
            

PAPER • OPEN ACCESS

Emerging D massive graviton in graphene-like
systems
To cite this article: Patricio Salgado-Rebolledo and Jiannis K Pachos 2023 New J. Phys. 25 033019

 

View the article online for updates and enhancements.

You may also like
Effects of large-scale changes in
environmental factors on the genesis of
Arctic extreme cyclones
Yujun Liu and Yijun He

-

Coding for climate: sourcing better climate-
health data from medical billing
Stefan Wheat, Emily Sbiroli, Marie Dunn et
al.

-

HCOO-
aq Degradation in Droplets by OHaq

in an Atmospheric Pressure Glow
Discharge
Mackenzie Meyer, Gaurav Nayak, Peter
Bruggeman et al.

-

This content was downloaded from IP address 84.66.137.245 on 26/04/2023 at 10:20

https://doi.org/10.1088/1367-2630/acc124
/article/10.1088/1748-9326/acc2d5
/article/10.1088/1748-9326/acc2d5
/article/10.1088/1748-9326/acc2d5
/article/10.1088/2752-5309/acc887
/article/10.1088/2752-5309/acc887
/article/10.1088/1361-6463/acc958
/article/10.1088/1361-6463/acc958
/article/10.1088/1361-6463/acc958
/article/10.1088/1361-6463/acc958
/article/10.1088/1361-6463/acc958


New J. Phys. 25 (2023) 033019 https://doi.org/10.1088/1367-2630/acc124

OPEN ACCESS

RECEIVED

14 September 2022

REVISED

2 February 2023

ACCEPTED FOR PUBLICATION

3 March 2023

PUBLISHED

20 March 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Emerging (2+ 1)D massive graviton in graphene-like systems
Patricio Salgado-Rebolledo1,2,∗ and Jiannis K Pachos3
1 Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels, Belgium
2 Institute of Theoretical Physics, Wrocław University of Science and Technology, Wrocław 50-370, Poland
3 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: patricio.salgado-rebolledo@pwr.edu.pl

Keywords: quantum simulation, optical lattice simulation, three-dimensional gravity, massive gravitons, fermion fields in curved space

Abstract
Unlike the fundamental forces of the Standard Model the quantum effects of gravity are still
experimentally inaccessible. Rather surprisingly quantum aspects of gravity, such as massive
gravitons, can emerge in experiments with fractional quantum Hall liquids. These liquids are
analytically intractable and thus offer limited insight into the mechanism that gives rise to
quantum gravity effects. To thoroughly understand this mechanism we employ a graphene-like
system and we modify it appropriately in order to realise simple (2+ 1)-dimensional massive
gravity model. More concretely, we employ (2+ 1)-dimensional Dirac fermions, emerging in the
continuous limit of a fermionic honeycomb lattice, coupled to massive gravitons, simulated by
bosonic modes positioned at the links of the lattice. The quantum character of gravity can be
determined directly by measuring the correlations on the bosonic atoms or by the interactions they
effectively induce on the fermions. The similarity of our approach to current optical lattice
configurations suggests that quantum signatures of gravity can be simulated in the laboratory in
the near future, thus providing a platform to address question on the unification theories,
cosmology or the physics of black holes.

1. Introduction

An important open question in physics is that of observing quantum aspects of gravity. The coupling of
gravity with matter is so weak that large, macroscopic masses are needed in order to generate an effect.
Nevertheless, quantum effects are dominant in microscopic scales where gravity is negligible, thus, making
quantum effects of gravity to be well beyond the reach of our current technology. This lack of any
experimental evidence impedes our understanding of gravity at a fundamental level. For example, several
often conflicting proposals exist for the quantisation of spacetime. Meanwhile, the (3+ 1)-dimensional
graviton, the quantum particle that mediates gravity, is unrenormalisable, suffering from infinities in the
theoretical level that cannot be removed. A possible way forward is to turn to condensed matter systems
where gravitational effects could emerge at an effective level. As the couplings of such systems can be
arbitrarily tuned then it would be possible to amplify the effect of geometric fluctuations in the simulated
system and provide measurable signatures in proposed experiments.

The last decade has seen an increased interest in the geometric interpretation of condensed matter
systems that emulate classical or quantum gravity effects. An interesting example is the emergence of massive
gravitons in the 3He-B superfluid [1], where gravity emerges from fermionic bilinears after symmetry
breaking, in analogy with the massless emergent gravitational field proposed by Diakonov to construct a
lattice-regularized quantum gravity theory [2]. Furthermore, of prominent interest is the exciting discovery
that fractional quantum Hall liquids have collective excitations that are an analogue of gravitons. In
particular, it has been demonstrated that the long wavelength limit of the Girvin-MacDonald-Platzman
mode of the fractional quantum Hall effect [3, 4], also known as themagnetoroton, is properly described as a
massive graviton excitation [5–7], which has been experimentally observed [8, 9]. Nevertheless, fractional
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quantum Hall liquids are strongly interacting and thus analytically intractable. This intractability
significantly limits our understanding of the mechanism responsible for the emergence of quantum gravity.

An alternative route is to engineer a system that effectively simulates quantum signatures of gravity. Such
quantum simulations enable the realisation of a wide range of coupling regimes, thus enhancing properties
that might be otherwise experimentally inaccessible. As an example, recent experimental advances in
simulating quantum gauge theories offer insights into mechanisms that are not yet fully understood, like
quark confinement [10]. Several platforms exist where classical gravity emerges. For example, it is possible to
produce non-trivial extrinsic geometry by deforming the shape of graphene-like systems [11, 12] or to create
tunnelling coupling inhomogeneities that generate intrinsic geometries [13, 14]. Unfortunately, simulations
of quantum gravity have not been achieved so far. Roadblocks exist at the conceptual level, such as in
realising quantum fluctuations of spacetime, as well as at the practical level, such as in engineering the
complex self-interactions present in gravitational theories.

To resolve these problems we employ a simple and modular graphene-like system that can be analytically
shown to give rise to massive gravitons in its low energy limit. In particular, we emulate Dirac fermions
coupled to massive gravitons described by the Fierz–Pauli theory in 2+1 dimensions, which is known to
posses two propagating degrees of freedom of helicity±2. To identify the right architecture we first consider
the realisation of the Dirac field. We employ a two-dimensional honeycomb lattice configuration that
describes (2+ 1)-dimensional Dirac fermions in its low energy limit. An effective background metric can be
encoded in the couplings of the fermion lattice by making them position dependent [14]. Unlike extrinsically
encoded geometry, which is hard to fluctuate, the intrinsically encoded one can be fluctuated by controlling
the couplings of the model through auxiliary quantum fields [15]. In our system we employ bosonic modes
positioned at the links of the lattice to induce fluctuations of the gravitational field. These modes are coupled
to the fermionic ones and are subject to density-density self-interactions in a particular way that gives rise to
a semiclassical expansion of (2+ 1)-dimensional massive gravitons coupled to Dirac fermions.

In recent years, 2+ 1 dimensions have attracted great attention since they provide tractable models for
gravity. Unlike (3+ 1)-dimensional gravity, pure (2+ 1)-dimensional Einstein gravity has no local
propagating degrees of freedom and can be reformulated as a Chern–Simons theory [16, 17] with boundary
degrees of freedom given in terms of two-dimensional conformal field theories [18–21]. A mass term in the
Einstein–Hilbert action introduces local gravitational degrees of freedom that imprint their effects on the
local properties of the Dirac fermions. In higher dimensions, adding a mass for the graviton has been
considered as a possibility to resolve the cosmological constant problem, as well as in the construction of
theories for dark matter [22]. In four dimensions, the first consistent theory of massive gravity free of
Boulware-Deser ghosts was found by de Rham, Gabadaze and Tolley [23]. Subsequently, massive
generalisations of the Einstein–Hilbert action in 2+1 dimensions have been explored such as Topologically
Massive Gravity, New Massive Gravity and Zwei–Dreibein Gravity [24–26].

Apart from identifying a lattice model that effectively gives rise to massive gravitons in 2+ 1 dimensions,
our proposed architecture allows for quantum simulations with optical lattices. Ultra-cold atoms in optical
lattices have proven to be an ideal system for probing interacting high-energy theoretical models or
condensed matter physics that are otherwise inaccessible. From realising many-body localisation [27–30] and
non-ergodicity in strongly correlated systems [31, 32] to simulating lattice gauge theories [10, 33–37] or
probing topological phases [38–41], optical lattice technology is an invaluable component in advances of
modern physics [42]. Such simulations keep the promise of realising lattice gauge theories that can be used to
illustrate quark confinement, a fundamental phenomenon that still remains a mystery [43]. In particular,
hexagonal optical lattices with fermionic or bosonic atoms have already been realised in the laboratory
[40, 41]. Moreover, a shift in the paradigm of quantum simulations with cold atoms has happened with the
suitable Yukawa-like coupling between fermionic and bosonic atoms for realising fluctuating gauge fields
coupled to Dirac fermions [15] that lead to numerous advances towards the quantum simulation of gauge
theories [33–37]. Here, we present a novel boson-fermion interaction that encodes fluctuating gravitational
fields coupled to Dirac fermions. The final necessary ingredient is the realisation of bosonic self-interaction
terms that give rise to dynamics of the gravitational field. Such terms can be realised by employing Feshbach
resonances that are routinely employed in experiments to realise a wide range of interactions between
bosonic atoms [44–47]. The Yukawa-like coupling between fermions and bosons causes the fermions to
interact [48], an effect that can be experimentally witnessed in the fermionic correlators through the
violation of Wick’s theorem [49]. The components necessary for this simulation, such as 2D Dirac fermions,
mixtures of bosonic and fermions optical lattices and for controlling atomic intra and inter-species
interactions, are routinely implemented with current experiments. Hence, optical lattices offer a key tool
towards realising quantum properties of gravity in the laboratory.
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2. Dirac fermions coupled to gravitational fluctuations

We first present the (2+ 1)-dimensional gravitational theory that we want to simulate. We choose the
simplest possible theory that has interesting dynamics. To begin with, we choose a torsionless theory where
all the dynamics comes from curvature. Moreover, General Relativity in three spacetime dimensions is
known for possessing only global or boundary degrees of freedom, while no local propagating modes exist in
the bulk similar to the theory in four spacetime dimensions. An interesting generalisation of this theory at
the linear level is obtained by adding the Fierz–Pauli mass term. By endowing gravitons with a mass, the
theory acquires two propagating degrees of freedom. This is the model we simulate with our lattice simulator.

To obtain spacetime geometries that can be realised with optical lattices we consider the spacetime metric
to be in Gaussian form. This form provides a separation of time from space, thus giving a time evolution of
the gravitational system that looks similar to the time evolution of the optical lattice, as dictated by the
Schrödinger equation. This condition corresponds to choosing the spacetime coordinates in such a way that
the metric gµν looks like:

ds2 = gµνdx
µdxν =−dt2 +

(
l2δij + 8πGhij

)
dxidxj, (1)

where G is Newton’s constant, l is a constant and µ= (t, i) denotes spacetime indices with i = (x,y). To
simplify the required optical lattice architecture we consider a gravity model where hij is diagonal. This
considerably simplifies the constraint structure of the theory and avoids the need of introducing extra
relations between the lattice variables in order to preserve the constraints during time evolution. The
coupling of the gravitation field with the Dirac fermions is best described in terms of the dreibein field eAµ ,
given by gµν = ηABeAµe

B
ν , where A= (0,a= 1,2) denotes Lorentz indices and η = diag(−,+,+) is the metric

of the local tangent Minkowski space. Parallel transport is then defined by the spin connection ωA
µ satisfying

∂µeAν −Γρ
µνe

A
ρ + ϵABCω

B
µe

C
ν = 0, where Γρ

µν is the affine Christoffel connection. We consider gravitational
fluctuations of a flat geometry, ēAµ . In this case the fluctuating gravitational field translates into fluctuations
of the dreibein, ξAµ, and fluctuations of the spin connection, vAµ, of a flat background, i.e:

eAµ = ēAµ + 8πGξAµ, ωA
µ = 8πGvAµ . (2)

Spacetime geometries of the form given in (1), with hij diagonal, are described by:

ēAµ =

(
1 0
0 lδai

)
, ξAµ =

(
0 0
0 ξai

)
, ξai =

(
ξ1x 0
0 ξ2y

)
, (3)

where ξai ’s are the spatial dreibein fluctuations. The metric fluctuations are then given by

hij = l
(
δaiξ

a
j + δajξ

a
i

)
. Furthermore, we consider torsionless geometries, for which the spin connection

perturbation vAµ can be expressed in terms of derivatives of ξAµ (see appendix A for details).
In the following we consider a gravitational model described by the action:

S[ψ,ξ] = SDirac[ψ,ξ] + Sgr[ξ], (4)

where SDirac is the action for a Dirac spinor ψ that includes the coupling of the geometry ξai to the fermionic
current, whereas Sgr is a purely gravitational action that describes the spatial dreibein fluctuations ξai in a flat
background geometry.

2.1. Fermionic action
The fermion action describes a massless Dirac field on curved space:

SDirac =
i

2

ˆ
d3x|e|

(
ψ̄ eµAγ

A−→Dµψ− ψ̄
←−
Dµe

µ
Aγ

Aψ
)
, (5)

where ψ̄ = ψ†γ0, and the covariant derivative acting on fermionic fields is defined as
−→
Dµ =

−→
∂ µ +ωµ and

←−
Dµ =

←−
∂ µ−ωµ with ωµ = 1

4ϵABCω
A
µγ

BγC. In order to compare the fermionic action SDirac with the one

coming from the optical lattice simulation, we rescale the corresponding spinor ψ as ψ −→ ψ/
√
|e|, so that

they both satisfy flat anti-commutation relations [50]. Next we split the temporal and spatial indices and
implement the semiclassical expansion (2). For small Newton’s constant the resulting fermionic action to
linear order in G is given by:

3
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SDirac[ψ,ξ] = i

ˆ
d3x
[
ψ̄ γ0ψ̇+ ψ̄ γi ∂iψ

]
− 8iπG

l2

ˆ
d3x

[
ξiaψ̄ γ

a∂iψ+
1

2
∂i ξ

i
aψ̄ γ

aψ

]
, (6)

where we have defined the inverse field ξia = δibδ
a
j ξ

b
j .

2.2. Gravitational action
In order to describe the dynamics of the gravitational field we start with the Palatini action for eA and ωA

given by:

Sgr =
1

8πG

ˆ
d3xϵµνρ eAµ

(
∂νωAρ +

1

2
ϵABC ω

B
νω

C
ρ

)
. (7)

As before, we consider the semiclassical expansion of Sgr with zero torsion and background curvature. The
dominant order in the G expansion is then given by the massless Fierz–Pauli action for hµν = ēAµξAν + ēAνξAµ
(see appendix B for details). The particular action and geometries are suitably chosen so that the resulting
Hamiltonian can be directly modelled with ultra-cold atoms in optical lattices. Moreover, considering a
metric in Gaussian coordinates (1) is convenient at the quantum level, since it allows to eliminate the
so-called conformal divergences in the graviton path integral [51].

The action (7) describes a topological theory with no propagating degrees of freedom. In order to have
local degrees of freedom, akin to (3+ 1)-dimensional General Relativity, we introduce a mass term for the
gravitational field. Here, we consider massive gravitons ξAµ described by the Fierz–Pauli theory [52], obtained
by adding the mass term:

4πGµ2ϵµνρϵABC ē
A
µξ

B
νξ

C
ρ , (8)

in the Lagrangian (7) after linearisation. Combining (2), (7) and (8) finally gives (see appendix B for details):

Sgr[ξ] =−4πG
ˆ
d3xϵijϵab

(
ξ̇ai ξ̇

b
j −µ2ξai ξbj

)
, (9)

which is the effective massive gravitational action, with ξai given by (3). Note that we have introduced the
mass term (8) by hand. It is known that the Fierz–Pauli action in 2+1 dimensions can be obtained from New
Massive Gravity [25, 53], a full gravitational theory with quadratic-in-curvature terms that possesses two
local propagating degrees of freedom of helicity±2. Alternatively, a different gravitational theory, whose
weak field limit leads to the same massive Fierz–Pauli action has been proposed in [54].

2.3. Total Hamiltonian
In order to determine the optical lattice configuration required to simulate this gravity model, we need first
to obtain its Hamiltonian. The Hamiltonian corresponding to the action (4) is given by (for details, see
appendix C):

H=

ˆ
d2x

[
ψ† h(p) ψ +Hgr

]
, (10)

where the single particle Hamiltonian h(p) reads:

h(p) =
γ0

l

(
δiaγ

a− 8πG

l
ξ iaγ

a

)
(−i∂i)+

4iπG

l2
∂i ξ

i
aγ

0γa, (11)

and the gravitational HamiltonianHgr equals:

Hgr =−
1

16πG
ϵijϵ

abπi
aπ

j
b + 4πGµ2ϵijϵabξ

a
i ξ

b
j . (12)

Here πi
a = diag(πx

1,π
y
2) is the canonical momentum conjugate to ξai given in (3). The geometric fluctuations

and their conjugate momenta can be expressed as:

ξ1x =
1√
2
(q†1 + q1), πx

1 =−
i√
2
(q†1 − q1),

ξ2y =
1√
2
(q†2 + q2), π

y
2 =−

i√
2
(q†2 − q2), (13)

where the operators qa and q†a (a= 1,2) satisfy the bosonic commutation relations
[qa(x),q

†
b(y)] = δabδ

(2)(x− y) and [qa(x),qb(y)] = 0= [q†a(x),q
†
b(y)]. It is in terms of these quantum

operators that we can establish a map between (10) and an optical lattice Hamiltonian.

4
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3. Optical lattice simulator

We now design an optical lattice configuration that simulates the quantum gravity model given by (10) in its
low energy limit. We first present a configuration that gives rise to Dirac fermions in a fixed background
geometry encoded in the tunnelling couplings of the lattice [14]. Then we introduce link quantum variables
dm (m= x,z) that fluctuate this geometry. Consider a two-dimensional optical lattice with honeycomb
configuration where fermionic atoms, a and b, live at its vertices, as shown in figure 1(Left). The fermions are
subject to the tunnelling Hamiltonian:

Hlatt =
∑
i

[
Jx(i)a

†
i bi+n1 + Jy(i)a

†
i bi+n2 + Jz(i)a

†
i bi
]
+ h.c., (14)

where i= (ix, iy) gives the position of unit cells on the lattice, the couplings of the first two terms are equal
(Jx = Jy), and both Jx and Jz are in general position dependent. At half-filling, the low energy sector of the

model is described by the Dirac Hamiltonian Hlatt ≈
´
d2x ψ† h̃(p) ψ [14] with (see appendix D for details):

h̃(p) =−
√
3i

2

√
4J 2x− J 2z γ

0γ1∂x−
3i

2
Jzγ

0γ2∂y +

√
3i

2
∂x

(√
4J 2x− J 2z

)
γ0γ1 +

3i

2
∂yJzγ

0γ2. (15)

The coefficients of γ0γ1(−i∂x) and γ0γ2(−i∂y) play the role of the diagonal space components of the
dreibein, e1x and e2y , respectively, as shown in figure 1(Right). To introduce quantum fluctuations in the J
couplings, and thus in the corresponding dreibeins, we insert bosonic modes αx and αz at the edges of the
lattice, as shown in figure 1(Left). To realise this configuration of atomic boson-fermion mixture we need
two pairs of triangular lattices, one fermionic and one bosonic, as shown in figure 2. Triangular lattices can
routinely be created in the laboratory for bosonic [55] and fermionic [56] atoms. Optical lattices with
interacting mixtures of bosonic and fermionic atoms have been realised and their rich physics has been
extensively investigated [57–59].

When the bosonic and fermionic lattices shown in figure 2 are superposed, the bosonic modes αx and αz

control the tunnelling of fermions from site i to site k in them(= x,z) direction, through the interaction
∆mα

†
mαma

†
i bk [15]. We take the αm modes to correspond to a bosonic condensation with particle density Dm

and quantum fluctuations dm, i.e:

αm(i) = Dm(i)+ dm(i), (16)

where [dm(i),d†m(j)] = δi j, form= x,z. In the weak fluctuation limit ⟨d†mdm⟩ ≪ D2
m, the interactions between

bosons and fermions give rise to tunnelling couplings of the form Jm =∆mDm(Dm + d†m + dm). If we choose
the optical lattice parameters as:

Dx =
√
2Dz =−

l

4πG
, ∆x =

∆z

2
=

32π2G2

3l3
, (17)

with the operator redefinition q1 = 2
√
2dx/3− dz/3 and q2 = dz that preserves bosonic commutation

relations, we find that, to linear order in G, the optical lattice Hamiltonian (14) is mapped to the field theory
one (11) (for details, see appendices C and D). Constant tunnelling terms can be added in (14) to arbitrarily
tune the values of the densities Dm.

The self-interaction terms (12) of the gravitational Hamiltonian can be obtained from the following
purely bosonic interactions:

Hboson =
1

24πG
(α†

z −αz)

(√
2(α†

x −αx)−
1

2
(α†

z −αz)

)
+

8πGµ2

3

(
α†
zαz +α†

xαx

)
− 256π3G3µ2

3l2
α†
zαz

(
α†
xαx−

1

2
α†
zαz

)
,

(18)

restricted to the weak fluctuation regime of αm.

5
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Figure 1. (Left) The optical lattice configuration with fermionic and bosonic atoms. The unit cell of the honeycomb lattice
(dashed box) comprises two fermionic modes a and b. The fermionic atoms tunnel along the three different directions of the
trivalence lattice with couplings Jx , Jy(= Jx), and Jz . The vectors n1 = (

√
3/2,3/2) and n2 = (−

√
3/2,3/2) transport between

different unit cells. (Right) In the low energy limit the dispersion relation E(p) of the fermions is given by Dirac cones. Non-equal
tunnelling couplings, Jx and Jz , cause the Dirac cone to be deformed, with its geometry encoded in the dreibein components e1x
and e2y , effectively describing background gravity. Bosonic modes αx and αz , describing Bose–Einstein condensates, are inserted

that control the fermionic tunnelling couplings with their populations. Fluctuations of the condensates simulate fluctuations in e1x
and e2y , i.e. gravitational fluctuations.

Figure 2. The optical lattice configuration of figure 1 is obtained by superposing two pairs of triangular lattices, a fermionic pair
(Left) and a bosonic pair (Right). The pair of lattices that hosts fermionic modes a and b gives rise to the honeycomb lattice model
when nearest neighbour tunnelling couplings are activated. The pair of bosonic lattice modes, αx and αz , is positioned at the links
of the honeycomb lattice. The x-confinement of the αx modes is made weaker to overlap with both Jx and Jy links of the

honeycomb lattice (see figure 1). By activating interactions between the bosonic and fermionic atoms,∆mα
†
mαma

†
i bk, the

population of the bosonic modes at sitem controls the fermionic tunnelling between sites i and k, thus giving rise to the effective
interaction between Dirac fields and fluctuating geometry.

3.1. Realisation of interactions
The quantum simulation of Dirac fermions coupled to fluctuating gravity requires the realisation of (10)
with the fermionic part coupled to the bosons given by (11) and the self-interactions of bosons (18). The first
component is the realisation of the (2+ 1)-dimensional Dirac dispersion relation of the form (15). This has
already been achieved in the laboratory with ultracold fermionic atoms by several experimental groups
[60–62]. Of much interest is the possibility the optical lattices offer in running the couplings at will thus
allowing the effective encoding of background geometry [14]. Introducing fluctuations in the background
geometry can be achieved with optical lattices by coupling bosonic and fermionic species together, as shown
in figure 1(Left). This method is similar to the minimal coupling realisation with optical lattices [15],
suitably adapted here to encode the coupling between Dirac fermions and dreibeins. It incorporates
Bose–Einstein condensates with weak boson number fluctuations. When positioned at the links of the
honeycomb lattice they couple with the tunnelling fermions producing the desired boson-fermion couplings
dictated by (11). Note that the tunnelling couplings of fermions, Jx, Jy and Jz, and the condensation particle
densities Dm can be routinely tuned and controlled in an experiment by controlling the laser intensity of the
optical lattices and the frequency of the magnetic or optical trapping of the condensate, respectively.

The final ingredient is the realisation of the gravitational self-interacting terms presented in (18). This
Hamiltonian includes chemical potentials as well as tunnelling, pairing and interacting terms between the αm

bosonic atoms. Chemical potentials can be easily tuned with great accuracy by controlling the populations or
the trapping potential of the cold atoms. Tunnelling terms between two different bosonic modes, such as αx

and αz, can be obtained by changing the potential barrier between the corresponding sites, as shown in
figure 3. These bosonic terms can be controlled independently from the fermionic atoms as they are created
by independent optical lattices (see appendix E for details). Pairing terms of the form α†

zα†
x +αzαx can be

activated by resonances to molecular bound states as it has been recently demonstrated with homonuclear

6
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Figure 3. Realisation of the self-interacting terms of the gravitational bosonic modes αx and αz . Tunnelling couplings of the form

J(α†
xαz +α†

z αx) are produced by the overlap of the wavefunctions of the modes that sit in different wells. The tunnelling coupling
J is controlled by the barrier between the potential wells tuned by the laser intensity of the optical lattices. Feshbach resonances
are produced by the elastic scattering collisions between αx and αz atoms with a rate that can be easily tuned by a magnetic field.

39K-39K or heteronuclear 41K-87Rb mixtures [46, 47]. Population interactions of the form α†
zαzα

†
xαx can be

accurately controlled by employing Feshbach resonances, e.g. between Rb atoms, as has already been
demonstrated experimentally [44, 45] (see figure 3). Such resonances are very versatile as they can generate
positive, negative or zero interactions, or change the collision rate by several orders of magnitude just by
selecting appropriate atomic states and tuning appropriately the external magnetic field. Hence, it is plausible
that the quantum gravity model coupled to Dirac fermions given in (10) can be experimentally realised with
a mixture of bosonic and fermionic ultra-cold atoms in optical lattices.

4. Quantum signatures of gravity

The optical lattice system given by (14) and (18) in the low energy limit simulates Dirac fermions coupled to
massive gravitons (10). The presence of simulated quantum effects of gravity can be witnessed by directly
measuring the bosonic field or by measuring the effect it has on the fermionic field. The pure gravity
Hamiltonian (12) describes simple tunnelling and pairing terms between bosonic modes 1 and 2. The
signatures of these couplings can be directly measured in the quantum correlations ⟨d†1d

†
2⟩ and ⟨d

†
1d2⟩ of the

corresponding Bose-Einstein condensates [63]. We can establish how faithfully the simulating
Hamiltonian (18) reproduces the desired gravitational Hamiltonian (12) by determining the dependence of
the correlations on the ‘gravitational’ coupling G.

We present now how to identify the presence of a fluctuating gravitational field from the behaviour of the
fermionic quantum correlations. In the absence of gravity, i.e. G= 0, the interaction term of the Dirac field
disappears giving rise to free fermions. If the fermions are coupled to a fluctuating gravitation field then
interactions between them emerge. Hence, we can identify the presence of fluctuating geometry by
identifying if the Dirac fermions are free or interacting. The distinction between the two can happen by
testing the applicability of Wick’s theorem, i.e. testing the decomposition of four-point quantum correlations
in terms of two-point correlations. Such two- and four-point correlation measurements are routinely realised
in cold atom experiments. Hence, our scheme provides a direct quantum signature of gravity in terms of
experimentally feasible components.

The partition function of the system at temperature T is given by:

Z=

ˆ
D ξ Dπ DψDψ̄ exp

(
− 1

kBT

ˆ
d2xH

)
, (19)

whereH= ψ† h(p) ψ +Hgr and kB is the Boltzmann constant. To determine the behaviour of the fermions
due to their interactions mediated by gravitational fluctuations we can integrate the bosonic part, i.e. ξ and
π, of (19) and derive the effective fermionic Hamiltonian. Integrating out the momenta, πi

a, leads to an
irrelevant global factor in Z. We can subsequently integrate out the bosonic field ξai , which up to an overall
constant yields:

Z=

ˆ
DψDψ̄ exp

(
− 1

kBT

ˆ
d2xHeff

)
, (20)

with the effective Hamiltonian:

Heff =−iψ̄ γi ∂iψ −
4πG

l2µ2
ϵabϵ

ijJ a
i J b

j , (21)

where J a
i = i

2l

(
ψ̄ γa∂iψ− ∂iψ̄ γaψ

)
is the fermionic current. As a result the partition function of the system

is Hubbard-like, effectively describing interacting fermions with a coupling proportional to the gravitational

7
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constant G. The presence of such attractive fermion interactions can be measured in optical lattices by
monitoring its Hubbard-like behaviour [64]. It is interesting to note that similarity of the interaction term
in (21) and the effective gravitational models considered in [1, 2].

An alternative manifestation of interactions (21) mediated by the gravitational field is on the fermionic
correlations, which can be witnessed by testing the applicability of Wick’s theorem. In the absence of
gravitational fluctuations, i.e. for Newton’s constant G→ 0 in (2) or for fluctuations ξai → 0, the effective
partition function corresponds to free fermions, as seen by (21). For this case, Wick’s theorem states that all
four-point quantum correlators of the ground state can be exactly decomposed in terms of two-point
correlators. Such four-point correlators of fermions can be expressed in terms of fermionic densities and
two-point correlations and thus can be directly measured in cold atom experiments [42]. When the
interactions induced by the gravitational field are present, i.e. for G ̸= 0, Wick’s decomposition does not
apply, leaving a difference that can be determined by measurements of fermionic correlations [49]. In the
perturbative regime considered here this difference gives a measure of the coupling G between the Dirac
fermions and the gravitational field.

5. Conclusions

Among the forces of nature gravity keeps its quantum aspects well hidden. This lack of experiential evidence
hinders the theoretical understanding of quantum gravity and its unification with the rest of the
fundamental forces within the Standard Model. Here we propose a way of simulating quantum signatures of
massive gravity coupled to Dirac fermions in the laboratory. By building upon recent methods, developed for
simulating scalar or gauge fields coupled to Dirac fermions, we are able to model Dirac fermions in the
presence of fluctuating geometries, which is a unique characteristic of quantum gravity. This breakthrough
was possible by encoding spacetime geometries intrinsically in the couplings of the system and then
employing bosonic fields that fluctuate these couplings. The bosonic fields are appropriately designed in
order to give rise to a massive quantum graviton akin to the magnetoroton emerging in fractional quantum
Hall liquids. As our model provides a direct link between microscopic system components and properties of
the effective massive gravity, it sheds light into the mechanism behind the emergence of quantum gravitons
in strongly interacting systems.

Beyond providing an example where massive gravitons emerge in a condensed matter system, our model
can be simulated with optical lattices. The components used in our proposal, such as the fermionic
honeycomb lattice or the bosonic condensates, can be realised in the laboratory with current ultra-cold atom
technology. Quantum signatures of the emerging geometry can be witnessed in the effective fermionic
interactions mediated by their coupling to fluctuating geometry, which can be directly probed in optical
lattice experiments.

Our work opens up a host of various applications. It is intriguing to consider the behaviour of various
quantum gravity and cosmology theories in 1+ 1, 2+ 1 or 3+ 1 dimensions with or without fermions.
Several open questions exist about the quantum aspects of gravity, cosmology and the physics of black holes
that can be addressed within the framework presented here. We envision that our proposal will initiate a new
line of investigations where interacting models that simulate gravity can be realised in the laboratory and
guide theoretical investigations towards the understanding of quantum aspects of gravity in nature.
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Appendix A. Spin connection

We consider a three-dimensional geometry whose metric tensor is defined by a set of dreibeins eAµ:

gµν = ηABe
A
µe

B
ν . (A1)

8
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where here A= (0,a= 1,2) denotes Lorentz indices, µ= (t, i = x,y) stand for manifold indices, and
η = diag(−,+,+) is the Minkowski metric. Parallel transport is defined by the spin connection ωA

µ, which
can be obtained from the vielbein postulate:

∂µe
A
ν −Γρ

µνe
A
ρ + ϵABCω

B
µe

C
ν = 0, (A2)

where Γρ
µν is the affine Christoffel connection and ϵABC the Levi-Civita symbol (ϵ012 = 1). In this case, the

gravitational fluctuations translate into fluctuations of the dreibein and the spin connection:

eAµ = ēAµ +
1

8πG
ξAµ, ωA

µ = ω̄A
µ +

1

8πG
vAµ. (A3)

We restrict the analysis to flat backgrounds with constant dreibein and vanishing spin connection. Therefore
we set:

ēAµ = constant, ω̄A
µ = 0. (A4)

Furthermore, we consider torsionless geometries. In this case taking the antisymmetric part of (A2) allows
one to express ωA

µ in terms the dreibein and its derivatives. For the corresponding perturbations (A3) one
finds the relation:

ϵµνρ
(
∂νξ

A
ρ + ϵABC ē

B
νv

C
ρ

)
= 0, (A5)

which can be used to find the form of the spin connection perturbations vAµ:

vAµ =MAB
µνϵ

ναβ∂αξBβ , MAB
µν ≡

1

ē

(
1

2
ēAµē

B
ν − ēAν ē

B
µ

)
, (A6)

where ē= det(ēAµ). When restricted to metrics of the form (1), which means:

ēAµ =

(
1 0
0 ēai

)
, ξaµ =

(
0 0
0 ξai

)
, (A7)

the components of the spin connection reduce to:

v0t =−
4πG

ē
ϵijēai ξ̇aj, v0i =−

8πG

ē
ϵjkēai ∂jξak, vat = 0, vai = 8πGMab

ij ϵ
jkξ̇bk. (A8)

Appendix B. Gravity action

In order to describe gravitational fluctuations, we start with the Palatini action for eAµ and ωA
µ:

Sgr =
1

8πG

ˆ
d3xϵµνρeAµ

(
∂νωAρ +

1

2
ϵABC ω

B
νω

C
ν

)
. (B1)

Using (A3), the action can be expanded in powers of the (2+1)-dimensional reduced Planck mass 1/8πG as:

Sgr[ξ] =
1

8πG
S(0)gr + S(1)gr + 8πGS(2)gr . (B2)

Defining the background curvature and torsion,

R̄A
µν = ∂[µω̄

A
ν] +

1

2
ϵABCω̄

B
[µω̄

C
ν] = 0,

T̄A
µν = ∂[µē

A
ν] + ϵABCω̄

B
[µē

C
ν] = 0,

(B3)

the different terms in the action (B2) can be written as:

S(0)gr =
1

2

ˆ
d3xϵµνρēAµR̄Aνρ,

S(1)gr =
1

2

ˆ
d3xϵµνρ

(
ξAµR̄Aνρ,+v̄AµT̄Aνρ

)
,

S(2)gr =

ˆ
d3xϵµνρ

(
ξAµD̄νvAρ +

1

2
ϵABC ēAµv

B
νv

C
ρ

)
.

(B4)

9
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Considering a flat torsionless background implies that R̄A
µν = 0= T̄A

µν . Replacing (A6) in (B4) and using
tensor notation then yields:

Sgr[ξ] =−4πG
ˆ

d3xMAB
µνϵ

µαβϵνγδ∂αξAβ∂γξBδ. (B5)

One can check that the action (B5) boils down to the massless Fierz–Pauli action for hµν = ēAµξAν + ēAνξAµ.
We are interesting in adding a mass µ to the geometry fluctuations ξAµ. We do so by means of the

Fierz–Pauli mass term:

4πGµ2ϵµνρϵABC ē
A
µξ

B
νξ

C
ρ . (B6)

Thus, implementing (A7) and (A8) in (B5) and adding the term (B6) restricted to those conditions, we find
the following effective massive gravitational action:

Sgr[ξ] =−4πG
ˆ
d3xϵijϵab

(
ξ̇ai ξ̇

b
j −µ2ξai ξbj

)
. (B7)

where we have defined ϵij ≡ ϵ0ij.

Appendix C. Field theory Hamiltonian

The Hamiltonian density associated to the Lagrangian in (4) is obtained after a straightforward Legendre
transformation:

H=Π†ψ̇ + ψ̇Π+πi
a ξ̇

a
i −L, (C1)

where the canonical momenta read:

Π† =
∂L
∂ψ̇

= iψ†, Π=
∂L
∂ψ̇†

= 0,

πi
a =

∂L
∂ξ̇ai

=−8πGϵijϵabξ̇bj ,
(C2)

and satisfy the Poisson brackets:{
ψα(x),Π

†
β(y)

}
=
{
ψ†
α(x),Πβ(y)

}
=−δαβδ(2)(x− y),{

ξai (x),π
j
b(y)

}
= δabδ

j
iδ

(2)(x− y).
(C3)

The Hamiltonian reduces to:

H=

ˆ
d2xH=

ˆ
d2x

[
ψ† h(p) ψ +Hgr

]
, (C4)

with the single particle hamiltonian h(p) :

h(p) =
γ0

l

(
δiaγ

a− 8πG

l
ξ iaγ

a

)
(−i∂i )+

4iπG

l2
∂i ξ

i
aγ

0γa, (C5)

and the gravitational HamiltonianHgr given by:

Hgr =−
1

16πG
ϵijϵ

abπi
aπ

j
b− 4πGµ2ϵijϵabξ

a
i ξ

b
j . (C6)

Since our analysis considers geometry fluctuations ξai that are diagonal, we define quantum operators of
the form:

ξai =

(
ξ1x 0
0 ξ2y

)
, ξ1x =

1√
2
(q†1 + q1), ξ2y =

1√
2
(q†2 + q2), (C7)

where the operators qa, a= 1,2 satisfy the commutation relations:

[qa(x),q
†
b(y)] = δabδ

(2)(x− y),

[qa(x),qb(y)] = 0= [q†a(x),q
†
b(y)].

(C8)

10
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Thus, the canonical Poisson brackets (C3) are promoted commutators { , }→−i[ ], which then fixes the
form of the momenta ξia to be:

πi
a =

(
πx
1 0
0 π

y
2

)
, πx

1 =−
i√
2
(q†1 − q1), π

y
2 =−

i√
2
(q†2 − q2). (C9)

The flat background spatial metric is taken as gij = l2δij with l an arbitrary constant, which implies:

ēai = lδai , ēia =
1

l
δia, (C10)

and thus the gamma matrices on this background geometry reduce to:

γt = γ0, γi =
1

l
δiaγ

a. (C11)

From this expressions we see that the single particle Hamitlonian (C5) can be written as:

h(p) =

(
1

l
− 4
√
2πG

l2
(q†1 + q1)

)
γ0γ1(−i∂x)+

(
1

l
− 4
√
2πG

l2
(q†2 + q2)

)
γ0γ2(−i∂y)

+
2
√
2iπG

l2

(
∂x(q

†
1 + q1)γ

0γ1 + ∂y(q
†
2 + q2)γ

0γ2
)
,

(C12)

whereas the gravitational Hamiltonian (C6) takes the form:

Hgr =
1

16πG
(q†1 − q1)(q

†
2 − q2)− 4πGµ2(q†1 + q1)(q

†
2 + q2). (C13)

In the following, we show how to translate (C4) into an optical lattice Hamiltonian.

Appendix D. Optical lattice Hamiltonian

We start considering an optical lattice with unequal tunnelling couplings:

Hlatt =
∑
i

(
Jxa

†
i bi+n1 + Jya

†
i bi+n2 + Jza

†
i bi
)
+ h.c., (D1)

where i= (ix, iy) denotes the position of the unit cells (see figure 1). Expanding the operators in Fourier
modes and defining:

ψk =

(
ak
bk

)
, h̃(k) =

(
0 f(k)

f∗(k) 0

)
, (D2)

where f(k) = Jxe−ik·n1 + Jye−ik·n2 + Jz, we find:

Hlatt =
∑
k

ψ†
k h̃(k)ψk. (D3)

We consider the special case Jx = Jy. The Fermi points, P±, are defined by:

f(P±) = 0⇒ P± =±

(
2√
3
arccos(−Jz/Jx)

0

)
. (D4)

Now, we expand f(k) around the Fermi points:

f(P± + p) = p ·∇f(P±) = A±px +B±py, (D5)

where we have defined:

A± =∓
√
3

2

√
4J2x − J2z , B± =−3

2
Jz. (D6)

11
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Expanding the Hamiltonian Hlatt around the Fermi point yields:

Hlatt =
∑
p

(
a†+ b†+

)
(A+σ

1px−B+σ
2py)

(
a+
b+

)
+
∑
p

(
a†− b†−

)
(A−σ

1px−B−σ
2py)

(
a−
b−

)
. (D7)

Defining the four spinor and the gamma matrices:

ψp =


a+
b+
b−
a−

 , γ0 =

(
0 −1
1 0

)
, γi =

(
0 σi

σi 0

)
, (D8)

with σi = (σ1,σ2) Pauli matrices. Then we findHlatt =
´
d2x ψ† h̃(p) ψ with the single particle Hamiltonian:

h̃(p) =

√
3

2

√
4J 2x− J 2z γ

0γ1px +
3

2
Jzγ

0γ2py. (D9)

where, for convenience, we have flipped the orientation of the y axis, i.e. py→−py. In order to ensure

hermiticity of the full Hamiltonian, the momentum operator is defined as pi =−i(
−→
∂ i−

←−
∂ i)/2. Thus, we

find:

h̃(p) =

√
3

2

√
4J2x− J2z γ

0γ1(−i∂x)+
3

2
Jzγ

0γ2(−i∂y)+
√
3i

2
∂x

(√
4J2x− J2z

)
γ0γ1 +

3i

2
∂yJzγ

0γ2. (D10)

We can now generalise this Hamiltonian by considering the couplings Jx and Jz as position dependent,
varying slowly compared to the lattice spacing. Next, we add a bosonic self-interacting HamiltonianHboson,

Hboson =
1

24πG
(α†

z −αz)

(√
2(α†

x −αx)−
1

2
(α†

z −αz)

)
+

8πGµ2

3

(
α†
zαz +α†

xαx

)
− 256π3G3µ2

3l2
α†
zαz

(
α†
xαx−

1

2
α†
zαz

)
,

(D11)

where αx and αz are bosonic modes at the edges of the lattice that control the tunnelling of fermions in the x
and in the z direction, respectively (see figure 2). The optical lattice Hamiltonian that we will consider is then:

Hlatt =

ˆ
d2x

[
ψ† h̃(p) ψ +Hboson

]
. (D12)

In order to show that (D12) can be mapped to (C4), first we consider the following form of the couplings:

Jm =∆mDm

(
Dm + d†m + dm

)
, m= x,z. (D13)

where the operators dm satisfy the commutation relations:

[dm(x),d
†
n(y)] = δmnδ

(2)(x− y),

[dm(x),dn(y)] = 0= [d†m(x),d
†
n(y)],

(D14)

Note that this is a continuum version of the commutation relations given below equation (16). By
considering:

Dx =−
l

4πG
, ∆x =

32π2G2

3l3
, Dz =−

√
2l

8πG
, ∆z =

64π2G2

3l3
, (D15)

one finds that the different terms in h̃(p) given in (D10) can be written in the form:

3

2
Jz =

1

l
− 4
√
2πG

l2
(
d†z + dz

)
,

√
3

2

√
4J2x− J2z ≈

1

l
− 16πG

3l2
(
d†x + dx

)
+

4
√
2πG

3l2
(
d†z + dz

)
, (D16)

where in the last equality we have used the approximation:∣∣〈d†m + dm
〉∣∣≪ |Dm| , (D17)
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valid for bosonic states in the weak fluctuation regime. Finally, we consider the operator redefinition:

q1 =
2
√
2

3
dx−

1

3
dz, q2 = dz, (D18)

which satisfy the canonical commutation relations given in (C8). This transformation maps the single
particle Hamiltonian h̃(p), given (D10), into the corresponding Hamiltonian h(p) describing fermions
coupled to dreibein fluctuations given in (C12).

Now we turn our attention to the bosonic Hamiltonian (D11), where the operators αm are defined as:

αm = Dm + dm. (D19)

In this case we reverse the procedure and show that, up to an irrelevant additive constant, the gravitational
HamiltonianHgr given in (C13) can be mapped to (D11). This can be directly shown by noticing that:

(d†m− dm)(d
†
n− dn) = (α†

m−αm)(α
†
n−αn),

(d†m + dm)(d
†
m + dm)≈

α†
mαmα

†
nαn

DmDn
− Dm

Dm
α†
nαn−

Dn

Dm
α†
mαm +DmDn,

(D20)

and using (D15) and (D18). Note that in the last relation we have used α†
mαm ≈ D2

m +Dm(d†m + dm), which
holds in the approximation (D17).

Appendix E. Optical lattice realisation of the gravitational Hamiltonan

In order to realise the bosonic Hamiltonian (18), we consider the Hamiltonian for bosonic atoms, described
by a bosonic mode Φ(x), in an optical lattice potential V0 and a slowly varying external trapping
potential VT :

H=

ˆ
d3x Φ†(x)

[
−∇

2

2m
+V0(x)+VT(x)

]
Φ(x)+

2π a2s
m

ˆ
d3x Φ†(x)Φ†(x)Φ(x)Φ(x), (E1)

where as is the s-wave scattering length andm is the mass of the atoms [65]. For single atoms the energy
eigenstates are Bloch wave functions and an appropriate superposition of Bloch states yields a set of Wannier
functions which are well localized on the individual lattice sites. Expanding the field operator in the Wannier
basis w(x) in the following way,

Φ(x) =
∑
i

αiϕi (x), ϕi (x) = w(x− xi), [αi,α
†
j ] = δij (E2)

one finds the Bose–Hubbard Hamiltonian:

H=−
∑
<ij>

tij α
†
i αj +

∑
<ijkl>

Uijkl α
†
i α

†
j αkαl, (E3)

where<· · ·> denotes summation only over nearest neighbours. In (E3) we have defined the overlap
integrals:

tij =

ˆ
d3xϕ∗i (x)

(
−∇

2

2m
+V0(x)+VT(x)

)
ϕj(x)

Uijkl =
4π a2s
m

ˆ
d3xϕ∗i (x)ϕ

∗
j (x)ϕk(x)ϕl(x),

(E4)

where tij represents the tunnelling couplings (or the hopping matrix elements), whereas U ijkl stands for the
strength of the on-site repulsion of two atoms. We arrange the modes to be defined on a diamond lattice with
indices i = (i,m), j = (j,n), etc, as shown in figure 1. For particular values of tij and U ijkl, e.g. by changing
the laser intensity or employing Feshbach resonances that control the scattering length, it is possible to tune
appropriately the couplings and reproduce the gravitational Hamiltonian (18).
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