
Supplement of Atmos. Chem. Phys., 23, 4819–4847, 2023
https://doi.org/10.5194/acp-23-4819-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Evaluating Arctic clouds modelled with the Unified Model and Integrated
Forecasting System
Gillian Young McCusker et al.

Correspondence to: Gillian Young McCusker (g.y.mccusker@leeds.ac.uk) and Ian M. Brooks (i.m.brooks@leeds.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.



 

 

Supporting Information 1 

S1 Cloudnet 2 

S1.1 Cloud fractions 3 

Cloudnet produces a cloud fraction variable, 𝐶𝑉, in each model output file, which represents the Cloudnet cloud fraction 4 

calculated from observational data (from radar, lidar etc.) combined with the temperature and humidity profiles defined by the 5 

filename. For example, 𝐶𝑉 in the UM_RA2M output corresponds to model temperature and humidity profiles combined with 6 

retrieved cloud properties from the remote sensing instruments on board Oden to produce a defined cloud fraction. These 𝐶𝑉 7 

variables from the observation, UM_RA2M, and ECMWF_IFS Cloudnet output files are shown in Fig. S1. Obs_Cv represents 8 

the measured/retrieved temperature profiles with reference to the radar vertical grid. Figure S1 therefore demonstrates that the 9 

chosen grid on which the 𝐶𝑉 data are shown have little impact on the mean profile. 10 

 

Figure S1: Comparison of cloud fraction (𝐶𝑉) on native radar (Obs), IFS (Obs_IFS), and UM LAM (Obs_UM) vertical grid. 

Poor comparisons between modelled and observed cloud fractions is a perennial problem in climate science, and our results 11 

indicate that the large-scale cloud scheme used to represent sub-grid-scale variability in the 𝑅𝐻 field may be responsible for 12 

producing particularly poor comparisons with observations. Cloudnet represents sub-grid-scale variability in observed cloud 13 

fractions by assigning a value of 0 or 1 at each vertical point, dependent on whether there is any form of cloud water present 14 

(including frozen precipitation), before data are averaged from the raw sample frequency to the model grid. This assignment is 15 

not necessarily equivalent to a model’s bulk cloud fraction by volume, 𝐶𝑉, given the parameterisation of sub-grid-scale 16 



 

 

processes in models is imposed after the calculation of advected parameters. This discrepancy is not a new finding; Illingworth 17 

et al., (2007) noted the UM – both global and mesoscale variants using the Smith (1990) large-scale cloud scheme – had 18 

difficulty with simulating completely cloudy grid boxes. Similarly, Hogan et al. (2001) have previously shown that the 19 

ECMWF IFS underpredicts the fraction of observed cloud below 7 km. 20 

Cloud fractions are diagnostic for UM_RA2M and UM_CASIM-100 (following Smith, 1990); prognostic for ECMWF_IFS 21 

and UM_RA2T (using PC2 scheme; Wilson et al., 2008). Both diagnostic and prognostic approaches use the instantaneous 22 

condensation assumption applied to a PDF of moisture and temperature (Bush et al., 2020). In the Smith (1990) scheme, the 23 

liquid and ice cloud fractions, 𝐶𝑙𝑖𝑞  and 𝐶𝑖𝑐𝑒 , are diagnosed from prognostic grid-box mean liquid and ice mass mixing ratios, 24 

𝑞𝑙𝑖𝑞´  and 𝑞𝑖𝑐𝑒´  (Wilson et al., 2008; Bush et al., 2020), which are then combined assuming minimum overlap to compute 𝐶𝑉. 25 

The 𝐶𝑙𝑖𝑞  would be 0.5 when the grid-box mean total specific humidity is at saturation for the given temperature, since the 26 

parameterisation PDF of sub-grid-scale variability in 𝑅𝐻 and temperature is symmetric (Wilson et al., 2008). The Smith (1990) 27 

scheme was designed this way to keep the 𝑅𝐻 and bulk cloud fraction at realistic values (less than 1) over large grid-boxes. In 28 

our UM simulations, this cloud fraction is supplemented by an empirical adjustment based on aircraft observations (Wood and 29 

Field, 2000) which affects the rate at which cloud fraction increases once 𝑅𝐻𝑐𝑟𝑖𝑡  is reached, increasing 𝐶𝑉 up to 0.7 at 100% 30 

𝑅𝐻; however, this adjustment is still insufficient to attain the cloud fractions approximately equal to 1 obtained from our 31 

observations. 32 

Both the PC2 scheme in UM_RA2T and the cloud scheme in ECMWF_IFS are based on Tiedtke (1993); both use prognostic 33 

cloud fraction and condensate variables, with the former calculated directly from condensate sources/sinks rather than being 34 

linked to the grid-box mean liquid water mixing ratio (as in the Smith 1990 scheme; Forbes and Ahlgrimm, 2014). In the 35 

PC2 scheme, 𝐶𝑙𝑖𝑞  is not diagnosed from 𝑞𝑙𝑖𝑞´ ; therefore, autoconversion does not affect 𝐶𝑙𝑖𝑞 , but does alter 𝑞𝑙𝑖𝑞´ , allowing thin 36 

clouds with low 𝑞𝑙𝑖𝑞´  to maintain a high 𝐶𝑙𝑖𝑞  (Wilson et al., 2008; Bush et al., 2020). Given the results described here, it appears 37 

that this functionality is critical to replicating cloud fractions comparable to those calculated from observations using Cloudnet. 38 

UM_RA2T also has the extra source of sub-grid turbulent production of mixed-phase cloud; in a test with this option switched 39 

off it was found that this process does not account for the improved cloud fraction comparison with observations (Fig. S2). 40 



 

 

 

Figure S2: 𝐶𝑉 (a) observed and modelled by (b) UM_RA2T without sub-grid turbulent production of mixed-phase cloud 

switched on (UM_RA2T_noTurbMP), (c) UM_RA2T, and (d) UM_RA2M for a subset of the drift period (1 Sep to 6 Sep), 

illustrating that the inclusion of this sub-grid process does not account for the high cloud fractions modelled by the 

UM_RA2T case. 

With 3 separate cloud fractions instead of one total fraction (as represented in Smith, 1990), the PC2 scheme can represent 41 

overlap between the liquid and ice fractions, i.e., a mixed-phase cloud fraction (Wilson et al., 2008). This ability is likely 42 

important in reproducing the common mixed-phase clouds in the Arctic. The liquid cloud fraction represented by PC2 is 43 

equivalent to the total cloud fraction diagnosed by Smith (1990), whereas the ice cloud fraction is calculated from the 44 

prognostic 𝑞𝑖𝑐𝑒 . The total cloud fraction is then the volume of a grid-box containing cloud, calculated assuming minimum 45 

overlap, between the liquid and ice cloud fractions (Wilson et al., 2008). As such, PC2 can represent a wide range of 𝐼𝑊𝐶 for 46 

the same cloud fraction, whereas this relationship is fixed for a given temperature with the Smith (1990) scheme. 47 

It is important to note that any frozen precipitation measured below an upper cloud layer will also be classed as cloud by 48 

Cloudnet. Some of the discrepancy in cloud fraction may then be due to observed precipitating clouds masking several cloud 49 

layers, while this layering may be captured by our models. However, one must note that the Wilson and Ballard (1999) 50 

microphysics scheme makes this same assumption regarding frozen precipitation. Alternatively, little-to-no precipitation 51 

between layers in our models would negatively affect this cloud fraction comparison. By treating all cloud ice the same, it may 52 

be difficult to distinguish between multi-layered clouds using Cloudnet if any are precipitating. 53 



 

 

In summary, our data highlight the difficulty of diagnostic cloud fractions, such as that computed by the Smith (1990) scheme, 54 

to produce fully cloudy grid boxes on fine grid scales and indicate that models represent cloud fractions in different ways; 55 

therefore, cloud water content analyses should be conducted in addition to cloud fraction comparisons when studying Arctic 56 

clouds to provide a more robust model-observation comparison than using cloud fractions alone. Figure S3 demonstrates how 57 

using a 𝑇𝑊𝐶 threshold to define in- and out-of-cloud regions can give a more consistent comparison between the observations 58 

and models. 59 

S1.2 Averaging observations to model grid 60 

Liquid and ice water contents are calculated at Stage 2a of Cloudnet (Illingworth et al., 2007) using the various measured 61 

inputs described in Sect. 2.2 of this study and referencing the radar height grid and time resolution. For comparison with 62 

numerical models, Cloudnet includes several additional functions in Stage 2b to average these observational data on to the 63 

corresponding model grids in a consistent manner.  64 

Observational data are split into each model grid box then statistics are calculated, e.g., grid-box mean liquid water content. To 65 

ensure that there are enough data present in each box, a quality factor is applied: this factor is defined by default to be related 66 

to 90% of the grid box size, designed at Cloudnet’s creation to ensure that there were enough observational data within each > 67 

10 km model grid box for meaningful statistical comparisons. However, we found that this high value for the quality-control 68 

factor was too efficient in filtering out data with our higher spatial resolution (1.5 km) grid boxes.  69 

This factor was reduced to 10% or 30% respectively for the IFS and UM grids utilised in this study to reduce the number of 70 

profiles required for meaningful statistics within each 4D box. Code failures relating to too few data restricted the UM quality 71 

factor being reduced further than 30%, but this is unsurprising given each box is 1.5 × 1.5 km in this study.  72 



 

 

 

Figure S3: Comparison of cloud masks built using the in-cloud 𝑇𝑊𝐶 threshold described in Sect. 2.4. 𝑇𝑊𝐶 is calculated 

using all 𝐿𝑊𝐶 and 𝐼𝑊𝐶 data, then thresholding is applied. 
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S2  Model surface albedo 75 

As mentioned in the main body of this study, the IFS is coupled to a simple 0.25° resolution sea-ice model (Louvain-la-Neuve 76 

Sea Ice Model, LIM2) which provides sea ice fractions to the IFS and the surface flux tiling scheme (Buizza et al., 2017; 77 

Keeley and Mogensen, 2018). The surface energy balance over the sea ice fraction is, however, calculated separately from 78 

LIM2 using an albedo parameterisation following Ebert and Curry (1993) with fixed monthly climatology values interpolated 79 

to the actual time, and a heat flux through the ice calculated using a constant sea-ice thickness of 1.5 m. 80 

The surface albedo parameterisation used within the global and regional UM is dependent on ice surface temperature, where 81 

the relationship itself is unchanged from Birch et al. (2009). Both UM_RA2M and UM_RA2T use the default Regional 82 

Atmosphere surface albedo thresholds, giving a 50% albedo at 0 °C which increases to 80% at –10 °C. Gilbert et al. (2020) 83 

tested both configurations for polar cloud modelling over the Antarctic Peninsula, finding that the surface albedo was modelled 84 

to within 2% of observed values. 85 

For UM_CASIM-100, we adapted the warm ice temperature albedo of the LAM to 72% (at 0 °C), with 80% albedo achieved 86 

at –2 °C, to match the parameterisation limits currently used in the JULES (Joint UK Land Environment Simulator) surface 87 

scheme of the Global Atmosphere 6.0 global model (under the assumption that snow is present on the sea ice surface). For the 88 

drift period, we know that snow was indeed present on the surface from first-hand knowledge and surface imagery.  89 

 

Figure S4: Surface albedo estimated from surface images of ice cover taken from the ship (Obs, black crosses) and 

diagnosed by the models. 

Figure S4 shows model surface albedo as a function of time throughout the drift period, with estimations from ship-based 90 

observations shown as black crosses. The largest discrepancy between the models is during the melt period of the drift (before 91 

28 Aug): UM_CASIM-100 performs well with comparison to our estimations; however the other three simulations 92 

underestimate by approximately 20%. Agreement between the models improves during the freeze when the surface temperature 93 



 

 

begins to fall; however, our few observational data points during this period suggest that the models are still underestimating 94 

albedo by approximately 10-15%. 95 

While this comparison suggests that the models are performing poorly with regards to surface reflectivity, one must note that 96 

the models are representing the albedo of a 1.5/9 km grid box (UM/IFS, respectively) while the observed estimates are taken 97 

from the area immediately surrounding the ship. Therefore, any reduction in model albedo due to e.g., melt ponds or leads 98 

would not be accounted for in our observational estimates. 99 

 

Figure S5: 𝑆𝑊𝑛𝑒𝑡, 𝐿𝑊𝑛𝑒𝑡 , and 𝑅𝑛𝑒𝑡 simulated by UM_CASIM-100 with albedo options for the Regional Atmosphere version 2 

(UM_CASIM-100_RA2-alb; grey), updated Global Atmosphere version 6.0 (UM_CASIM-100_GA6-alb; green) used in the main 

body of this study, and UM_RA2M (dark blue) for reference. Hourly-averaged measurements on board the ship (black) shown for 

comparison. LHS: timeseries; RHS: PDFs. PDFs are split between melting and re-freezing sea ice conditions using a threshold of 28 

Aug as indicated by the grey vertical dashed line in panels (a), (d), and (g). Radiation terms are defined as positive downwards. Sub-

periods used in subsequent sections are marked (red) in panel (g). 

Figure S5 shows the surface radiative balance modelled in UM_CASIM-100 (as Fig. 2, here labelled UM_CASIM-100_GA6-100 

alb) and UM_CASIM-100 with the default Regional Atmosphere limits for the surface albedo parameterisations used (labelled 101 

UM_CASIM-100_RA2-alb, as used in UM_RA2M and UM_RA2T). Figure S5 therefore shows that the cloud physics 102 



 

 

representation of UM_CASIM-100 does still improve radiative interactions, with comparison with our observations, over 103 

UM_RA2M (and UM_RA2T, not shown). Thus, the surface albedo updates are not the sole cause of its improved performance 104 

over the operational UM schemes; however, the combination of the updated surface albedo (to represent snow on sea ice) and 105 

improved cloud microphysical representation (from the CASIM scheme) yields the best UM comparison with observations (as 106 

presented in the main body of this study). Also note that changing the surface albedo settings within the UM framework has 107 

little effect on the modelled cloud microphysics (Fig. S6). 108 

 

Figure S6: Mean liquid (left) and ice (right) water contents modelled by the UM CASIM simulations with the updated GA6 

albedo settings (green, as UM_CASIM-100 in the main body of the study) and the default RA2 albedo settings (as described 

in this section). Observations are again shown in black, as Figure 4. 

S3  Point versus swath comparison 109 

This study centres on the extraction of the ship’s location hourly from the model datasets considered; it is a direct, one-to-one 110 

comparison between the model fields and the measurements. However, such model evaluations can benefit from considering a 111 

swath of data over a given area surrounding the observations to account for spatial and temporal heterogeneity in the model 112 

fields. 113 

In this section, we show how such an approach may influence the main findings of this study, using the UM_CASIM-100 data 114 

as illustration. Two swath areas were designed dependent on the location of the ship during its drift to coincide with the 115 

changing ship track (shown in Fig. S7): the first (in black) is used between 14 Aug (start of drift) and 2 Sep, while the second 116 

(in grey) is used between 3 Sep and 14 Sep (end of drift). As such, the first swath covers 21  50 grid boxes and the second 117 

covers 72  20 grid boxes in the LAM grid. 118 



 

 

 

Figure S7: Two swath areas designated for model-observation comparisons. (1) Black hatched region: 14 Aug – 2 Sep, (2) 

Grey hatched region: 3 Sep – 14 Sep. Ship track colour changes from orange to red at 3 Sep to aid interpretation. 

𝐶𝑉, 𝑞𝑙𝑖𝑞 , and 𝑞𝑖𝑐𝑒  data extracted from UM_CASIM-100 using the point and swath comparison methods are shown in Figure 119 

S8. In contrast to the main body of this study, we show median profiles over the drift (supplemented by  one standard deviation 120 

in shading) for fair comparison as the swath analysis considers far more data points than the point comparison (thereby 121 

potentially influencing the mean more so than the median of the distribution).  122 

𝐶𝑉 and 𝑞𝑙𝑖𝑞  vary only subtly between the two data extraction methods and between the two seasons; however, somewhat larger 123 

differences between the point and swath comparisons are evident in the 𝑞𝑖𝑐𝑒  data during the freeze period (Fig. S8). Between 124 

1.5 and 9 km, the swath extraction method produces a median 𝑞𝑖𝑐𝑒  that is consistently smaller than that which was achieved 125 

using the point comparison, though it is important to note that the median modelled 𝑞𝑖𝑐𝑒  is low in both data extraction scenarios. 126 

Modelled cloud ice has a greater degree of spatial and temporal heterogeneity than the cloud fraction or cloud liquid and is 127 

therefore affected by the amount of data included in the sample for consideration. During the melt period, the cloud ice content 128 

is consistently low, but non-zero, and this “background” state of low cloud ice content continues during the freeze period. 129 

However, with colder air temperatures during the freeze, there are also more sporadic occurrences of higher 𝑞𝑖𝑐𝑒 , acting to 130 

increase the standard deviation of the data at most heights. The increased sample size in the swath analysis therefore acts to 131 

slightly reduce the median cloud ice content and its variability (over one standard deviation) with comparison to the point 132 

comparison, as the sporadic high ice content clouds are less common than the “background” low ice content clouds. 133 

This additional perspective highlights that the cloud fraction and cloud liquid water content analysis included in the main body 134 

of this study are robust; however, the heterogeneity of the ice phase in these clouds affects the 𝑞𝑖𝑐𝑒 comparisons and must be 135 

approached with some caution. As the ice phase was not the focus of our study, and we have noted its variability in our analysis, 136 

the conclusions reached from the point comparisons of this study would be unaffected by the use of the swath, rather than the 137 

point, comparison. 138 



 

 

 

Figure S8: Comparison of 𝐶𝑉, 𝑞𝑙𝑖𝑞 , and 𝑞𝑖𝑐𝑒  data from UM_CASIM-100 over the melt (a—c) and freeze (d—f) period of the 

ship’s drift. Median profiles of each quantity are shown, with  one standard deviation in shading. (a, d): 𝐶𝑉, (b, e): 𝑞𝑙𝑖𝑞 , and 

(c, f): 𝑞𝑖𝑐𝑒 .  

S4 Error propagation from GLM to LAM 139 

In Section 3.3.1, we discuss how the initial conditions of the driving model can affect the thermodynamic biases of the UM 140 

LAM. A test simulation (UM_RA2M-ERAI-GLM) was conducted using ERA-Interim to initialise the global model instead of 141 

the Met Office analyses over a subset of the drift period, and Figure 11 shows that the lower atmosphere behaves more like 142 

ECMWF_IFS than the UM_RA2M simulation.  143 

Figure S9 shows the temperature and moisture biases from the two global model initial condition datasets considered: the UM 144 

global analyses and ERA-Interim. Note that only 6 profiles are shown (corresponding to 1200 UTC) for each dataset in Figure 145 

S9, in contrast to Figure 11 which includes 6-hourly data (24 profiles in total). A key point to note is that both initial condition 146 

datasets lack strong thermodynamic biases below 2 km; biases such as that exhibited by both UM_RA2M and UM_RA2M-147 

ERAI-GLM. This lack of strong low altitude thermodynamic biases in the initial conditions lends weight to our conclusion that 148 

the model physics (here, specifically, clouds) is driving the thermodynamic biases below approximately 2 km. However, the 149 

UM analyses do exhibit increasing temperature biases with height and ERA-Interim exhibits a cold bias between 2 km and 8 150 

km, both of which are mirrored somewhat in the UM_GLM (and UM_RA2M and UM_RA2M-ERAI-GLM) and ECMWF_IFS 151 

biases presented in Figure 11.   152 

 153 



 

 

 

Figure S9: Biases of the UM global analyses (left) and ERA-Interim (right) with respect to radiosondes launched at 1200 

UTC between 31 Aug and 5 Sep (aligning with the period discussed in Figure 11). Top row: temperature biases; bottom 

row: moisture biases. The median of the 6-day period is shown in black, with individual daily bias profiles (at 1200 UTC) 

of each initial condition dataset shown in grey. 

As lateral boundary conditions for the LAM are generated hourly from the global model, there is not sufficient free-running 154 

time to assess how the LAM biases would evolve without the influence of the driving model, and thereby evaluate how much 155 

of the thermodynamic biases can be attributed to the global model. Figure S10 shows the temperature biases exhibited by three 156 

example 36-h forecasts (20180815T1200Z, 20180828T1200Z, and 20180902T1200Z) to illustrate, on a forecast-by-forecast 157 

basis, how the LAM simulations differ from the global model in their thermodynamic structure. These forecasts were chosen 158 

as they provide a range of biases with respect to the radiosondes – 20180815 has strong temperature biases, 20180828 has only 159 

weak biases, and 20180902 has a mixture of both. 160 



 

 

 

Figure S10: Three examples of 36-h forecasts, with radiosondes during the given time period shown on the top row for 

reference. Data from hours 6-36 are shown. Biases with respect to these radiosonde data are shown in the subsequent panels. 

Second row: UM_GLM; third row: UM_RA2M; fourth row: UM_CASIM-100, and bottom row: UM_RA2T. Left: 

20180815T1200Z forecast; middle: 20180828T1200Z forecast; and right: 20180902T1200Z forecast. 

 161 

Figure S10 illustrates that the three LAM simulations (bottom three rows) have a strong resemblance to the UM_GLM biases 162 

(second row) over each of these example forecasts. However, there is more structure in the differences between the UM_GLM 163 

and the LAMs than Fig. S10 suggests. As an example, Fig. S11 shows individual bias profiles of temperature, moisture, and 164 

cloud liquid water mixing ratio from each LAM simulation with respect to the global model for the 20180815T1200Z forecast. 165 

At each time interval shown, biases exist in all three parameters; the biases from the LAM simulations do differ from the global 166 

model. In the 20180815T1200Z forecast, biases with respect to the global model (and radiosondes) do increase with time 167 



 

 

through the forecast; however, this is not true for every forecast (for example, the 20180828T1200Z or 20180902T1200Z 168 

forecasts shown here; Fig. S10). 169 

From Fig. S11, it can also be noted that there are clear occasions where the LAM boundary layer depth differs from the global 170 

model, as evidenced by the strong positive and negative peaks in temperature, moisture, and/or 𝑞𝑙𝑖𝑞  biases at adjacent altitudes. 171 

However, a simple misplacement of the boundary layer inversion does not explain the strong temperature and moisture biases 172 

between 1 and 2.5 km at t+24 and t+30 h – these higher altitude biases are strongest in the UM_RA2T simulation, indicating 173 

that they may relate to e.g., the higher cloud ice content reproduced by this simulation with comparison to UM_CASIM-100 174 

and UM_RA2M. 175 



 

 

 

Figure S11: Temperature (left), moisture (middle), and cloud liquid water mixing ratio (right) biases of each LAM 

simulation with respect to the UM global model for hours 6—30 of the 20180815T1200Z forecast. (a—c): t+6, (d—f): t+12, 

(g—i): t+18, (j—l): t+24, and (m—o): t+30. 
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S5  UK Chemistry and Aerosol (UKCA) model 177 

UKCA simulates gas and aerosol chemistry and transport in the atmosphere using the GLObal Model of Aerosol Processes 178 

(GLOMAP-Mode, Mann et al., 2010) and an atmospheric chemistry scheme, with an additional boundary layer nucleation 179 

scheme used to simulate gas-to-particle conversion of sulphuric acid to sulphate aerosol (Spracklen et al., 2010). To generate 180 

the aerosol input files for CASIM, UKCA was one-way coupled to the UM at version 11.2 using the Global Atmosphere 7.1 181 

dynamical core (Walters et al., 2019). Daily averaged soluble accumulation- and coarse-mode aerosol number and mass 182 

concentrations calculated from UKCA grid points north of 88.125 °N (Fig. S2) were used as input to the UM. 183 

 

Figure S12: Soluble (a) coarse- and (b) accumulation-mode aerosol number concentrations simulated by UKCA and used as input 

for the CASIM scheme in the UM_CASIM-AeroProf simulation. Aerosol profiles are kept constant over each daily forecast, with no 

aerosol processing by cloud. 

S6  Periods of consistent meteorology 184 

To better understand how the model thermodynamic biases relate to cloud properties in each simulation, we split our drift 185 

period further into four subsections – periods 3 to 6, as illustrated in Figs. 2 and 8 – to study periods of consistent meteorology. 186 

Mean equivalent potential temperature (𝜃𝑒) and 𝑞 profiles measured by radiosondes during these periods are shown in Fig. 12. 187 

Of the four periods considered, period 3 had cloud-free conditions most often. Periods 5 and 6 were similar; both were cloudy 188 

and influenced synoptically by three different low-pressure systems over their duration. 189 

 190 



 

 

 

Figure S13: (As Fig. 13) Comparison of mean cloud mask, LWC, and IWC profiles with median biases in T and q with respect to 

radiosondes for period 4 (a—e, top row) and period 5 (f—j, bottom row). Again, observed LWC calculated assuming adiabatic 

conditions using Cloudnet. ± one standard deviation shown in shading to illustrate variability. 

Figure S13 shows comparisons of the 𝑇𝑊𝐶 cloud mask, in-cloud 𝐿𝑊𝐶 and 𝐼𝑊𝐶, and associated 𝑇 and 𝑞 biases over periods 191 

4 and 5. Both periods 4 and 5 support the findings of periods 3 and 6. During period 4, the models overpredict cloud occurrence 192 

below 2 km similar to period 3; however, both the 𝐿𝑊𝐶 and 𝐼𝑊𝐶 are in better agreement with observations during period 4. 193 

Similarly, all simulations agree better with observed cloud occurrence during period 5 (consistent with our result for period 6), 194 

and both the 𝐿𝑊𝐶 and 𝐼𝑊𝐶 are again in reasonable agreement during this time window. Consequently, the model 195 

thermodynamic biases with respect to radiosonde measurements are weaker (though still present) during periods 4 and 5 than 196 

during periods 3 and 6.  197 

S7  Primary ice nucleation parameterisation 198 

UM_RA2M and UM_RA2T use the Fletcher (1962) parameterisation for primary ice formation, while ECMWF_IFS uses 199 

Meyers et al. (1992) and UM_CASIM-100 uses Cooper (1986). Each of these parameterisations is inherently temperature-200 

dependent, with Meyers et al., (1992) producing the largest ice number concentration, and Fletcher (1962) producing the 201 

smallest, at e.g., –10 °C. To test whether the method of parameterising primary ice itself has any effect on these biases, we 202 

trialled the use of each of the Fletcher (1962), Cooper (1986), and Meyers et al. (1992) parameterisations within the CASIM 203 

framework; however, we found little difference in our tropospheric ice due to the different parameterisation methods. 204 



 

 

Changing the primary ice parameterisation alters biases slightly within the lowest 3 km of the domain, with a maximum 205 

difference of 0.06 g kg-1 between the UM_CASIM-100_Cooper and UM_CASIM-100_Meyers median 𝑞 biases at 1.3 km 206 

(Figure S14). Differences shown here are much smaller than the more significant UM configurations changes/IFS comparison 207 

shown in Figs. 9, 11, 13. 208 

 

Figure S14: Comparison of 𝑇 and 𝑞 biases (with respect to radiosonde measurements) of CASIM-100 runs with different 

primary ice production parameterisations imposed (green: Cooper, 1986; purple: Fletcher, 1962; gold: Meyers et al., 1992), 

over the drift subset of 31 Aug to 5 Sep. Here, UM_CASIM-100_Cooper is equivalent to UM_CASIM-100 data shown in the 

main body of the paper.  
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