV.9 (LB for Incidence Treedepth, ⋆). Given

a QBF Q with F = matr(Q) in CNF (DNF) such that

the innermost quantifier Qℓ of Q is Qℓ = ∃ (Qℓ = ∀)

and k = td(IQ). Then, under ETH, QSATℓ on Q cannot

be decided in time tow(ℓ, o(k − ℓ)) · poly(|var(Q)|).

Note that this corollary immediately yields a result similar

to Corollary IV.8 for the incidence graph. Further, similar

to consequences of the previous section, see Appendix X,

we can obtain stronger results by restricting treedepth

decompositions to variables of the innermost quantifier.

V. ALGORITHMS USING VERTEX COVER AND FES

Our results from the previous section already provide

a rather comprehensive picture of the (fine-grained)

parameterized complexity of CQSAT, when considering

many of the most prominent structural parameters on

the incidence graph. In particular, they rule our fixed-

parameter tractability of treedepth and feedback vertex

set. In this section, we will complement this picture for

the incidence graph by giving fpt-algorithms for CQSAT

parameterized by the vertex cover number as well as the

feedback edge set number. We start with our algorithm for

the vertex cover number, which essentially follows from

the simple observation that formulas with a small vertex

cover number cannot have too many distinct clauses

together with the well-known result that CQSAT is fpt

parameterized by the number of clauses [54].

Theorem V.1 (⋆). Given any CQBF Q of QSAT with k
being the vertex cover number of IQ. Then, the validity

of Q can be decided in time 1.7093
k

· poly(|var(Q)|).

Note that tractability for the vertex cover number of the

incidence graph does not immediately carry over to the

primal graph and therefore neither Proposition II.5 nor

Theorem III.1 are a direct consequence of Theorem V.1;

indeed a small vertex cover number of the primal graph

still allows for an arbitrary number of distinct clauses.

We are now ready to provide our algorithm for the feed-

back edge number of the incidence graph. Interestingly

and in contrast to vertex cover number, the parameterized

complexity of CQSAT for the feedback edge number has

been open even for the primal graph. While the FEN

of the primal graph and the incidence graph are again

orthogonal parameters (consider, e.g., two variables that

occur together in more than one clause), we will show

that the algorithm for the incidence graph can essentially

be obtained using the techniques developed for the primal

graph. We will therefore start by giving our result for the

FEN of the primal graph, which also constitutes the main

technical contribution of this section. We establish the

result by proving existance of a kernelization algorithm.

Theorem V.2 (⋆). Let Q be a CQBF. In polynomial

time, we can construct an equivalent CQBF with at most

12k−8 variables and at most 10k−9+3⌊(
√
24k+1+1)/2⌋

clauses, where k is the feedback edge number of GQ.

The main ideas behind the kernelization are as follows.

Given Q, we first compute a smallest FES D of primal

graph G=GQ in polynomial time. Then, graph H=G−D
is a (spanning) forest of G. We introduce a series of

reduction rules that allow us to reduce the size of Q
and H . We start by observing that we can remove unit

clauses, i.e., clauses containing only one literal, and pure

literals, i.e., variables that either only occur positively or

only negatively in Q. We then consider clean edges of H ,

i.e., edges that do not appear in any triangle of G. Note

that all but at most 2 · |D| edges of H are clean, because

every edge of H that is not incident to any edge in D is

necessarily clean. Crucially, endpoints of a clean edge

can only occur together in clauses of size at most 2. This

property allows us to simplify formula Q significantly

(using three reduction rules, whose correctness follows

by using Hintikka strategies [55]) s.t. we can assume the

endpoints of every clean edge are contained in exactly

one clause of Q. This allows us to introduce a simple

reduction rule for removing every leaf of H that is not an

endpoint of an edge in D. Then, in the reduced instance,

H has at most 2·|D| leaves and therefore at most 2·|D|−2
vertices of degree (number of adjacent vertices) larger

than 2. Our last reduction rule, which is involved and

based on Hintikka strategies, allows us to reduce degree 2

vertices in H by showing that any maximal (clean) path

of degree 2 vertices in H must contain a variable (the



innermost variable), that can be “removed”. This shows

that the size of H and therefore also G is bounded, which

in turn allows us to obtain a bound for Q.

From Theorem V.2, we know that we can brute-force

on the kernel (output) after preprocessing. Immediately,

we obtain a single-exponential fpt algorithm for CQSAT.

Corollary V.3. CQSAT is fpt parameterized by the

feedback edge number of the primal graph.

Interestingly, our kernelization even provides a linear

kernel, i.e., the size of the kernel depends only linearly

on the parameter, if we restrict ourselves to c-CQBFs.

Corollary V.4. Let c be an integer; Q be a c-CQBF. In

polynomial time, we obtain an equivalent c-CQBF with

at most 12k− 8 variables and 10k− 9+3k (3c/
(

c
2

)

)
clauses, s.t. k is the size of a smallest FES of GQ.

Similarly, we can show the existance of a smaller kernel

for the feedback edge number of the incidence graph.

Theorem V.5 (⋆). Let Q be a CQBF with feedback edge

number k of IQ. In polynomial time, we can construct an

equivalent CQBF with ≤ 24k−17 variables and clauses.

VI. TRACTABILTY FOR CQSAT ON PRIMAL GRAPHS

Above, our results draw a comprehensive picture of the

fine-grained complexity of CQSAT with respect to the

incidence graph. However, when considering the primal

graph there is a gap between the tractability for vertex

cover number and feedback edge number and the known

intractability for treewidth. To address this, one may

ask what is the complexity of CQSAT with respect to

parameters feedback vertex number and treedepth? We

progress towards resolving the question for treedepth,

which is not only completely open, but existing techniques

do not even allow us to solve the problem for significant

restrictions of treedepth. Such a parameter is c-deletion

set, i.e., deletion distance to components of size at most c,

which is well-known to be inbetween vertex cover number

and treedepth, see related work on vertex integrity [56].

We provide three novel algorithms, each representing

a step towards generalizing the tractability of CQSAT

for vertex cover number. Each uses a different approach

providing new insights that are promising for treedepth.

First, we show that different variants of c-deletion sets

can be efficiently computed, which we achieve by the

following proposition. Let P(Q,D, c) be any property

that can be true or false for a CQBF Q and c-deletion

set D of Q. We say P is efficiently computable if there

is an algorithm that given Q, D, and c decides whether

P(Q,D, c) holds in fpt-time parameterized by |D|+ c.

Proposition VI.1 (⋆). Let P be any efficiently computable

property and let Q be a CQBF. Then, computing a

smallest c-deletion set D of Q that satisfies P(Q,D, c)
is fixed-parameter tractable parameterized by |D|+ c.

We can eliminate all universal variables in a c-deletion

set D of a CQBF without losing the structure of the

formula, i.e., we obtain a formula, which is not too large

and still has a 2cc-deletion set of size at most 2cc.

Proposition VI.2 (⋆). Let Q be a CQBF and let D be

a c-deletion set for Q. Then, in time O(2u∥Q∥), where

u = |D ∩ var∀(Q)|, we can construct an equivalent

CQBF Q′ and a set D′ ⊆ var∃(Q′) with |D′| ≤ 2u|D|
s.t. D′ is a 2uc-deletion set for Q′.

A. Components of Type ∃≤1∀

CQSAT is fpt parameterized by the size of a c-deletion

set into components of the form ∃≤1∀, i.e., components

have at most one existential variable occurring before all

its (arbitrarily many) universal variables in the prefix.

Theorem VI.3. CQSAT is fixed-parameter tractable

parameterized by k+ c, where k is the size of a smallest

c-deletion set into components of the form ∃≤1∀.

This generalizes fixed-parameter tractability of CQSAT

parameterized by vertex cover, since every component can

have arbitrary many variables as well as one quantifier

alternation, as opposed to containing only one variable.

Checking whether every component is of the form

∃≤1∀ can be achieved in polynomial time. Since we can

compute a smallest c-deletion set into components of the

form ∃≤1∀ in fpt-time parameterized by its size plus c
due to Proposition VI.1, it suffices to show the following.

Theorem VI.4 (⋆). Let Q be a CQBF and D ⊆ var(Q)
be a c-deletion set for Q into components of the form

∃≤1∀. Then, deciding Q is fpt parameterized by |D|+ c.

The main ingredient for the proof of Theorem VI.4

is Lemma XIII.3 (⋆). It allows us to remove all but at

most 2c components of every component type. Together

with bounding the number of component types, we reduce

Q to a bounded-size formula that we brute-force.

B. Single-Variable Deletion Sets

Next, we consider deletion sets that consist only of a

single variable e, but where the quantifier prefix restricted

to variables occurring in a component can have an

arbitrary shape. Without loss of generality we assume e is

existentially quantified and innermost (quantifier prefix).

We show this by an evaluation game where a universal

player and an existential player take turns assigning

their respective variables, in the order of the quantifier

prefix. The universal player seeks to assign such that

no assignment of e is left for the existential player to

satisfy all clauses. If universal has a strategy ensuring

some assignment of e cannot be played by existential,

we say the strategy forbids this assignment. The QBF is

false if and only if universal can forbid both assignments.

Since components do not share universal variables,

the universal strategy can be decomposed into strategies



played in the individual components. If there are distinct

components where universal can forbid assignments

e 7→ 0 and e 7→ 1, respectively, corresponding strategies

can be composed into a universal winning strategy. An

interesting case arises if there is a single component

where universal must choose an assignment to forbid,

and existential must similarly choose which assignment to

play in remaining components. Universal wins if and only

if the latest point, that is the innermost variable, where

they can forbid, comes after the latest point where exis-

tential can choose (play). A formal development of these

intuitions leads to the following (see Appendix XIII-B).

Theorem VI.5 (⋆). Let Q be a CQBF with a c-deletion

set of size 1. Deciding Q is fpt parameterized by c.

C. Formulas with Many Components of Each Type

Let Q be a CQBF and let D ⊆ var(Q) be a c-
deletion set for Q. Moreover, let Q′ and D′ be the

CQBF and 2cc-deletion set of Q′ of size at most 2c|D|
obtained after eliminating all universal variables in D
using Proposition VI.2. We say D′ is universally complete

if every component type of Q′ consists of at least 2|D
′|

components. We show CQSAT to be fpt parameterized by

the size of a smallest universally complete c-deletion set.

Theorem VI.6. CQSAT is fpt by k + c, where k is the

size of a smallest universally complete c-deletion set.

This result is surprising and counter-intuitive at first,

as it seems to indicate that deciding a large CQBF Q
(with many components of each type) is simple, while

we do not know whether this holds for sub-formulas of

Q. However, we show that many components of the same

type allows the universal player to play all possible local

counter-strategies for each type. This makes the relative

ordering of various components in the prefix irrelevant.

Note that deciding whether a given c-deletion set is

universally complete is an efficiently computable property

due to Proposition VI.2. This implies that we can compute

a smallest universally complete c-deletion set in fpt-time

parameterized by its size plus c by Proposition VI.1.

So, to show Theorem VI.6, we assume we are given

a smallest universally complete c-deletion set D for Q.

Moreover, by Proposition VI.2, we can assume we are

given the corresponding Q′ and D′. It suffices to show:

Theorem VI.7 (⋆). Let Q be a CQBF and let D ⊆
var∃(Q) be a universally complete c-deletion set for Q.

Then deciding Q is fpt parameterized by |D|+ c.

VII. CONCLUSION

We consider evaluating quantified Boolean formulas

(QSAT) under structural restrictions. While the classical

complexity and the parameters treewidth and vertex

cover number are well understood on primal graphs, we

address the incidence graph and the gap between both

parameters. We provide new upper and lower bounds and

establish a comprehensive complexity-theoretic picture

for QSAT concerning the most fundamental graph-

structural parameters of this graph. We thereby sharpen

the boundaries between parameters where one can drop

the quantifier depth in the parameterization and those

where one cannot, providing a nearly-complete picture of

parameters of the incidence graph, cf., Figure 1. We show

lower bounds for feedback vertex number and treedepth

by designing structure-aware (SAW) reductions. We then

complement known upper bounds for vertex cover number

by tractability (fpt) results for feedback edge number.

Despite this paper closing many gaps and providing

deeper insights into the hardness of QSAT for structural

parameters, it does not fully settle QSAT for parameters

of the primal graph. A single clause makes the difference:

if we omit edges induced by one clause, our lower bounds

for feedback vertex number and treedepth carry over, as

indicated in Figure 2 (left). As a first step towards filling

this gap and analyzing treedepth of the primal graph, we

establish fpt for variants of the deletion set parameter.

Techniques: While the ideas behind structure-aware

(SAW) reductions have been implicitly used in limited

contexts, e.g., [26], we formalize and fully develop the

technique. We establish a template to design specific self-

reductions from QSAT to QSAT when we are interested

in precise lower bounds under the exponential time

hypothesis (ETH) for various parameters. As illustrated

in Figure 2 (right), SAW reductions allow us to trade

an exponential decrease (log in the exponent) of one pa-

rameter for an exponential increase (increasing the tower

height) of runtime dependency on a second parameter.

Future Work: Our analysis opens up several interesting

questions: Is QSAT on CNFs fpt parameterized by either

the feedback vertex number or the treedepth of the primal

graph? We have indications for both possible outcomes.

(N) Our lower bounds are close since allowing merely

one additional clause yields intractability for treedepth

and feedback vertex number. This points toward hardness,

and our SAW-reductions might provide a good starting

point to understand and obtain intractability for one or

both parameters on the primal graph. (Y) The algorithmic

techniques we developed for variants of the c-deletion set,

point in the other direction may serve as the underpinning

for an fpt result. While our lower bounds for feedback

vertex number of the incidence graph are tight under

ETH, this is open for treedepth. Besides, lower bounds

under SETH might be interesting. A further question is

whether our techniques carry over to DQBF [57] and

QCSP. Finally, we expect SAW reductions to be a useful

tool for problems within the polynomial hierarchy. Indeed,

many problems of practical interest would benefit from

precise bounds; see, e.g., [16], [26]. Some are highly

relevant in other communities, e.g., explainability [58].
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