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Abstract Loday’s assembly maps approximate the K-theory of group rings by the K-theory of the
coefficient ring and the corresponding homology of the group. We present a generalisation that places
both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our
earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible
to present our theory in a user-friendly way without using higher-categorical language. It also allows us
to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions.
Numerous examples illustrate the scope of our extension.
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1. Introduction

Assembly maps

K(Z)∧Σ∞
+ (BG)−→K(ZG) (1.1)

for group rings are a central topic of study in algebraic K-theory and related fields. They

were first defined by Loday [32] in his thesis, and subsequently developed by many others,

including [13, 18, 39, 49, 50]. We refer to [23, 45] for a comparison. Precursors in algebraic
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2 A. M. Bohmann and M. Szymik

L-theory originated in the surgery classification of manifolds as documented in Quinn’s
thesis [38] and later reworkings by Ranicki [41] and Quinn [40]. Lück’s recent survey

[33] of assembly maps emphasises their current use in computations and the conceptual

reformulation of isomorphism conjectures, such as the Novikov conjecture. Some of the
fascination of this central player in K- and L-theory is due to the many guises in which

the assembly map appears [12]: as a method for gluing local data into a global object,

as the forgetting of control in controlled topology, as an operator index map, or simply

as a way of investigating what happens when we try to separate the two ‘variables’ Z
and G in the target of (1.1) to form the source, before the arrow takes the two pieces

and (re)assembles them. In this article, we offer a new perspective on assembly maps in

algebraic K-theory, one that leads to several generalisations. This perspective comes from
constructing the three constituent spectra K(Z), Σ∞

+ (BG) and K(ZG) as part of the same

framework: they are all algebraic K-theory spectra K(T ) of suitable Lawvere theories T,

as defined in our earlier work [5] and recalled below. As a first approximation, we can
think of Lawvere theories as generalisations of rings. They originate from an abstract,

categorical approach to universal algebra. They lend themselves to a wealth of compelling

examples, vastly exceeding the theories of modules over rings, as we shall see. Using earlier

work of Elmendorf and Mandell (see [16] and [17]) refining Segal’s Γ–space construction,
in Theorem 3.6 and Corollary 3.10, we show that the K-theory of Lawvere theories admits

the structure of a lax symmetric monoidal functor with respect to the Kronecker product,

which is a generalisation of the tensor products of rings.

Theorem 1.1. For each pair of Lawvere theories S and T, there is a morphism

K(S)∧K(T )−→K(S⊗T )

of spectra that is natural in S and T and that induces multiplication at the level of

components.

It is an immediate consequence that the algebraic K-theory spectra of monoidal Lawvere
theories are commutative S–algebras (see our Theorem 4.4). These monoidal Lawvere

theories form the foundation on which Durov [15] based his approach to Arakelov

geometry, which compactifies the prime spectrum Spec(Z) into a complete space Spec(Z).
Connes and Consani explain the relation between Spec(Z) and Segal’s Γ–spaces in [10, 11].

The precise statement of the Elmendorf–Mandell result that we use is a little more

involved than one might like. Permutative or symmetric monoidal categories as in [4]

only form a ‘pseudo-monoidal category’ (see the discussion by Hyland and Power [24]).
Therefore, we cannot formulate multiplicativity by saying ‘K-theory is a lax symmetric

monoidal functor from symmetric monoidal categories to spectra’, at least not without

using higher-categorical concepts. One of the points of working with Lawvere theories,
instead of symmetric monoidal categories, is that they are simultaneously comprehensive,

sufficiently flexible, and strictly lower categorical. When restricted to Lawvere theories,

K-theory is a lax symmetric monoidal functor in the usual, strict sense: this is what we
show as Corollary 3.10 to the more precise but technical Theorem 3.9.

As a consequence, our version of multiplicativity can be understood and used with

a working knowledge of the categories on the level of the early textbooks [34, 37, 42].
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Generalisations of Loday’s assembly maps 3

In particular, assembly works straightforwardly in our context: Theorem 1.1, when
specialised to the Lawvere theory S = Z of abelian groups, immediately produces

assembly-style morphisms

K(Z)∧K(T )−→K(Z⊗T ) (1.2)

for any Lawvere theory T. Here, the theory of abelian groups is given by the modules
over the ring Z of integers and Z⊗T is the theory of abelian group objects in T, which

is always given by modules over a ring (see [51, Theorem 13.2] and the discussion in

Example 2.7 below). These assembly maps can be equivalences, as happens for Cantor
algebras, where the rings in question are the Leavitt algebras (see our Theorem 5.4, based

on [48]), or they can fail to be even rationally injective, as happens for Boolean algebras

(see our Theorem 5.7, based on [5]), where they are null-homotopic. Specialising further

to the theory T of actions by a fixed discrete group G, we recover Loday’s assembly map
(1.1) for the group G. Our extension of the assembly map also allows us to consider the

cases where T is the theory of nonabelian groups, and nilpotent groups in particular.

The assembly maps for the corresponding theories are either equivalences or not even
rationally injective (see Theorems 7.1 and 7.2, respectively).

Because both parameters in Theorem 1.1 are Lawvere theories, we can easily extend

the assembly map by changing the first parameter as well as the second. By moving away
from the ‘linear’ case of (1.2), where the first parameter is Z, we initiate the study of the

nonabelian assembly maps

K(Groups)∧K(T )−→K(Groups⊗T ),

based on Galatius’s computation [21], and the nilpotent interpolations

K(Nilc)∧K(T )−→K(Nilc⊗T )

between that and (1.2), based on earlier work [46, 47] on the theories Nilc of nilpotent

groups of a given class c, letting c→∞, in the spirit of ‘nilpotent mathematics’ (see [44]).

In the following Section 2, we recall Lawvere theories and their Kronecker products,

which generalise tensor products of rings (Section 2.1). To make this paper self-contained,
we also recall the definition of their algebraic K-theory from our earlier work [5] in

Section 2.2. Section 3 is the heart of the paper and contains the main results on

multiplicativity. Section 4 discusses monoids in the category of Lawvere theories and
their algebraic K-theory spectra, before we define our generalised assembly maps in

Section 5 and present our computations for Cantor algebras (Section 5.1) and Boolean

algebras (Section 5.2). The relationship to Loday’s classical assembly maps is explained
in Section 6, using group actions, and the final Section 7 is devoted to the exploration of

novel ground using nilpotent and other nonabelian groups.

2. Lawvere theories and their algebraic K-theory

Lawvere theories are a fundamental tool for encoding algebraic structures, first introduced

in Lawvere’s thesis [30] and now widely used throughout algebra, logic and related

disciplines. We review the basic notions and our notation for Lawvere theories, using the
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4 A. M. Bohmann and M. Szymik

same language as in the prequel [5]. In addition, we also discuss Kronecker products. Some

textbook references for Lawvere theories are [1, 8, 37, 42]. Proposition 2.11 singles out a

property of Lawvere theories that distinguishes them from the more general symmetric
monoidal categories and spares us higher categories throughout.

We also recall the definition of the algebraic K-theory spectrum K(T ) of a Lawvere

theory T from [5]. Our primary approach is to view Lawvere theories as a special case of
symmetric monoidal categories and apply classic constructions of K-theory for the latter.

2.1. Lawvere theories

We choose a skeleton E of the category of finite sets and (all) maps between them.

For each integer r � 0, such a category has a unique object with precisely r elements,

and there are no other objects. For the sake of explicitness, let us choose the model
r = {a ∈ Z |1 � a � r} for such a set. A set with r+ s elements is the (categorical) sum

(or coproduct) of a set with r elements and a set with s elements.

Definition 2.1. A Lawvere theory T = (FT ,FT ) is a pair consisting of a small category

FT together with a functor

FT : E−→ FT

that is bijective on sets of objects and that preserves sums. The second condition means

that the canonical map FT (r)+FT (s)→ FT (r+s) induced by the canonical injections is
an isomorphism for all sets r and s in E.

The image of the set r with r elements under the functor FT : E→ FT will be written
Tr, so that the object Tr is the sum in the category FT of r copies of the object T1.

Remark 2.2. Some authors prefer to work with the opposite category F
op
T , so that

the object Tr is the product (rather than the coproduct) of r copies of the object T1.

For example, this was Lawvere’s convention when he introduced this notion in [30]. Our

convention reflects the point of view that the object Tr should be thought of as the free

T–model (or T–algebra) on r generators, covariantly in r (or rather in E). To make this
precise, recall the definition of a model (or algebra) for a theory T.

Given a Lawvere theory T, a T–model (or T–algebra) is a presheaf X (of sets) on the
category FT that sends (categorical) sums in FT to (categorical, i.e. Cartesian) products

of sets (this means that the canonical map X(Tr + Ts) → X(Tr)×X(Ts) induced by

the injections is a bijection for all sets r and s in E). We write MT for the category
of T–models, and we write MT (X,Y ) to denote the set of morphisms X → Y between

T–models. Such a morphism is defined to be a map of presheaves, that is, a natural

transformation, so that MT is a full subcategory of the category of presheaves on FT .

Remark 2.3. The values of a T–model are determined up to isomorphism by the value

at T1, and we often use the same notation for a model and its value at T1.

For any Lawvere theory T, the category MT of T–models is complete and cocomplete.

Limits are constructed levelwise, and the existence of colimits follows from the adjoint
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functor theorem. The category MT becomes symmetric monoidal with respect to the
(categorical) sum, and the unit object T0 for this structure is also an initial object in

the category MT . The covariant Yoneda embedding FT → Pre(FT ) sends the object Tr

of the category FT to the presheaf Ts �→ FT (Ts,Tr) represented by it. Such a presheaf
is readily checked to be a T–model. We refer to a T–model of this form as free. The

definitions unravel to give natural bijections MT (Tr,X) ∼= Xr for T–models X, so that

Tr is indeed a free T–model on r generators.

Definition 2.4. A morphism S → T between Lawvere theories is a functor L : FS →FT

that preserves sums and free models. This is equivalent to the condition that FT
∼=L◦FS ,

that is, that L is a map under E.

Often, a morphism S → T between Lawvere theories is described by giving a functor

R : MT →MS that is compatible with the forgetful functors to the category ME of sets.
Then L is induced by the left adjoint to R, which exists for abstract reasons, namely, by

Freyd’s adjoint functor theorem.

Example 2.5. Two of the most important classes of examples of Lawvere theories are
given by the theories of A–modules over a fixed ring A, and the theory of G–sets for a

fixed group G. In particular, for the trivial group G = {e}, we have the Lawvere theory

E of sets.

In a slight generalisation, we can define T–models not only in the category of sets but

in any category with finite (categorical) products. In particular, we may then consider
T–models in other categories of models; this is what we are going to do now.

Given Lawvere theories S and T, their Kronecker product S⊗T is a Lawvere theory

that represents T–models in the category of S–models or, equivalently, S–models in

the category of T–models. These theories are described by Freyd [19], and in Lawvere’s
thesis [31]. It follows from this description that there are morphisms

S −→ S⊗T ←− T

of Lawvere theories.

Example 2.6. If S and T are the theories of modules over rings A and B, respectively,
then S⊗T is the theory of (A⊗B)–modules [8, Example 3.11.7b]. If S and T are the

theories of G–sets and H –sets for groups G and H, respectively, then S⊗T is the theory

of (G×H)–sets: sets with commuting actions by G and H.

Example 2.7. We can pair S = Z, the Lawvere theory of abelian groups, with any

Lawvere theory T to obtain a new Lawvere theory Z⊗T whose models are the abelian
group objects in the category of T–models. This theory Z⊗T comes with a morphism

T −→ Z⊗T, (2.1)

the linearisation. Via the discussion following Definition 2.4, we can view the linearisation

morphism as induced by the left adjoint L to the forgetful functor that takes an abelian

group object in T–models to its underlying T–model. Thus, this left adjoint is an

https://doi.org/10.1017/S1474748022000603 Published online by Cambridge University Press



6 A. M. Bohmann and M. Szymik

abelianisation functor. The models of Z⊗ T are essentially the modules over a ring
[51, Theorem 13.2]. Indeed, it follows from Morita theory that Z⊗ T–models can be

described as modules over the endomorphism ring of of the linearisation L(T1) of the free

T–model T1 on one generator. Continuing to write MT (X,Y ) for the set of
morphisms X → Y of T -models, we see that for each abelian group object A in

T–models there are isomorphisms A ∼= MT (T1,A) ∼= MZ⊗T (L(T1),A). Hence, via

precomposition, every abelian group object A is a module over the endomorphism ring

MZ⊗T (L(T1),L(T1)) ∼= L(T1). This identification yields a functor from Z⊗T–models to
L(T1)–modules, and this functor turns out to be an equivalence.

The description of the Kronecker product S⊗T in terms of its models is not the most

convenient for our purpose. We shall give another description of it following Hyland and
Power [25]. Since the category of natural numbers (our skeleton E of the category of finite

sets) has finite products as well as sums, for r,s ∈ E, we have the product r× s. Since

E is skeletal, this product is the set rs; we will consider rs as the r–fold sum of s with
itself. Under this identification, a morphism of sets f : s→ s′ in E induces a morphism

r×f : r×s→ r×s′.

For any Lawvere theory S, we can extend this construction to the category FS . Given

r ∈ Z and Ss ∈ FS , we define

r×Ss = Ss+ · · ·+Ss
︸ ︷︷ ︸

r

to be the r–fold sum in FS of Ss with itself. The definition of the category FS means this

sum must be the object Sr×s, but this identification provides a corresponding construction

on morphisms. If f : Ss → Ss′ is a morphism in FS , the functoriality of sums produces a

morphism

r×f : r×Ss −→ r×Ss′ .

Conjugating by the symmetry r×s→ s× r, we similarly can construct the object Ss× r

and a morphism f×r : Ss×r→Ss′ ×r. As an object in FS , we have Ss×r=Sr×s = r×Ss.

Remark 2.8. For fixed r, the construction Ss �→ r×Ss yields a functor FS → FS that
is strong monoidal, as does the construction Ss �→ Ss× r.

Definition 2.9. Given two Lawvere theories S and T, their Kronecker (or tensor)

product Lawvere theory S⊗T is defined by the universal property of admitting maps
of Lawvere theories S → S⊗T and T → S⊗T so that the operations of S commute with

the operations of T in the sense that for all f : Sr → Ss in FS and f ′ : Tr′ → Ts′ in FT ,

the diagram

(S⊗T )r×r′
r×f ′

��

f×r′

��

(S⊗T )r×s′

f×s′

��
(S⊗T )s×r′

s×f ′

�� (S⊗T )s×s′
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commutes (in the category FS⊗T ). The vertical maps, here, should be interpreted as

the image of the maps f × r′ : Sr×r′ → Ss×r′ in FS under the map of Lawvere theories

S → S⊗T , and similarly for the horizontal maps, mutatis mutandis.

Proposition 2.10 ([25, Proposition 3.3]). The Kronecker product extends to a symmetric

monoidal structure on the category of Lawvere theories with the theory E of sets as the

unit.

Hyland and Power remark that the construction of S⊗T can be done by hand, or it

can be viewed as a special case of their work on pseudo-commutativity and, in particular,

on the pseudo-closed structure of the 2–category of symmetric monoidal categories [24].

However, the following proposition shows that this generality is not necessary for Lawvere
theories because equality between any two of them is a logical proposition: it either has

a unique proof or none.

Proposition 2.11. Lawvere theories naturally form a 1–category rather than a
2–category. More precisely, given two maps of Lawvere theories L1,L2 : S → T , the

set—and, hence, the space—of natural transformations between L1 and L2 is empty,

unless L1 = L2, in which case, it contains only the identity transformation.

Proof. A morphism of Lawvere theories is a map under E, that is, a strictly commuting
diagram of the following form:

FS

L

��
E

��♠♠♠♠♠♠

��◗◗
◗◗

◗◗

FT

Thus, a natural transformation between such L must restrict to the identity natural

transformation on E. Since all objects in FS are in the image of E, this forces all natural

transformations to be the identity.

For Lawvere theories, there is no room for the ‘psubtlety’ of pseudoness.

2.2. Algebraic K-theory

Let S denote a symmetric monoidal groupoid. To build a K-theory spectrum K(S), we

can use Segal’s definition [43] of the algebraic K-theory of a symmetric monoidal category

in terms of Γ–spaces. For the multiplicativity properties we need in the following Section

3, we in fact use a variant of Segal’s construction given by Elmendorf–Mandell [16] (see
also [4]) which takes values in the category of symmetric spectra and builds the spaces of

the K-theory spectrum ‘all at once’ instead of iteratively.

Definition 2.12. Let T be a Lawvere theory. The algebraic K-theory of T is the
spectrum

K(T ) = K(F×
T ), (2.2)
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8 A. M. Bohmann and M. Szymik

that is, the spectrum corresponding to the symmetric monoidal groupoid F×
T of

isomorphisms in the symmetric monoidal category FT of finitely generated free T–models,

where the monoidal structure is given by the categorical sum.

Remark 2.13. Since the category FT can be identified with the symmetric monoidal
category of finitely generated free T–models, Definition 2.12 concerns the algebraic

K-theory of finitely generated free T–models. In particular, the group K0(T ) = π0K(T )

is the Grothendieck group of isomorphism classes of finitely generated free T–models.
This group is always cyclic, generated by the isomorphism class [T1 ] of the free T–model

on one generator. However, the group K0(T ) does not have to be infinite cyclic. This

happens, for instance, for the theory of Cantor algebras (see Section 5.1).

Remark 2.14. A morphism S → T of Lawvere theories as in Definition 2.4 induces,

via the left-adjoint functor FS → FT , a morphism K(S) → K(T ) of algebraic K-theory
spectra. The left adjoint FS →FT sends the free S–model S1 on one generator to the free

T–model T1 on one generator. It follows that the induced homomorphism K0(S)→K0(T )

between cyclic groups is surjective, being the identity on representatives.

Example 2.15. If A is a ring, denote by K(A) the K-theory of the Lawvere theory of

A–modules. This spectrum is the ‘free’ version of the usual algebraic K-theory of the
ring A, that is, Quillen’s algebraic K-theory Kfree(A) of the category of finitely generated

free A–modules. It is perhaps more common to consider the algebraic K-theory spectrum

Kproj(A) of the category of finitely generated projective A–modules as the ‘algebraic
K-theory of A’. However, the inclusion of free modules into projective modules induces a

map

Kfree(A)−→Kproj(A)

which is an equivalence whenever projective modules are free, including for fields and for

principal ideal domains. In fact, this map is an equivalence on components and so induces

an equivalence on higher-homotopy groups πn for n� 1.

In particular, the usual K-theory spectrum K(Z) is the K-theory spectrum of the
Lawvere theory of abelian groups in the guise of Z–modules. We refer to [5] for an

extensive supply of examples of algebraic K-theory spectra K(T ) of Lawvere theories

T that are not of this form. For the moment, we only mention the initial theory E of
sets, where K(E)≃ S is the sphere spectrum. We will discuss other examples, which are

arguably even more interesting, in the later sections to illustrate our results.

3. Multiplicative structure

The generalised assembly maps are a consequence of multiplicative structure on algebraic

K-theory. In order to define and understand these maps, we first isolate a part of a

general multiplicativity statement by Elmendorf–Mandell that we can then use to produce
assembly-type maps (see Theorem 3.6). The presentation elides a number of the category-

theoretical considerations but tells us precisely what kind of functors we shall need to

produce assembly maps. Afterwards, we give a more categorically sophisticated and
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Generalisations of Loday’s assembly maps 9

higher-level discussion of multiplicativity, which, in particular, shows that K-theory is
a lax symmetric monoidal on Lawvere theories, as in Theorem 3.9 and Corollary 3.10.

Because the proofs for these results are somewhat technical, we have largely postponed

them to the end of this section.
In this section, boldface uppercase letters A,B,C, . . . will denote symmetric monoidal

categories. Our default notation for the monoidal product is ⊕ and 0 typically denotes

the monoidal unit, with indices as in ⊕ = ⊕A and 0 = 0A if needed. By convention, we

use ‘symmetric monoidal category’ in this section for symmetric monoidal categories with
strict unit, as our primary references are written for this case. This strictness should be

viewed as a basepoint condition. All symmetric monoidal categories can be strictified, so

this does not represent a loss of generality.
We use the language of multicategories to describe the constructions in this section.

All the multicategories we use are implicitly symmetric. Multicategories may be more

familiar to some readers under the term operad, implied to allow several colours. Our
choice of terminology reflects that of our primary references [16, 17] for this work. The

terminological distinction is partly philosophical. In this work, the multicategories appear

as generalisations of categories instead of as parameter spaces of operations. Of course,

these roles are intimately linked, and we invite the reader to use their preferred term.
One way to formulate multiplicativity is in terms of ‘bilinear functors’. This formulation

is analogous to thinking about bilinear maps between vector spaces, rather than the tensor

product of vector spaces.

Definition 3.1. A bilinear functor of symmetric monoidal categories is a functor

P : A×B→C

together with natural distributivity isomorphisms

δl : P (a,b)⊕P (a′,b)→ P (a⊕a′,b) and δr : P (a,b)⊕P (a,b′)→ P (a,b⊕ b′)

satisfying some unitality and compatibility conditions which are spelled out in [4,

Definition 7.1].

Observe that the distributivity transformations mean, in particular, that P is a strong
monoidal ‘in each variable separately’ in the sense that if we fix an object a ∈ A, the

functor P (a,−) is a strong monoidal, and if we fix b ∈B, the functor P (−,b) is a strong

monoidal.

Example 3.2. For any symmetric monoidal category C, there is a ‘left unit’ bilinear
functor

u : E××C→C

given on objects by u(n,c) = c⊕n. The components of the distributivity natural transfor-
mation δl are the identity maps

c⊕n⊕ c⊕n′

= c⊕n+n′
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10 A. M. Bohmann and M. Szymik

and the components of the distributivity natural transformation δr are the reordering
isomorphisms

c⊕n⊕ c′
⊕n

→ (c⊕ c′)⊕n.

One can similarly define a ‘right unit’ bilinear functor C×E× → C; here, the left

distributivity is given by reordering.

Remark 3.3. For a Lawvere theory S, the strong monoidal functor r×− : FS → FS of
Remark 2.8, taking Ss �→ r×Ss, is u(r,−).

Example 3.4. A ring category structure on a (strict) symmetric monoidal category

A= (A,⊕,0) consists of a bilinear functor ⊗ : A×A→A and an object 1∈A, such that

1⊗a= a= a⊗1, and satisfying appropriate conditions (see [16, Definition 3.3]). This is
also a rig category as defined by Baas, Dundas, Richter, and Rognes [3, Section 2.2].

The following result is a consequence of the fact that Elmendorf–Mandell’s K-theory

is an enriched multifunctor from permutative categories to spectra [16, Theorem 6.1].
The slight extension to symmetric monoidal categories is in [4, Theorem 7.4]. Since our

Lawvere theories F×
T form permutative categories, this extension is not strictly necessary

for our work.

Theorem 3.5 ([4, Theorem 7.4], [16, Theorem 6.1]). Let A, B and C be symmetric
monoidal categories (with strict units). A bilinear functor A×B → C of symmetric

monoidal categories induces a morphism

K(A)∧K(B)→K(C)

of spectra. This structure is associative and unital.
In the case where the bilinear functor A×A→A is the multiplication of a ring category

as in Example 3.4, the induced map

K(A)∧K(A)→K(A)

is the multiplication of a ring structure on K(A).

In the case where the bilinear functor E××C→C is the left unit bilinear functor of
Example 3.2, the induced map

S∧K(C)≃K(E×)∧K(C)→K(C)

is the left unit map for the smash product ∧ of spectra.

One way to think about Theorem 3.5 is that it tells us that K-theory of symmetric

monoidal categories is ‘morally lax symmetric monoidal’, in the following sense. Sym-
metric monoidal categories do not form a symmetric monoidal category because there

is, in general, no representing ‘tensor product’ symmetric monoidal category ‘A⊗B’

for bilinear functors [24]. If such a tensor product exists, then there is a universal
bilinear functor A×B → A⊗B and Theorem 3.5 provides the type of map of spectra

K(A)∧K(B)→K(A⊗B) needed to make the K-functor lax symmetric monoidal. Since

the tensor product doesn’t always exist, Elmendorf and Mandell’s approach is to work
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with the multicategory of permutative categories, in which n–ary maps are given by
n–multilinear functors. They show that K-theory is a multifunctor from this multicategory

to the category of spectra. Theorem 3.5 is an explicit statement of the fact that a map

of multicategories takes binary maps to binary maps.
Using Theorem 3.5, applied to the case of Lawvere theories, we can prove the following

result.

Theorem 3.6. For each pair of Lawvere theories S and T, there is a morphism

K(S)∧K(T )−→K(S⊗T ) (3.1)

of spectra that is natural in S and T and that is induced by the multiplication of integers

at the level of π0.

We give a detailed proof of Theorem 3.6 at the end of this section. As a consequence

of having this result, a Lawvere theory T that has a multiplication T ⊗T → T produces

a multiplication K(T )∧K(T )→ K(T ) in spectra. We discuss this rather restrictive, but

still important, situation further in the following Section 4. Similarly, the left unit map
E⊗T →T of a Lawvere theory T yields the left unit map S∧K(T )≃K(E)∧K(T )→K(T )

in spectra.

The category of Lawvere theories does have a symmetric monoidal structure, with
tensor product given by the Kronecker product, and Theorem 3.6 is singling out the

natural transformation that makes K-theory into a lax symmetric monoidal functor from

the symmetric monoidal category of Lawvere theories to the category of spectra. In fact,
the remainder of this section focuses on showing that K-theory of Lawvere theories is a

lax symmetric monoidal functor (see Corollary 3.10).

Remark 3.7. The categorically minded reader may notice that while we use the phrase
‘lax symmetric monoidal functor’ to describe K-theory, the morphism of Theorem 3.6

arises simply from the lax monoidality of K-theory; it doesn’t require anything about

the symmetry. This is because being ‘symmetric’ doesn’t involve any additional structure

on a lax monoidal functor; it just means the lax monoidal structure maps preserve the
symmetry. For expository consistency, we choose to describe K-theory in terms of being

(or failing to be) lax symmetric monoidal throughout this paper, even when preserving

symmetries doesn’t play a role in the arguments.

Definition 2.12 constructs the algebraic K-theory of Lawvere theories as a composite

functor

Lawvere−→PermCat
K

−−→ Spectra.

Since PermCat isn’t a symmetric monoidal category, we cannot use this factorisation

to prove that the composite is a lax symmetric monoidal functor. Instead, we use a

further factorisation of the K-theory construction which relies on a second phrasing
of multiplicativity, due to Elmendorf and Mandell [17] with revision by Johnson and

Yau [26]. Their work, which we recall in Theorem 3.8, factors the functor K above

through a symmetric monoidal category of based multicategories that have the structure
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of modules over a particular multicategory denoted M1 (see Definition 3.11). This allows

us to factor the algebraic K-theory of Lawvere theories as follows:

Lawvere ��

��◆◆
◆◆

◆◆
◆◆

◆◆
◆ PermCat

��
K

��◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

ModM1

K
���� Spectra.

(3.2)

All the categories in the lower left path are symmetric monoidal, which allows us to use

this factorisation to show that the composite functor across the top is a lax symmetric
monoidal.

The factorisation in Diagram (3.2) and the lax symmetric monoidality of the horizontal

functor K are the result of the Elmendorf–Mandell and Johnson–Yau phrasing of the
multiplicativity of K-theory, which we now recall. In what follows, we let ModM1 denote

the category of M1–modules in the category of symmetric small based multicategories.

This category of modules is in fact a full 2–subcategory of the 2–category of symmetric
small based multicategories [26, Proposition III.10.1.28], although this is not necessary

for our work.

Theorem 3.8 ([17, Theorem 1.3], [26, Theorem III.10.3.17]). Based multicategories form

a symmetric monoidal category Mult∗ and the multicategory M1 of Definition 3.11 is

naturally a commutative monoid [26, Proposition III.10.1.16]. The K-theory construction

of [16] factors as the ‘underlying multicategory’ functor U and a lax symmetric monoidal
functor from ModM1 to spectra:

PermCat

U

��

K

��◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

ModM1

K
�� Spectra.

Note that the underlying multicategory UC of a permutative category C has a natural
basepoint given by the unit object for the monoidal product. This structure extends to

a canonical M1–module structure on UC [26, Definition III.10.2.13] (see [26, Definition

III.10.3.25] for a clear and concise discussion of the factorisation in the above diagram).
With this result in hand, it suffices to prove that the composite of the embedding of

Lawvere theories into permutative categories and the underlying multicategory functor

is a lax symmetric monoidal functor from Lawvere theories to multicategories.

Theorem 3.9. Let ι : Lawvere→PermCat denote the embedding of Lawvere theories

into permutative categories via T �→ FT . Let ι× denote the embedding Lawvere →
PermCat via T �→ F×

T ; we can view ι× as the composite of ι and the functor taking

a permutative category to its subcategory of isomorphisms. Then the composite functors

Uι and Uι× in the diagrams
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Lawvere
ι ��

Uι ��◆◆
◆◆

◆◆
◆◆

◆◆
PermCat

U
��

ModM1

Lawvere
ι× ��

Uι× ��◆◆
◆◆

◆◆
◆◆

◆◆
PermCat

U
��

ModM1

are both lax symmetric monoidal.

We give a detailed proof of Theorem 3.9 further down.

Corollary 3.10. The Elmendorf–Mandell construction of K-theory gives a lax symmetric
monoidal functor

Lawvere−→ Spectra.

Proof. The previous two theorems demonstrate that Elmendorf and Mandell’s K-theory

construction factors as the composite of the lax symmetric monoidal functor

K: ModM1 → Spectra preceded by Uι× : Lawvere → ModM1, as depicted in
Diagram (3.2).

We now prove Theorems 3.6 and 3.9 and end this section with some higher-categorical

remarks.

Proof of Theorem 3.6. In light of Theorem 3.5, it is sufficient to show that there is

a bilinear functor F×
S ×F×

T → F×
S⊗T of symmetric monoidal categories. Essentially, this

is the universal map that comes from the definition of the Kronecker product. However,

since general symmetric monoidal categories don’t have such a monoidal product, it is
worthwhile to be fairly explicit.

Let S and T be Lawvere theories. We show that there is a bilinear functor

P : FS ×FT → FS⊗T

of symmetric monoidal categories with strict unit. Observe that a bilinear functor
A×B → C restricts to a bilinear functor A× ×B× → C× on the subcategories of

isomorphisms in A, B and C because functors preserve isomorphisms and the natural

distributivity maps are isomorphisms by definition. Hence, it suffices to produce the

bilinear functor P.
The functor P is defined on objects by

P (Sm,Tn) = (S⊗T )m×n. (3.3)

On morphisms, the arrow P (f,g) is defined as either of the composites in the commuting

diagram in FS⊗T that we obtain from Definition 2.9:

(S⊗T )m×n

m×g ��

f×n

��

(S⊗T )m×n′

f×n′

��
(S⊗T )m′×n

m′
×g �� (S⊗T )m′×n′ .

The fact that these composites agree implies that this assignment is functorial.
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14 A. M. Bohmann and M. Szymik

The distributivity natural transformations are in fact given by the identity morphisms:

δl : P (Sm,Tn)⊕P (Sm′,Tn) = (S⊗T )(m′×n)+(m×n) = (S⊗T )(m+m′)×n

and similarly for δr. It is thus straightforward to check that the required unitality and

compatibility conditions hold.

By construction, the monoids of connected components in the categories F×
S , F

×
T and

F×
S⊗T are all quotients of N, and by (3.3), the map on connected components is induced

by the multiplication N×N→ N, (m,n) �→m×n, of natural numbers. Hence, the map

π0K(S)⊗π0K(T )∼= π0(K(S)∧K(T ))−→ π0K(S⊗T )

is also induced by multiplication at the level of representatives, using that for any

theory U, the abelian group π0K(U) is canonically a quotient of π0K(E) = Z via the

unit map K(E)→K(U).

Before proving Theorem 3.9, we define the multicategory M1 and discuss the category

ModM1 in more detail.

Definition 3.11 ([17, Definition 5.7], [26, Example III.8.4.5]). The multicategory M1

has two objects 0 and 1. The n–ary morphism sets are defined by

M1(0, . . . ,0;0) = ∗ where the source is the string of n 0′s

M1(0, . . . ,1, . . . ,0;1) = ∗ where the source is any string containing exactly one 1.

and all other morphism sets are empty. Composition is uniquely determined by these

assignments. The multicategory M1 may be viewed as a based multicategory with 0 as

the basepoint.

The multicategory M1 parametrises a choice of commutative algebra and a module

over that algebra in the sense that a multifunctor F : M1→M, where M is an arbitrary

multicategory, picks out a commutative algebra object as F (0) and a module over F (0)
as F (1). The unique morphism (F (0),F (1))→ F (1) then encodes the action of F (0) on

F (1), for instance.

Recall from [17] the definition of the functor U : PermCat → Mult∗, where Mult∗
is the category of based multicategories. For a permutative category C, the underlying

multicategory UC has the same objects as the category C, and for any c1, . . . ,cn,d, the set

of n–ary morphisms UC(c1, . . . ,cn;d) is defined to be the morphism set C(c1⊕·· ·⊕cn,d).

Composition is defined in the evident way.
In a permutative category C with strict unit 0, the unit map 0⊕ 0 → 0 makes this

unit object a commutative monoid. In fact, for any c ∈ C, the unit map 0⊕ c → c

makes c a module over 0. This means that for each choice of c ∈ C, we have a map
of based multicategories M1 → C sending the unit 0 ∈ M1 to the unit and 1 ∈ M1

to c. These maps assemble to give a canonical M1–module structure on UC; in other

words, a map M1⊗UC→ UC (see [26, Definition III.10.2.13]). We may thus view U as
factoring through the subcategory ModM1 of Mult∗. Johnson and Yau [26, Definition

III.10.1.36] show that ModM1 is a symmetric monoidal category with unit M1 and that

the morphisms in ModM1 are simply underlying based multifunctors. If one views based
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multicategories as a generalisation of symmetric monoidal categories, then M1–modules
are those multicategories where the base object—which is required to have a commutative

monoid structure—acts on every object in a uniform way.

Proof of Theorem 3.9. By definition, a functor F : C→D is a lax symmetric monoidal

if we have a map 0D →F (0C) and natural maps F (c1)⊕DF (c2)→F (c1⊕C c2) that satisfy
some standard axioms. We show that Uι satisfies this definition.

First, we construct the map of unit objects. The unit object in ModM1 is the

multicategory M1 defined in Definition 3.11. The unit object in Lawvere is the Lawvere

theory E of sets. We thus require a functor (of small based multicategories)

M1→ Uι(E).

Since this functor is required to be based, it must send 0 ∈M1 to the unit object 0 ∈E,

which is the basepoint in U(E). Thus, the data of this functor is equivalent to picking out

a single object n in U(E), together with a map 0+n→ n defining an action of 0 on it.
The clear choice is 1 �→ 1, together with the identity map.

Next, we need the maps Uι(S)⊗Uι(T ) → Uι(S ⊗ T ), where we are overloading the

symbol ⊗ to represent both tensor product ofM1–modules and tensor product of Lawvere
theories. These maps arise from the universal property of the tensor product of based

multicategories. To be more precise, Elmendorf and Mandell define the tensor product

of based multicategories so that a morphism of based multicategories M1 ⊗M2 → N

is precisely the data of a based bilinear map (M1,M2)→ N . These bilinear maps are a
multicategorical generalisation of the bilinear functors in Definition 3.1 (see [17, Definition

2.3] for the precise definition).

Since U : PermCat→ModM1 is a multifunctor [26, Lemma III.10.2.14] and the binary
morphisms in the category ModM1 are the based bilinear maps, it suffices to show that

there is a binary morphism ϕ : (ιS,ιT )→ ι(S⊗T ) in the multicategory PermCat. In this

case, the composition Uϕ must be a bilinear based map of multicategories (UιS,UιT )→
Uι(S⊗T ), and, thus, Uϕ induces a morphism of based multicategories (UιS)⊗ (UιT )→

Uι(S⊗T ), as required.

For Lawvere theories S and T, we’ve thus reduced our problem to finding a binary

morphism of permutative categories FS×FT →FS⊗T . By definition, this is just a bilinear
functor with strict unit and is precisely what we constructed in the Proof of Theorem 3.6,

above.

We’ve thus constructed all the data making Uι : Lawvere→ModM1 a lax monoidal
functor. To complete this argument, one must show that the coherence maps are

associative and unital. These are fairly straightforward to check using the universal

property of the tensor product of multicategories: since the tensor product represents
based bilinear maps of multicategories, it suffices to check that the required morphisms

agree on that level. For example, to check the commutativity of the left unit diagram

M1⊗Uι(S)

��

�� Uι(E)⊗Uι(S)

��
Uι(S) Uι(E⊗S)��

,
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16 A. M. Bohmann and M. Szymik

we simply check that the two bilinear maps M1×Uι(S) → Uι(S) agree. On objects,

both are given by sending (1,Sn) �→ Sn. On morphisms, a (based) bilinear map out of

M1⊗Uι(S) is defined by where it sends morphisms of two forms. The first form is
(id1 ,f : Sn1

⊕ ·· ·⊕Snj
→ Sn), and both bilinear maps send this to f. In the map along

the right-hand side, this follows because id1×f ∈ E⊗S is sent to f under the unit map

E⊗S → S of Lawvere theories. The second form is ((0, . . . ,1, . . . ,0)→ 1, idSn
), and both

bilinear maps send this to the identity on Sn. On the left side, this is by definition of the

M1–modules structure, and in the composite along the right-hand side, this follows from

the fact that the map of unit objects M1→ Uι(E) sends (0, . . . ,1, . . . ,0)→ 1 to id1.
For the associativity diagram, we can use the fact that the underlying multicategory

functor U is full and faithful, and so it suffices to check that the two trilinear maps

represented by the two composites

(Uι(S)⊗Uι(T ))⊗Uι(V ) ��

��

Uι(S)⊗ (Uι(T )⊗Uι(V ))

��
Uι(S⊗T )⊗Uι(V )

��

Uι(S)⊗Uι(T ⊗V )

��
Uι((S⊗T )⊗V ) �� Uι(S⊗ (T ⊗V ))

are given by the same functor FS×FT ×FV →FS⊗T⊗V . Inspecting the definitions shows

that both functors send an object (Sl,Tm,Vn) to (S⊗ (T ⊗V ))l×m×n and both send a
morphism (f,g,h) to the composite

(f × (id× id))◦ (id×(g× id))◦ (id×(id×h)),

which by the definition of the Kronecker product agrees with the composite of these three

maps in any other order.

Finally, observe that Uι respects the symmetries in Lawvere and Mult∗ in the sense
that for any Lawvere theories S and T, the diagram

Uι(S)⊗Uι(T )
σ ��

Uϕ

��

Uι(T )⊗Uι(S)

Uϕ

��
Uι(S⊗T )

Uισ �� Uι(T ⊗S)

commutes. This follows by direct inspection of the definitions: both symmetry maps are

determined by the fact that they send morphisms of the form Sm⊗ g to g⊗Sm and of

the form f ⊗Tn to Tn⊗f .
To see that Uι× is also a lax symmetric monoidal, it suffices to observe that the functor

M1→Uι(E) factors through Uι×(E) and, as observed in the above proof of Theorem 3.6,

the binary morphism of permutative categories FS ×FT → FS⊗T restricts to a binary
morphism F×

S ×F×
T → F×

S⊗T .
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Remark 3.12. We offer, here, an alternative argument to show the lax symmetric
monoidality of both of the two functors Uι : Lawvere→ModM1 and Uι× : Lawvere→

ModM1. As discussed in [17, Section 3], a lax symmetric monoidal functor between

symmetric monoidal categories is simply a map between their underlying (symmetric)
multicategories. Hence, it suffices to show that Uι and Uι× are multifunctors between

the underlying multicategories of Lawvere and ModM1. In the commutative diagram

Lawvere

ι

		♦♦♦
♦♦
♦♦
♦♦
♦♦

ι×

��❖❖
❖❖

❖❖
❖❖

❖❖
❖

PermCat
(−)×

��

U
��

PermCat

U
��

ModM1 ModM1,

the maps U are multifunctors [26, Lemma III.10.2.14] and, we have already observed that

(−)× is a multifunctor. Hence, both composites Lawvere→ModM1 are multifunctors

if ι is. Elmendorf–Mandell’s work ([16, Theorem 1.1] or the results of [17] and [26] stated

as Theorem 3.8 above) then implies that K-theory of Lawvere theories, which is given by
the composite

Lawvere
ι×

−→PermCat
U
−→ModM1 K

−→ Spectra,

is multiplicative.
Multifunctoriality of ι requires that for any map of Lawvere theories S1⊗·· ·⊗Sk → T ,

we must have a k–linear functor of permutative categories FS1
× ·· · ×FSk

→ FT . The

universality of Kronecker products means we can reduce the construction of any such
map to constructing a multilinear functor FS1

× ·· · ×FSk
→ FS1⊗···⊗Sk

, extending our

construction of the bilinear functor FS ×FT → FS⊗T from Theorem 3.9.

Remark 3.13. Phrased ∞–categorically, this final description of multiplicativity of

K-theory simply comes down to showing that ι : Lawvere → PermCat is a map of
∞–operads, and, hence, the composites Uι and Uι× are as well. Both the domain

and codomain of these composites are ∞–operads coming from actual symmetric

monoidal categories, and so one can describe maps of ∞–operads as straightforward lax
symmetric monoidal functors. Note, however, that in comparing Lawvere theories and

multicategories, we naturally pass through PermCat, which simply isn’t a symmetric

monoidal category. Hyland and Power [24] show that it only has a ‘weak’ or ‘pseudo’

monoidal structure, and the context of ∞–operads or multicategories is one way of
providing elbow room for this weak structure. In fact, many of the subtle issues at

the heart of multiplicative K-theory can be attributed to the need to consider a weak

monoidal structure when thinking about permutative categories.

These remarks bring us to a peak of abstraction in our thinking about the multiplica-

tivity of K-theory of Lawvere theories. In the next section, we return to the down-to-earth

realm of applications of the concrete maps that multiplicativity produces.
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4. Monoids in the category of Lawvere theories

This section contains a brief but complete discussion of monoids in the category of
Lawvere theories.

Definition 4.1. A monoidal Lawvere theory T is a monoid object in the symmetric
monoidal category of Lawvere theories.

Which Lawvere theories T support such monoidal structures, and how many?

Proposition 4.2. Any Lawvere theory T supports at most one monoidal structure. If it

supports one, that monoidal structure is necessarily commutative.

Proof. Since the monoidal unit E, the Lawvere theory of sets, is the initial object in the

category of Lawvere theories, every Lawvere theory T has a canonical morphism E → T

from the monoidal unit. Therefore, the question is: when does there exist a morphism
T ⊗T → T that turns T into a monoid object in the category of Lawvere theories?

Suppose we have a morphism T ⊗T → T . Then every T–model determines a T ⊗T–

model. What are these two potentially new T–structures on a given T–model? The unit
axiom implies that both agree with the old structure. Thus, such a multiplication is

automatically unique: the morphism T ⊗T → T is necessarily inverse to the morphism

T → T⊗T given by the (left or right) unit. The second statement now follows immediately

too.

We see that being a monoidal Lawvere theory is a property, not a structure, and theories
that have this property are also called commutative. Such structures have been considered

by Freyd [19], Kock [27, 28, 29] and, much more recently, in Durov’s thesis [15].

Example 4.3. The theory of modules over any given commutative ring is monoidal. For

this reason, monoidal Lawvere theories can be seen as generalisations of commutative

rings. A nonring example of a monoidal Lawvere theory is given by the theory of sets
with an action of a fixed abelian group A. A proposition of Freyd [19, p. 94] shows that

a monoidal theory has at most one constant, and that if it has a binary operation with

zero, then it is the theory of modules over a commutative semiring.

Theorem 4.4. If T is a monoidal Lawvere theory, then its algebraic K-theory spectrum

K(T ) is a commutative ring spectrum.

Proof. This follows immediately from the multiplicative properties of the K-theory

functor for Lawvere theories as stated in Theorem 3.6.

5. Assembly for Lawvere theories

In this section, we apply our results from Section 3 to produce assembly maps in the

general context of Lawvere theories.

Theorem 5.1. For each Lawvere theory T, the map

K(Z)∧K(T )−→K(Z⊗T ) (5.1)
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of K-theory spectra arising from Theorem 3.6 is the unique K(Z)–linear extension of the

morphism K(T )→K(Z⊗T ) induced by the linearisation T →Z⊗T of the Lawvere theory

T as defined in Example 2.7.

Proof. Since Z is a commutative ring, the theory of Z–modules is a commutative monoid

in the symmetric monoidal category Lawvere of Lawvere theores, as in Section 4.

Furthermore, the theory Z⊗T is a module over the theory of Z–modules. Since the functor
K is lax symmetric monoidal by Corollary 3.10, it follows that K(Z) is a commutative

ring spectrum and the spectrum K(Z⊗T ) is a module spectrum over it. Now, the smash

product K(Z)∧K(T ) is the free K(Z)–module spectrum on K(T ), and so there is a unique
dashed extension of the linearisation map K(T )→K(Z⊗T ) to a horizontal map making

the following diagram commute:

K(Z)∧K(T ) ��❴❴❴ K(Z⊗T )

S∧K(T )
∼ ��

unit∧K(T )





K(T )

K(lin.)





In this diagram, the left vertical map comes from the unit map S→K(Z), which is realised
by applying K-theory to the map E → Z of Lawvere theories and recalling that the unit

S→K(E) is an equivalence. Therefore, to show the claim, we have to verify that the map

from Theorem 3.6 in place of the dashed arrow makes the square above commute. This
follows from the commutativity of the diagram

K(Z)∧K(T ) �� K(Z⊗T )

K(E)∧K(T ) ��





K(E⊗T )

∼

��

K(unit⊗T )





S∧K(T )

unit∧K(T )

��

∼





∼
�� K(T ).

K(lin.)

��
(5.2)

Here, the top two horizonal maps are those of Theorem 3.6 and the naturality of

these maps implies that the top square commutes. The bottom square is the left

unitality condition of the lax symmetric monoidal functor K and, hence, commutes. The

commutativity of the right part of the diagram follows from applying the functor K to
the commutative diagram

T

lin.

E⊗T
∼=�� unit⊗T �� Z⊗T

of Lawvere theories. To see that this diagram commutes, note that for any Lawvere
theory S, the unit E ⊗ T → S ⊗ T arises from the forgetful functor taking T–models

in S–models to T -models in E–models, that is T–models in sets. So the linearisation

T → Z⊗T arises from the same forgetful functor, once we observe that T–models in sets
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are just T–models. The commutativity of the left part of the diagram follows from the
discussion of the unit in the paragraph before the diagram (5.2).

Definition 5.2. The map (5.1) is the assembly map for the Lawvere theory T.

We explain the relationship to the classical assembly maps in the following section.

Before doing so, we determine the assembly maps for the theories of Cantor algebras

and Boolean algebras, which can be done directly with no more background than the
definition (5.1). We see that the assembly map can, in general, be next to anything, from

an equivalence to the zero morphism.

5.1. Cantor algebras

Let a� 2 be an integer. A Cantor algebra of arity a is a set X together with a bijection

Xa →X. The Cantor algebras of arity a are the models for a Lawvere theory Cantora,

and its algebraic K-theory has been computed in [48]:

K(Cantora)≃ S/(a−1), (5.3)

the Moore spectrum mod a−1. In particular, the spectrum K(Cantor2) is contractible.

Remark 5.3. We note that the definition makes sense for a= 1 as well. In that case, we

have an isomorphism between Cantor1 and the Lawvere theory Z–Sets of permutations,

and the equivalence (5.3) is still true, as we shall see in Example 6.2.

Theorem 5.4. The assembly map (5.1)

K(Z)∧K(Cantora)−→K(Z⊗Cantora)

for the Lawvere theory Cantora of Cantor algebras of arity a is an equivalence.

Proof. We start from [48], where the algebraic K-theory of Cantora is identified with the

Moore spectrum S/(a−1). That Moore spectrum is the the cofibre of multiplication with

a−1 on the sphere spectrum, so that K(Z)∧K(Cantora) is the cofibre of multiplication
with a−1 on K(Z).

Then we have the observation that Z⊗Cantora is the theory of modules over the Leavitt

algebra La, the quotient of the free associative ring with unit on 2a generators, given as
two vectors R= (R1, . . . ,Ra) and C = (C1, . . . ,Ca), modulo the ideal defined by the a2+1

relations that ensure that the two square matrices RtC and RCt are the identity matrices.

In other words, the modules over the ring La are the abelian groups M together with

linear bijections Ma →M , and these are precisely the models for Z⊗Cantora.
Finally, the algebraic K-theory K(La) has been computed in [2], and the result shows

that it is also the cofibre of multiplication with a−1 on K(Z). The obvious comparison

maps are equivalences.

Remark 5.5. Brin [9] has introduced the higher-dimensional Higman–Thompson groups.

These are the automorphism groups of the free models for the Lawvere theories

Cantora(1)⊗Cantora(2)⊗·· ·⊗Cantora(n),
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for a finite sequence of integers a(j)� 2 (see [14, 20, 35, 36]). It follows from our earlier

work [5, Theorem 2.7] that the stable homology of these groups is described by the

algebraic K-theory spectrum of that Kronecker product. From Theorem 3.6, we get a
map

K(Cantora(1))∧K(Cantora(2))∧·· ·∧K(Cantora(n))−→K(Cantora(1)⊗·· ·⊗Cantora(n))

(5.4)

from the smash product of the algebraic K-theory spectra into it. The homotopy type of
this smash product can be worked out, because the algebraic K-theory spectra are Moore

spectra by [48], but it is not known whether the map (5.4) is an equivalence. In fact, it

is not known whether the spectra are equivalent at all.

5.2. Boolean algebras

There are Lawvere theories for which the assembly map is trivially trivial because the
target is contractible. For instance, in any abelian T–model M, all constants of T need

to be equal, because there is a unique homomorphism 0 = M0 → M of abelian groups.

This happens for rings with unit (1 = 0 implies a= 1 ·a= 0 ·a= 0 for all a) but also for
Boolean algebras:

Proposition 5.6. Any abelian group object in the category of Boolean algebras is trivial.

Proof. We first note that 0∧x = 0 and 1∧x = x hold in every Boolean algebra. If, in
addition, we have 0 = 1, then this implies x = 1∧ x = 0∧ x = 0 for all x, and we are

done.

Theorem 5.7. The assembly map for the Lawvere theory Boole is zero and, in particular,

not rationally injective.

Proof. It follows from Proposition 5.6 that Z⊗Boole is the theory of modules over the

trivial ring, and the algebraic K-theory spectrum K(Z⊗Boole)≃ ⋆ is contractible.
On the other hand, we can use the computation of the algebraic K-theory of the

theory of Boolean algebras in [5, Corollary 5.2]. The result implies that the source

K(Z)∧K(Boole) �≃ ⋆ of the assembly map is not contractible because

π0(K(Z)∧K(Boole))∼=K0(Z)⊗K0(Boole)∼= Z⊗Z∼= Z.

It is easy to generalise the preceding result from Boolean algebras to v–valued Post

algebras as in [5, Theorem 5.1]; we omit the details.

6. Classical assembly maps via the theories of group actions

We can now see how to recover one of the classical assembly maps in algebraic K-theory

as a special case of our general assembly map (5.1).

Theorem 6.1. For each group G, we can identify the assembly map (5.1) with the unique

K(Z)–linear morphism

K(Z)∧Σ∞
+ (BG)−→K(ZG) (6.1)
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between K(Z)–module spectra that extends the map given by realising the elements of G

as units in the group ring ZG. These maps are natural in the group G.

This is Loday’s version of the assembly map in algebraic K-theory [32]. There are

obvious extensions to other coefficient rings than Z.

Proof. For any discrete group G, we can consider the Lawvere theory T of G–sets and

apply Theorem 5.1.
The algebraic K-theory of the theory of G–sets is

K(G–Sets)≃ Σ∞
+ (BG),

the suspension spectrum of the classifying space BG (with a disjoint base point +). This

observation is Segal’s extension of the Barratt–Priddy–Quillen theorem, given by applying
Proposition 3.6 of [43] to the example discussed on pages 299–300 of that paper. This

identifies the source of the assembly map (5.1) as K(Z)∧Σ∞
+ (BG). As for the target, if

T is the theory of G–sets for a group G, then Z⊗T is the theory of abelian groups with

a linear G–action. These are precisely the modules over the group ring ZG, giving the
target of the assembly map (5.1).

Example 6.2. The assembly map (6.1) is obviously an equivalence for the trivial group
G= e. Less obviously, it is also an equivalence when G∼=C∞ is infinite cyclic: The theory

C∞–sets is the theory of permutations: a model is a set together with a permutation of

that set. The Barratt–Priddy–Quillen–Segal theorem gives

K(C∞–Sets)≃ Σ∞
+ (BC∞)≃ Σ∞

+ (S1)≃ S∨ΣS.

On the other hand, we have ZC∞
∼= Z[q±1], and Quillen’s work on the algebraic K-theory

of Laurent polynomial rings gives an equivalence

K(Z[q±1])≃K(Z)∨ΣK(Z)≃K(Z)∧ (S0∨S1)≃K(Z)∧Σ∞
+ (BC∞)

of spectra (see Grayson’s paper [22]).

Remark 6.3. The assembly map (6.1) for groups can fail to be an equivalence. For

instance, the failure of surjectivity on π1 is measured by the Whitehead group of G,

and the Whitehead group is often nontrivial (take G of order p � 5 a prime). By work
of Bökstedt–Hsiang–Madsen [6, 7] on the algebraic K-theoretic analogue of Novikov’s

conjecture, it is known that the map (6.1) is rationally injective for groups whose integral

homology is of finite type. We refer to the surveys cited in the Introduction for more
recent results in this vein.

Remark 6.4. The frequent failure of Loday’s assembly maps to be equivalences has led
to considerable efforts to amend it. The most successful attempts modify the source to

accommodate information from a family of subgroups larger than the trivial one (see [13],

for instance). It appears to us that a family version of our description is possible but not
without extending the whole set-up to Lawvere theories that are multisorted or coloured.

Since one advantage of the present work is its conceptual simplicity, adding this layer of

complexity is not currently justified by its expected value.
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There is one important situation where the map (3.1) from Theorem 3.6 is an

equivalence, and this is useful in computations:

Proposition 6.5. For any groups G and H, the map

K(G–Sets)∧K(H–Sets)−→K(G–Sets⊗H–Sets)

from Theorem 3.6 is an equivalence.

Proof. Recall from Example 2.6 that the two Lawvere theories G–Sets⊗H–Sets and

(G×H)–Sets are the same. This gives an equivalence

K(G–Sets⊗H–Sets)≃K((G×H)–Sets).

Now we can use the Barratt–Priddy–Quillen–Segal equivalence K(G–Sets) ≃ Σ∞
+ BG

of spectra, for G×H instead of G, and the equivalence B(G×H) ≃ B(G)×B(H) of
classifying spaces which induces the equivalence Σ∞

+ B(G×H) ≃ Σ∞
+ BG ∧Σ∞

+ BH of

suspension spectra.

For instance, this result allows us to factor the Z–linear assembly maps for products
G×H as the Z[G]–linear assembly map for the factor H and the Z–linear assembly map

for the other factor G smashed with the identity on K(H–Sets):

K(Z)∧K(G–Sets)∧K(H–Sets) ��

∼

��

K(Z⊗G–Sets)∧K(H–Sets)

��

K(Z[G])∧K(H–Sets)

��
K(Z)∧K(G–Sets⊗H–Sets) �� K(Z⊗G–Sets⊗H–Sets) K(Z[G×H]).

Remark 6.6. Proposition 6.5 is a rare instance of a class of examples for which the map
(3.1) from Theorem 3.6 can be shown to be an equivalence. It would be highly desirable to

establish more such results in similar situations, such as the one mentioned in Remark 5.5.

7. Nonabelian groups and a nilpotent interpolation

The algebraic K-theory spectrum K(Z) of the integers enters our assembly map (5.1)

through the Lawvere theory of abelian groups. In this section, we show what happens

when we relax the commutativity hypothesis. At the same time, we prove results about
the assembly maps for various theories of groups, starting with the following.

Theorem 7.1. The assembly map (5.1) for the theory T =Groups of all groups,

K(Z)∧K(Groups)−→K(Z⊗Groups)

is an equivalence.

Proof. In the theory of groups, the automorphism groups Aut(Fr) are the automorphism

groups of the free groups Fr on r generators. Galatius [21] has shown that the algebraic
K-theory space is the infinite loop space underlying the sphere spectrum: the unit

S → K(Groups) is an equivalence. The result now follows from this and the fact that

(abelian) group objects in the category of groups are just abelian groups.
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Conversely, we can now also consider assembly-like maps

K(Groups)∧K(T )−→K(Groups⊗T ). (7.1)

By Galatius’s theorem, this is equivalent to the map K(T )→ K(Groups⊗T ) of spectra

induced by the canonical morphism T →Groups⊗T in the sense that the obvious triangle
commutes.

Moreover, there is an interpolation between the theory of all groups and the theory

of all abelian groups by the theories Nilc of nilpotent groups of a certain class c, with
1� c�∞. There is a corresponding diagram

...

��
K(Nil3)

��
K(Nil2)

��
S K(Groups) ��

������������

��
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

K(Abel) K(Z)

of algebraic K-theory spectra. This tower has been studied from the point of view of
homological stability and stable homology in [46] and [47], respectively. We refer to

Zeman’s recent work [52] for related questions in a more geometric direction.

The assembly map (5.1) for the theory of abelian groups is not an equivalence. In fact,
more generally, we have the following result.

Theorem 7.2. The assembly map

K(Z)∧K(Nilc)−→K(Z⊗Nilc) = K(Z) (7.2)

for the theory Nilc of nilpotent groups of any given class c� 1 is not rationally injective.

Therefore, a generalisation of the Novikov conjecture to algebraic theories is impossible.

Proof. To see this, assume that it is rationally injective, and base change the K(Z)–linear
assembly map along the composition K(Z)→HZ→HQ to get a HQ–linear map

HQ∧K(Nilc)−→HQ,

which would then also be rationally injective, contradicting the results in [47]: the rational
homology of K(Nilc) is nontrivial for all positive integers c.

Remark 7.3. There is an entire interpolation of assembly-style maps between Loday’s

assembly map (5.1) and the map (7.1): there is a tower

K(Nilc)∧K(T )−→K(Nilc⊗T ) (7.3)
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of maps of spectra, indexed by the integer c� 1. Note how this differs from (7.2) in the

way the theory Nilc enters. At the time of writing, it is not known to us whether the

tower of spectra K(Nilc) converges (as c → ∞) to the spectrum K(Groups) ≃ S or not.
More generally, one may wonder whether or not the tower K(Nilc)∧K(T ) converges to

K(Groups)∧K(T ), or whether or not the tower K(Nilc⊗T ) converges to K(Groups⊗T ).

It would be interesting to pursue the question for which Lawvere theories T one or both
of these is the case.
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1970).

[43] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.
[44] I. R. Shafarevich, Abelian and nonabelian mathematics, Math. Intelligencer 13 (1991),

67–75.
[45] R. Sperber, Comparing assembly maps in algebraic K-theory, J. K-Theory 7 (2011),

145–168.
[46] M. Szymik, Twisted homological stability for extensions and automorphism groups of free

nilpotent groups, J. K-Theory 14 (2014), 185–201.
[47] M. Szymik, The rational stable homology of mapping class groups of universal nil-

manifolds, Ann. Inst. Fourier 69 (2019), 783–803.
[48] M. Szymik and N. Wahl, The homology of the Higman–Thompson groups, Invent. Math.

216 (2019), 445–518.
[49] F. Waldhausen, Algebraic K-theory of generalized free products, III, IV, Ann. of Math.

108 (1978), 205–256.
[50] M. Weiss and B. Williams, Assembly, in Novikov conjectures, index theorems and

rigidity, vol. 2 (Oberwolfach, 1993), London Mathematical Society Lecture Note Series,
227 (Cambridge University Press, Cambridge, 1995), 332–352.

[51] G. C. Wraith, Algebraic theories, in Lectures, Autumn 1969. Lecture Notes Series 22.
(Aarhus Universitet, Matematisk Institut, Aarhus, 1970).

[52] T. Zeman, On the quotients of mapping class groups of surfaces by the Johnson subgroups,
Math. Proc. Cambridge Philos. Soc. 170 (2021), 355–377.

https://doi.org/10.1017/S1474748022000603 Published online by Cambridge University Press


	1 Introduction
	2 Lawvere theories and their algebraic K-theory
	2.1 Lawvere theories
	2.2 Algebraic K-theory

	3 Multiplicative structure
	4 Monoids in the category of Lawvere theories
	5 Assembly for Lawvere theories
	5.1 Cantor algebras
	5.2 Boolean algebras

	6 Classical assembly maps via the theories of group actions
	7 Nonabelian groups and a nilpotent interpolation

