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Many modern extinction drivers are shared with past mass
extinction events, such as rapid climate warming, habitat
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establish which species were more likely to go extinct during
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be used to ‘predict’ the extinction selectivity exhibited during the other mass extinctions. Our analyses
show that, despite some similarities in extinction selectivity patterns between ancient crises, the
selectivity of mass extinction events is inconsistent, which leads to a poor predictive performance.
This lack of predictability is attributed to evolution in marine ecosystems, particularly during the
Mesozoic Marine Revolution, associated with shifts in community structure alongside coincident
Earth system changes. Our results suggest that past extinctions are unlikely to be informative for
predicting extinction risk during a projected mass extinction.
.org/journal/rsos
R.Soc.Open

Sci.10:221507
1. Introduction
Highly elevated extinction rates in many clades, alongside multiple other lines of evidence, indicate that
we are currently witnessing a biodiversity crisis (e.g. [1–7]). The major drivers of extinction today,
including climate change, habitat loss, pollution, invasive species and over-exploitation, are human-
induced [8–14]. These drivers of extinction, particularly climate change and habitat loss, are also
associated with mass extinction events and rapid climate warming events (i.e. ‘hyperthermals’; see
[15]) in geological history, albeit previously caused by Earth system phenomena such as volcanic
activity or bolide impacts [7,16]. There are also key differences in how these threats to biodiversity
manifested themselves in the geological past compared with today, for example anthropogenic
pollution is much wider in scope and includes synthetic substances, while the introduction of invasive
species via human activities probably occurs at much broader spatial scales and at faster rates.

Traditionally, it is thought that life on Earth has experienced five mass extinction events [17], but the
number of past mass extinctions has been called into question in more recent analyses (e.g. [18,19]), partly
due to relative ambiguity in the definition of a mass extinction. A mass extinction event has previously
been defined as a statistically distinct increase in the amount of extinction suffered by more than one
geographically widespread higher taxon during a relatively short interval of geologic time, resulting
in an at least temporary decline in standing diversity [17,20]. Regardless of this debate, of the
traditional five mass extinctions, the three most recent (the end-Permian, end-Triassic and end-
Cretaceous events, which occurred 252, 200 and 66Ma, respectively) were the three most catastrophic,
both taxonomically and ecologically [19,21]. Given the kill mechanisms of these events that overlap to
varying degrees (despite different triggers of cascading environmental changes), do these events have
shared extinction selectivity patterns and can these mass extinction events in deep time, therefore, be
used as analogues for the modern biodiversity crisis, informing our predictions concerning selectivity
during a projected mass extinction over the next century?

The end-Permian and end-Triassic mass extinctions were coincident with the eruption of the Siberian
Traps and Central Atlantic Magmatic Province Large Igneous Provinces (LIPs), respectively. These LIPs
are associated with cascading environmental changes hypothesized to have driven the extinctions.
Climate warming resulting from greenhouse gas emissions subjected animals to thermal stress, and in
the oceans, this was compounded by the additional deleterious effects of deoxygenation and ocean
acidification [16,22]. In addition, it is thought that toxic metal emissions from the LIPs accumulated to
lethal levels that also contributed to heightened mortality rates during these mass extinctions [16]. The
cause and drivers of the end-Cretaceous mass extinction have been more heavily debated, with the
eruption of the Deccan Traps LIP and the bolide that created the Chicxulub impact crater both
occurring at a similar time to the mass extinction event [23–26]. The bolide impact is, however,
generally favoured as the cause by the research community (e.g. [25–28]). A large extraterrestrial
impact results in a different suite of environmental changes to an LIP: thermal stress via both a pulse
of extreme regional warming around the impact site and short-term (decadal) extreme global climate
cooling, followed by ocean acidification and a primary productivity decline over longer time scales [27].

It is becoming increasingly accepted that the ‘winners’ and ‘losers’ during mass extinction events are
not determined at random; instead, the possession of certain functional characteristics or traits may
influence the probability of a clade becoming extinct during a mass extinction, an effect described as
extinction selectivity (e.g. [29–34]). The importance of many characteristics in selectivity during mass
extinction events has previously been debated, including biological traits such as body size, diet and
motility [29,32–35], and geographical ‘traits’ such as range size and occupied latitude [29,33,36–41].
Comparing extinction selectivity patterns between mass extinction events may, therefore, provide
insight into the consistency of selectivity signals during times of heightened extinction rates. Only a
few comparative extinction selectivity studies have compared the end-Permian, end-Triassic and end-
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Cretaceous mass extinction events [38,42–44]. These studies investigated extinction selectivity using a
single functional trait, or a binary classification of functional traits. It has, however, been shown that
more detailed analyses of extinction selectivity are possible using a multivariate framework. Both
statistical methods and machine learning algorithms offer the potential to investigate extinction
selectivity across more dimensions, such as using non-binary classifiers of functional traits (e.g.
[33,45,46]), and quantitatively testing extinction selectivity patterns across a suite of traits between
different time intervals (e.g. [46–48]).

To compare extinction selectivity between mass extinctions and the other time intervals (here referred
to as ‘background’ intervals), we assessed the traits possessed by genera which became extinct during
each event. This was conducted by building a functional trait-based model of extinction risk for each
mass extinction, using a machine learning algorithm (gradient boosting on decision trees). The fit
between each of these models and the other two extinction events was then tested quantitatively, to
determine how transferable these models are, and therefore the extent to which selectivity regimes
were comparable between events. A functional trait-based approach was used because the functional
composition and the presence/absence of functional groups in the ocean have evolved over time. By
uncovering the commonalities of extinction selectivity, the machine learning algorithms can use
extinction selectivity from functional groups that became extinct to inform predictions, and can make
predictions about functional groups that did not exist at previous extinction events. This approach
also enabled the evaluation of whether past extinction events could be used to make predictions
about a projected future mass extinction event, even though the functional composition of modern
oceans are different to those of the past.
 507
2. Material and methods
2.1. Data
To obtain datasets to investigate extinction selectivity for the end-Permian, end-Triassic and end-
Cretaceous mass extinction events, we accessed species-level occurrences of marine invertebrates and
conodonts from the Paleobiology Database (https://paleobiodb.org), downloaded in August 2022.
Occurrences indicate the presence of a taxon in a given locality (collection) during a specified interval
of geological time. To identify which taxa went extinct or survived during these different events, we
downloaded datasets from two time intervals: (i) Capitanian to Toarcian (264.3–174.1Ma) and (ii)
Cenomanian to Eocene (100.5–33.9Ma). The wide breadths of these time intervals were chosen to
avoid generating edge effects within our extinction events of interest (sensu [49]). The clades
represented within the datasets were the Annelida, Arthropoda, Brachiopoda, Bryozoa, Cnidaria,
Echinodermata, Mollusca, Porifera and Conodonta.

The occurrences were manually vetted to ensure that individual species were not represented within
multiple genera due to taxonomic synonymy, in which case the most up-to-date generic identification of
the species was followed. For example, in the raw dataset, the species Oliva mitreola was also included in
the genera Olivancillaria, Olivella and Pseudolivella, but these were all manually amended to Oliva. In
addition, subgenera were checked to ensure that they were not included as both genera and
subgenera. Typographic errors were also vetted at both the genus and species level to ensure that taxa
did not appear with multiple spellings. To calculate the stratigraphic range of each genus, occurrences
of genera with open nomenclature (“”, ?, aff., cf., informal) were excluded, as well as occurrences that
were not identified to species level. The latter was done to avoid taxonomic artefacts in the
reassignment of species: when a species is reassigned to a new genus, its occurrences are moved to
that genus, whereas a genus-level assignment is left in the original genus. Freshwater genera were
also removed. Following this, the range of each genus was determined based on their first and last
observed occurrences within these datasets.

To investigate extinction selectivity for each event, the genera known from the Changhsingian (254–
252.17Ma), Rhaetian (208.5–201.3Ma) and Maastrichtian (72.1–66Ma) stages were selected to investigate
the end-Permian, end-Triassic and end-Cretaceous events, respectively. For each event, each genus was
classified as going extinct (1) or surviving (0) based on whether or not the range of the genus crossed the
stage boundary. Genera with less than three occurrences were omitted from the analysis, as the timing of
their disappearance from the database record is more likely to be an artefact of poor taxon sampling than
an indicator of extinction. Lazarus genera (those that disappear from the fossil record for one or more
periods, only to reappear later) were also excluded because their post-extinction ‘traits’ (e.g.

https://paleobiodb.org


Table 1. Ecological categories used in this study to explore extinction selectivity. See methods for further details.

Ecological category Ecological category

Tiering Mineralogy

1. pelagic 1. aragonite

2. erect 2. low-Mg calcite

3. epifaunal 3. high-Mg calcite

4. semi-infaunal 4. bimineralic

5. shallow infaunal 5. phosphatic

6. deep infaunal 6. chitin

Motility 7. gorgonin

1. fast, motile 8. silica

2. slow, motile 9. soft-bodied

3. facultative, unattached Skeletal physiology

4. facultative, attached 1. Group I

5. stationary, unattached 2. Group II

6. stationary, attached 3. Group III

Feeding Reproduction

1. suspension feeder 1. non-broadcaster

2. surface deposit feeder 2. intermediate

3. miner 3. broadcaster

4. grazer Respiratory protein

5. predator 1. hemerythrin

6. photo-/chemosymbiosis 2. haemocyanin

Geographical range (continuous) 3. haemoglobin

Number of species (continuous) 4. other
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geographical range) are obscured by the lack of data, which would have a negative impact on the
robustness of the trained classifiers’ decisions. After data cleaning, extinction selectivity was
determined based on 635, 649 and 1358 marine genera for the end-Permian, end-Triassic and end-
Cretaceous events, respectively. To investigate if the mass extinction events shared similar extinction
selectivity patterns to ‘background’ time intervals, we also created classifications for each of the
geological stages included in our datasets.
2.2. Ecospace assignments
We characterized each genus according to seven ecological traits: tiering (life position relative to the
sediment–water interface) [50], motility [50], feeding [50], respiratory protein [46], reproduction [51],
mineralogy [46] and skeletal physiology [31,44] (table 1). These assignments were based on the
primary literature and traits of extant relatives, referring to the ecological attribute during a taxon’s
adult life stage [33,39,52–54]. Taxa that occupied multiple functional groups were weighted equally
between the two groups: for example, a genus described as a grazer was weighted as 1 for that
group, whereas a genus classified as both a predator and grazer was weighted as 0.5 for each of the
two functional traits. Number of constituent species and geographical range size have also been
suggested to represent ‘traits’ of genera and potentially good predictors of extinction risk (e.g. [55]).
To estimate geographical range size, we followed Payne & Finnegan [38] and tabulated the number of
tectonic plates (‘geoplates’ in the raw download) on which each genus occurred in each time bin. To
estimate the number of species within a genus, the number of named species for each genus in each
time bin was tabulated. Occurrences without a species name (e.g. sp. or spp.) were assumed to
represent a single species in addition to those that were named. These traits were chosen because they
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have been shown to reveal particular selectivity signals when extinctions are a consequence of climate
change (e.g. [33,43,46,51,56]), and can be applied to all the groups investigated in this study.

Even though the number of total and pre-extinction occurrences were calculated for each genus and
event, and have been included in previous extinction selectivity studies as indicators of sample
comparability (e.g. [32]), they were not included in the analyses here for two reasons. Firstly, the total
number of occurrences is heavily influenced by sampling bias and is, therefore, not a robust indicator
of abundance. Secondly, using such a ‘trait’ would also harm the robustness of the trained classifiers’
decisions on the remaining traits and compromise their inferred role in determining extinction
selectivity. This is due to the earlier removal of genera with less than three total occurrences from the
dataset: if a genus has less than three pre-extinction occurrences, it must have at least one or two
additional occurrences after the event, and, therefore, be a survivor.
l/rsos
R.Soc.Open

Sci.10:221507
2.3. Gradient-boosted trees
We used an open source library for gradient boosting on decision trees (CatBoost [57]) as the model for
predicting survivorship, implemented in Python. Gradient-boosted trees are a form of machine learning
that works by progressively training more complex models to maximize the accuracy of predictions [57].
Gradient-boosted trees have proved to be well suited for determining extinction selectivity in previous
studies [46,47,55]. The CatBoost algorithm provides a measure of each feature’s importance in the
model, here indicating which traits had the greatest overall effect on the classification decision. This
importance measure is implemented as the average change in the model’s prediction value upon a
change in the trait value, referred to as PredictionValueChange. The feature importances are non-
negative, and normalized to sum to 100. For each time interval, we trained 10 models on randomly
chosen train/test splits of the genera with the ratio 8 : 2. All results reported are from the test sets,
unless indicated otherwise. For our cross-extinction analyses, we trained the model on 80% of genera
from one extinction and tested it on all genera from another extinction.

All three mass extinction events were relatively balanced between extinct and non-extinct genera,
with extinction proportions between 0.53 (end-Cretaceous event) and 0.74 (end-Permian event). We,
therefore, do not expect there to have been a negative impact on training adequacy from a class
imbalance for the individual extinction events. However, the difference in extinction rate between
extinction events needed to be taken into account for the cross-extinction analyses. To this end, we
evaluated the performance of our models using receiver operating characteristic (ROC) curves, and
their area under the curve (AUC). The ROC/AUC only depend on the order of the samples, given by
their extinction likelihood predicted from the CatBoost, and do not take into account their absolute
likelihood values. As a result, they are generally insensitive to the different prior/marginal extinction
likelihoods. Moderate differences in extinction rate between our datasets should thus not distort the
ROC/AUC.

To find the best configuration of the CatBoost model, we conducted a hyperparameter optimization,
using a wide grid search on the most important parameters of the model (tree depth, learning rate and L2
regularization). The optimization of hyperparameters did not, however, improve test performance
significantly above the performance using default parameters (see electronic supplementary material,
figure S2). The generally low impact of the hyperparameters on test performance may be attributed to
several reasons. First, the CatBoost algorithm is stable with respect to hyperparameter selection, i.e.
algorithm performance should only be mildly affected by different hyperparameters [57]. Second, the
complexity of the prediction task results is, to a large extent, due to the fact that not all genera in a
functional group have the same status of survival/extinction, but the model can only assign one
prediction to the functional group. This limits the overall performance. Third, the total dataset size is
relatively small compared with those typically used for similar machine learning analyses. The
amount of information that can be learned from the data is, therefore, restricted, and adjusting the
model hyperparameters cannot yield better performance. As a result, we opted to use the default
hyperparameters from CatBoost for our experiments. To quantify the extent of overfitting, we
compared the average difference in AUC score between the training and test sets for each extinction
event. This was 4.5 percentage points (pp) for the end-Permian, 10.0 pp for the end-Triassic and 6.6
pp for the end-Cretaceous. These values indicate only a modest level of overfitting.

To investigate if the mass extinction events had unique extinction selectivity signals, or were simply
an intensification of long-term Phanerozoic extinction patterns, we implemented a principal component
analysis (PCA) on the trait importances for each geological stage included in the datasets. This also meant
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that we could compare the mass extinction selectivity signals with those of several other well-known
extinction and hyperthermals, such as the Palaeocene–Eocene thermal maximum (PETM).

2.4. Shapley additive explanations
To make the predictions from the CatBoost models easier to interpret, we used Shapley additive
explanations (SHAP [58]). SHAP values provide a unified framework for interpreting the feature
importance of model predictions. The concept is based on the Shapley values from cooperative game
theory, where the distribution of a payout is calculated based on the individuals’ contributions to the
size of the payout [59]. In the context of model predictions, this translates to quantifying the
contribution of each feature towards the model output for each individual sample [58]. Positive SHAP
values indicate a positive contribution towards the prediction, in this case extinction, while negative
values point towards survival. Calculating SHAP values provides us with both global and local
interpretations. Global insights let us quantify the (positive or negative) impact of any trait and its
constituent categories over the entire dataset for each mass extinction, facilitated with SHAP summary
plots. For local insights, we can also compute SHAP values for individual traits, visualized with force
plots. For this, we calculate the base value, which corresponds to the average of all predictions from
the dataset. We then calculate the prediction associated with a functional group by adding all
calculated feature contributions to this base value. Our SHAP values were trained on a CatBoost
model for the entire dataset; this is in contrast to the data splits used in the rest of the analyses, which
enable a comparison of model performance. The SHAP values, therefore, reflect a higher proportion
of the available data. Comparing SHAP values for ecological traits enables us to identify patterns of
selectivity within the dataset.
3. Results
3.1. Principal component analysis
The PCA of feature importances recognized by the CatBoost algorithm shows that PCA axes 1 and 2 are
strongly influenced by the number of occupied geoplates (a proxy for geographical range size) and
within-genus species richness, respectively, and are alone the best predictors of extinction for most of
the investigated geologic stages (figure 1 and table 2). The exceptions are the extinction selectivity for
the end-Permian, end-Triassic, end-Cenomanian (OAE2) and end-Cretaceous events, which cluster in
the double negative quadrant of the PCA; during these events, geographical range size and species
richness do not appear to have had a strong influence on extinction selectivity. In addition, the stages
capturing the aftermath of the end-Permian (Induan and Olenekian) and end-Triassic (Hettangian and
Sinemurian) mass extinctions also do not correspond to this otherwise dominant selectivity signal.
This suggests that extinction selectivity during these mass extinction events (and their aftermaths) was
not simply an intensification of long-term Phanerozoic extinction patterns.

3.2. Extinction selectivity
The end-Permian, end-Triassic and end-Cretaceous events record unique extinction selectivity patterns
compared with the other investigated stages of the Phanerozoic (figure 1). One hundred and
seventeen unique functional groups (FG; combinations of traits) were recognized in the stages
immediately prior to each of the three mass extinction events and are listed in electronic
supplementary material, table S1. The number of genera distributed among these functional groups is
different for each pre-extinction fauna, and 55 functional groups were unique to a single event
(figure 2 and electronic supplementary material, figure S1). For example, FG14 is occupied by erect
rudist bivalves that evolved after the Triassic, whereas FG23, which is represented by tabulate and
rugose corals, goes extinct during the end-Permian mass extinction. It is also noteworthy that
functional evenness increases with each subsequent event: the end-Permian pre-extinction fauna has a
low functional evenness and is dominated by a single functional group (FG1; figure 2), while the end-
Triassic pre-extinction fauna has a higher functional evenness, with dominance spread across more
groups (in particular, FG1–FG2 and FG5–FG7). Finally, the end-Cretaceous pre-extinction fauna is
dominated by even more functional groups (in particular, FG2–FG4 and FG8–FG9) and has a more
even spread of genera among functional groups.
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Table 2. The explained variance of each feature per component in the PCA figure 1. Values in italics show significance at p = 0.05.

component 1 component 2

tiering −0.17 −0.24
motility −0.16 −0.10
feeding −0.12 −0.11
respiratory protein −0.02 −0.21
reproduction −0.06 −0.01
mineralogy −0.13 −0.03
skeletal physiology −0.18 −0.19
number of geoplates 0.93 −0.04
number of species −0.09 0.92
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Functional groups present prior to all three events are particularly useful, as they clearly demonstrate
the differences in extinction selectivity between events. Only 31 functional groups were present at all
three mass extinction events. Six of these 31 functional groups had the same selectivity direction
(more likely to survive versus more likely to become extinct) for all three extinction events. Only FG1
and FG2 were consistently at high risk of extinction at each event (figure 2). Interestingly, FG1 became
more resistant to extinction, in that a smaller proportion of genera in the functional group went
extinct at each subsequent extinction event (figure 2). The functional composition of marine
ecosystems has, therefore, evolved and become more even between these events, which increases the
complexity of comparing extinction selectivity.

3.2.1. Machine learning

The area under the curve–receiver operating characteristic (AUC/ROC) (figure 3) visualizes the CatBoost
model performance. This curve plots the true positive rate (proportion of genera correctly identified as
having become extinct) against the false positive rate (proportion of surviving genera incorrectly
classified as having become extinct) across different decision thresholds. An AUC of 1 indicates
perfect classification, while an AUC of 0.5 indicates a random classification that has no utility. An
AUC of greater than 0.7 is typically considered representative of a good model [60]. The resulting
AUC/ROC curves show that the CatBoost algorithm is a good classification model for interpreting
extinction selectivity for each event, with an AUC of 0.80, 0.72 and 0.72, for the end-Permian, end-
Triassic and end-Cretaceous events, respectively (figure 3). The AUC/ROC also show that training the
algorithm on one mass extinction event generally does not yield accurate predictions of extinction
selectivity for other mass extinctions, with four of the six combinations having AUCs ranging from
0.53 to 0.61 (figure 3). This shows that extinction selectivity significantly varies between each mass
extinction event, and that extinction selectivity at one mass extinction cannot be assumed to predict
the selectivity of a different event. However, the algorithms trained on the end-Triassic and end-
Cretaceous events, when applied to the end-Permian event, perform better than any other
combination, with AUCs of 0.69 and 0.70, respectively (figure 3). This is because the end-Permian
event was dominated by only a few functional traits that must be predicted to achieve an accurate
result, and those groups typically suffered elevated extinction proportions during all three events.
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Exploring the importance of different traits between mass extinction events further emphasizes that
extinction selectivity varied between each event (figure 4). Comparing the trait importance values
between each event, significant differences in their ranking and absolute values can be observed. For
the end-Permian mass extinction, mineralogy was the single most important trait for predicting
extinction selectivity (figure 4). At the end-Triassic mass extinction, tiering (which was one of the least
important traits at the end-Permian event) became the most important feature, along with skeletal
physiology. At the end-Cretaceous event, tiering was again the most important trait, and its
importance continued to increase following the end-Triassic (figure 4). Skeletal physiology also
remained important at the end-Cretaceous event (figure 4).
3.2.2. Shapley additive explanations summary plots

SHAP values reveal the importance of dataset variables (traits) and categories (trait states) for predicting
an outcome. Here, positive SHAP values suggest that the algorithm is using the trait state to predict that
a genus will go extinct, whereas negative SHAP values indicate that the trait state will be used to predict



20

15

10

5

P/Tr

Tiering

Motility

Feeding

Res. protein

Reproduction

Mineralogy

Physiology

Geoplates

No. species

Tr/J
Extinction event

Fe
at

ur
e 

im
po

rt
an

ce

K/Pg
0

Figure 4. Relative importance of traits across the different mass extinction events as provided by the CatBoost algorithm. Results
were obtained from averaging across the 10 models. Error bars show ±1 standard error from the mean estimate. P/Tr = end-Permian
event, Tr/J = end-Triassic event and K/Pg = end-Cretaceous event.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221507
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 

that the genus will survive (e.g. figure 6). SHAP values near 0 will, therefore, have a smaller effect on the
predictions than values near 1 or −1.

The SHAP summary plots (figure 5) show that selectivity patterns associated with a genus’s
mineralogy and skeletal physiology, which are important predictors of extinction, are completely
different for each event. For the end-Permian mass extinction, mineralogy is an important predictor of
extinction; the SHAP values show that this is because genera that constructed their shell from low-Mg
calcite mostly became extinct, and genera that constructed phosphatic shells, or did not have shells,
were more likely to survive (figure 5 and table 1). This shows that it was not only FG1 that was
selected against at the end-Permian event, as qualitatively observed in figure 2, but instead most
functional groups with low-Mg calcite shells (figure 5). This finding demonstrates how a machine
learning approach can reveal the commonalities of extinction selectivity between the different
functional groups.

Skeletal physiology is an important predictor of extinction for both the end-Triassic and end-
Cretaceous events. The SHAP values also show that even though skeletal physiology is not as
important at the end-Permian as the other two events, there is still a clear pattern of extinction: for
genera categorized as Group III (skeletons made of materials other than calcium carbonate), or genera
categorized as Group I (skeletons made from calcium carbonate that was massive with respect to
supporting organic tissue and formed from fluids minimally buffered by physiology), physiology is
an important predictor of extinction, whereas genera categorized as Group II (calcium carbonate
skeleton of moderate mass with respect to supporting living organic tissue and formed from fluids
that are relatively well buffered) have SHAP values near 0 (figure 5), indicating that physiology is not
a predictor of extinction for this trait category. The end-Cretaceous shows an inverse physiological
selectivity pattern to the end-Permian: genera categorized as Group III were susceptible to extinction,
and those categorized as Group I generally survived. The end-Triassic also shows a unique selectivity
pattern, with genera categorized as Group III and categorized as Group I preferentially going extinct
(figure 5). Overall, physiology is a good predictor of extinction, but patterns of selectivity for different
categories within a trait were not always consistent between extinction events, which is why the
machine learning algorithm cannot use one mass extinction to reliably make predictions about another.

The SHAP summary plots show that the most consistent selectivity patterns between all three events
were for tiering and feeding. Tiering was one of the most important traits for selectivity during the end-
Triassic and end-Cretaceous events (figure 4). The SHAP values show a clear pattern, with pelagic and
erect taxa preferentially going extinct, while semi-infaunal, shallow infaunal and deep infaunal taxa
preferentially survived. Another selective pattern seen in the SHAP values for all three events, but
clearest at the end-Cretaceous, is that suspension feeders, predators and genera with symbiotic feeding
styles were selected against (figure 5). Despite this clear selectivity pattern, feeding in general is not a
good predictor of extinction selectivity.
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3.2.3. Shapley additive explanations force plots

One issuewith comparing extinction selectivity between events is the different functional composition ofmarine
communities prior to eachmass extinction event. SHAP force plots enable us to explore selectivity patterns for a
single functional group at each event and, therefore, serve as a fairer test for comparing extinction selectivity.
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Functional Group 1 (FG1) is one of the most abundant functional groups in our total dataset, and is
composed of brachiopods and bryozoans. The SHAP force plot for this group (figure 6) shows that while
FG1 was selected against during each event, and each algorithm predicted extinction for this group, the
importance of the individual trait categories possessed by this group is different for each event. For
example, skeletal physiology is the most important trait for predicting extinction at the end-Permian
and end-Triassic events. However, the second-most important trait during the end-Permian is the
functional group’s mode of reproduction, while the second-most important trait during the end-
Triassic is their tiering. FG2 is the next most abundant in our dataset, which is composed of predatory
cephalopod genera. Similar to FG1, FG2 is predicted to go extinct at each event, but the underlying
SHAP values for each ecological trait are ranked differently (figure 7). What is consistent, however, is
that this group’s aragonitic mineralogy and pelagic tiering are strongly associated with its selective
extinction at each event (figure 7). The SHAP force plots confirm the summary SHAP plots in that the
selectivity pattern for each extinction event was unique.
4. Discussion
4.1. Mass extinctions alter selectivity regimes
Our analyses and previous studies (e.g. [38,55]) show that throughout geologic history, geographical
range size and within-genus species richness have been the key determinants of extinction at generic
level. However, mass extinctions, their aftermaths, and the end-Cenomanian (OAE2) extinctions,
served as exceptions to this rule (figure 1). Understanding extinction selectivity during intervals with
low extinction rates is difficult because the small number of victims during these time intervals,
compared with the much larger numbers of survivors, makes it difficult to find significant
relationships or produce a model that can predict the extinctions (see also [34,46,61]). In spite of this,
our results show a clear distinction in the traits linked to extinction and survival between these two
different extinction regimes.

The importance of geographical range size in extinction selectivity during ‘background’ intervals
(those with relatively low extinction rates) is supported by a vast body of previous literature
demonstrating that geographical range size is significantly and positively associated with survivorship
for most of the Phanerozoic [29,38,55,62–64]. While sometimes dismissed as heavily influenced by
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sampling bias, a recent simulation study has indicated that the geographical ranges of extinct animals can
be reliably reconstructed from the fossil record [65], although using different metrics to the one applied
here. Geographical range size is likely to be a good predictor of extinction risk because genera with wide
ranges, especially those that span different climate zones, are probably tolerant of a wider range of
environmental conditions, and hence are less vulnerable to climate change. Large geographical ranges
also buffer taxa from extinction when subjected to stresses affecting limited geographical areas [62].
Mass extinctions and some second-order extinction events, however, do not exhibit geographical range
selectivity, a finding supported by previous literature [38,40]. These events are likely to be so severe in
their taxonomic losses because of the geographically widespread nature of environmental disturbance
during these intervals, meaning that at these times, a large geographical range no longer confers an
advantage. This is supported by the extinction of genera with similar ecological and skeletal
physiological characteristics, but different spatial distributions across the globe, during such events [38].

Previous research has also shown that during background intervals, rarity (taxa with small
geographical ranges, narrow habitat tolerances, small populations or any combination thereof),
within-genus species richness and genus age are good predictors of extinction [42,55,62,66]. However,
these factors have been shown to positively correlate with one another, and are often calculated in
ways which render them interdependent (e.g. number of localities is a proxy for abundance in [66]),
making it difficult to determine which is most important in determining extinction risk [42]. The
importance of within-genus species richness, as supported by this study, can be explained in that
genera with a high number of species would generally be expected to contain a larger pool of genetic
and trait variation and, collectively, tolerance of a wider range of environmental conditions [46]. There
will, however, be exceptions, as the breadth of environmental tolerances of individual species are
highly variable (e.g. [67]).

4.2. How predictable are mass extinction events?
Our results show that extinction selectivity is not consistent between the end-Permian, end-Triassic and end-
Cretaceous mass extinction events, both in terms of the importance of particular traits (figure 5) and the
influence of specific trait states (figure 6). Selectivity models trained on one mass extinction are generally
a poor fit to other events (figure 3). Extinction selectivity during mass extinctions, therefore, appears to be
unpredictable. It might be expected that functional groups would experience the same outcome (i.e.
would preferentially survive or go extinct) during each mass extinction, but this was only true for six of



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221507
14

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 

the 31 functional groups present at all three events. In some functional groups, such as FG1, this is because
they became increasingly resistant to extinction during each subsequent event (figure 2).

It is reasonable to have expected that the end-Permian and end-Triassic mass extinctions had similar
selectivity patterns, as both were caused by LIP volcanism, in contrast to the bolide-impact-driven end-
Cretaceous mass extinction. The end-Permian and end-Triassic also occurred only approximately 50 Myr
apart, whereas approximately 140 Myr elapsed between the end-Triassic and end-Cretaceous mass
extinctions. A likely selective similarity between the end-Permian and end-Triassic mass extinctions
has often been asserted in previous literature (e.g. [43,68]), but is rarely thoroughly investigated. We
found no evidence of this similarity, with all three mass extinctions showing unique patterns of
selectivity. Even though the end-Triassic and end-Cretaceous mass extinctions appear to have been
more similar in their extinction selectivity, with tiering and skeletal physiology being the best
predictors of extinction (figure 4), the trait states selected for and against were different (figure 5).
This result highlights the importance of looking at higher resolution, multi-state characters when
investigating extinction selectivity, as previous studies investigating binary trait characteristics of
motility, tiering, body size and skeletal physiology have not uncovered this nuance.

One explanation as to why extinction selectivity during mass extinctions is so difficult to predict is
that mass extinctions and the diversification events that follow them are highly selective [44,61,69],
fundamentally altering the taxonomic and functional composition of the oceans [70–72]. This created
stark differences between pre-extinction faunas, shifting the ecological baseline on which each
subsequent mass extinction acted (figure 2). A clear shift in the dominant evolutionary fauna occurred
across the end-Permian mass extinction [70,71]. The transition from the Mesozoic to Cenozoic faunas
occurred throughout the Cretaceous [71,73], a transition attributed to the Mesozoic Marine Revolution
(MMR; a predator–prey arms race that stimulated the evolution of animals into functional innovation),
which caused an increase in functional space occupation and evenness [54]. The MMR is a key
diversification interval because benthic energy budgets are thought to have increased during this time
due to changes in primary productivity, and there was a shift towards the ecological dominance of
more metabolically active clades, such as predators [74]. The MMR also coincides with the evolution
of phytoplankton lineages (nannoplankton, dinoflagellates and diatoms) that fundamentally altered
how rapid carbon injection would manifest in the oceans [75]; for example, the evolution of calcareous
nannoplankton in the Triassic [76], planktic foraminifera during the Jurassic [77] and diatoms during
the Cretaceous [78] would each have hindered the development of widespread ocean acidification.
This could explain why we did not see extinction selectivity patterns that might be expected under
acidic oceanic conditions, particularly in traits such as mineralogy and skeletal physiology.

Our results indicate a gradual increase in the number of dominant functional groups, and the evenness
of their abundances, with each subsequent pre-extinction fauna (figure 2). Functional composition changes
occur as genus-rich functional groups experience the highest extinction rates and lose their dominance,
while previously subordinate and new functional groups radiate, resulting in the evening out of
taxonomic diversity across ecological modes [39,72]. Roopnarine [79] also demonstrated that an increase
in ecological complexity (taxonomic and functional richness) leads to an increase in ecosystem resilience
to secondary extinctions. Each subsequent extinction event studied here affected a more ecologically
complex ecosystem than the last, and this probably influenced the observed contrast in selectivity
regimes between them. In addition, Knope et al. [72] found that subsequent mass extinctions have
resulted in an increased coupling between taxonomic differentiation and modes of life over the course of
the Phanerozoic, which in turn has also driven increased functional evenness.

4.3. Implications for the present
An important tool for policy making, to try and prevent a projected biodiversity crisis, is being able to
make predictions on (i.e. forecast) the extinctions that will occur in the face of future abrupt Earth system
changes [3,6,7,80]. If palaeontologists can detect consistent selectivity patterns over geologic time, or link
extinctions with certain drivers (e.g. the effects of rapid climate warming) then we can start to make
predictions about the relative vulnerability of different clades to extinction in the future. The fossil
record presents us with opportunities to examine and compare extinction selectivity during intervals
of varying extinction intensity [61,64]. It is clear from our results and previous research [33,38,46,56]
that time intervals with low extinction rates and mass extinctions do not record the same selectivity
patterns. Traits which may aid survival during most of geologic history may not confer the same
advantage during mass extinctions. As a result, a large geographical range and a high number of
constituent species may not ensure that a modern genus will be resilient to extinction.
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Overall, our results indicate that patterns of extinction selectivity have contrasted between past mass
extinctions. Given that models trained on one mass extinction were a poor fit for another, it is not possible
for us to use these models to make inferences about future extinctions, at least for marine invertebrates.
The baseline functional composition and ecological structure of the oceans on which the mass extinctions
were acting was different for each subsequent event, and would also be different for a projected
biodiversity crisis. Gaining a better understanding of the state of the modern oceans, particularly
developing our knowledge of extant clades that are well represented within the fossil record, may
provide insights into which, if any, past mass extinctions acted on a similar functional baseline.

4.4. Future research directions
Insight into the predictability of extinction selectivity may yet be gained via studies that focus on
individual clades, compare events across a shorter time frame (within which there are no transitions
between evolutionary faunas) or consider intervals of intermediate extinction severity. One example is
Raja et al. [48], which investigated the extinction selectivity of functional traits specific to corals from
the Plio-Pleistocene. Their models showed that if selective extinction pressures are consistent with a
projected biodiversity crisis, the International Union for Conservation of Nature (IUCN) have
probably underestimated the extinction risk of a high proportion of extant corals. Similarly, Tietje &
Rödel [47] investigated several traits of living amphibian species with a fossil record and found that
species longevity was a good predictor of extinction risk, and that data-deficient species had a high
extinction risk. It may be more informative for future research to focus on geological intervals with
heightened extinction levels (although not necessarily classed as ‘mass extinctions’) when inferring
extinction risk, for example different hyperthermals in the Mesozoic and Cenozoic [15], in order to
make the closest comparison with future climate predictions.

An alternative way to potentially improve extinction selectivity models is to add or change which traits
are included, but this should also be done with caution. Including too many factors in an analysis can lead
to overfitting, and some previous studies have taken the approach of investigating multiple simple models
with different variable configurations to avoid this (e.g. [64]). However, both gradient boosting algorithms
and recursive feature elimination in the model reduce overfitting of the data. A key functional trait that
could be included in future analyses is body size, which is relevant because it controls the rate at which
an organism uses energy and resources. In addition, body size has previously been found to be a good
predictor of extinction in the marine realm over the Phanerozoic [43,69,81]. Extinction selectivity based
on body size has also been found to show different patterns between intervals with low extinction rates
and mass extinctions: during intervals with low extinction rates, smaller species are preferentially lost,
while during mass extinctions, typically larger species preferentially go extinct [69,82]. Body size
changes across mass extinctions are very dynamic (e.g. [83]) and currently there is not enough data on
the body size changes of surviving genera to include this factor in a dynamic way in our analysis. As
highlighted by Finnegan et al. [55], other ecological traits that could potentially be investigated (many of
which are important predictors of extinction in modern assessments) include ontogeny, number of births
per year, life span, habitat preference and trophic position.

In palaeobiological extinction selectivity studies, the extinction of species is almost always assumed to
have been directly linked to significant abiotic stress, such as thermal stress, acidification or anoxia.
However, ecological theory suggests that extinction dynamics are most effectively studied within a
community framework, where information about biotic interactions among taxa can be taken into
account. Such interactions may accentuate or buffer the responses of individual taxa from abiotic
(primary) drivers of extinction [84,85]. In fact, many victims of past extinction events are unlikely to
have become extinct as a direct effect of abiotic stress, but probably did so in response to cascading
‘secondary’ effects [79,86]. It is likely that some of the extinctions at lower trophic levels observed
here, such as selectivity against suspension feeders, can be qualitatively linked to one of the
aforementioned abiotic drivers, but other prominent extinction patterns, such as the high levels of
extinction amongst predatory taxa, are harder to explain in the absence of extinction cascades.
Modelling food web networks could provide insight into biotic influences on extinction dynamics.
5. Conclusion
Our functional trait-based model of extinction risk, which used a machine learning algorithm (categorical
gradient boosting on decision trees), indicated that extinction selectivity was not consistent in marine
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invertebrates between the end-Permian, end-Triassic or end-Cretaceous events. This means that
predictive models of extinction risk for subsequent mass extinction events could not be generated
using our functional trait-based approach. This lack of predictability is attributed to the importance of
the taxonomic and functional baseline on which a mass extinction acts, the evolution of new
organisms and changes to global biogeochemical cycling and the wider Earth system. In addition, our
results show that mass extinctions have unique extinction selectivity patterns to other time intervals,
meaning that ‘background’ extinction selectivity signals also cannot be used to make predictive
models for mass extinctions. Our analyses indicate that there is no clear set of traits which leave
a clade vulnerable during mass extinctions, a result which is of limited utility when inferring
extinction risk in the face of projected climate change. However, the fossil record may still provide
insight into extinction selectivity within clades and across shorter time scales. Finally, our
approach also demonstrates the utility of machine learning algorithms for quantifying extinction
selectivity patterns.
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